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Abstract— In modern multimedia databases, objects can be
specified by a large variety of feature representations. In this
paper, we present a novel technique for multi-represented simi-
larity estimation. We transform the distance between two objects
in each representation into so-called similarity and dissimilarity
estimates which are used to derive a meaningful similarity score.
To determine the parameters for our new similarity measure, we
present methods with and without user feedback.

I. INTRODUCTION

To measure the similarity between two multimedia objects,
modern systems often employ multiple representations, e.g. the
texture and the color distribution of an image. In order to ex-
ploit multiple representations, it is necessary to select or com-
bine the most suitable feature representations. In this paper, we
introduce a new technique for estimating the similarity based
on the distance values observed in multiple representations.
Therefore, we introduce so-called similarity and dissimilarity
estimates for each representation which mirror how strongly
a distance dR(o1, o2) in representation R indicates similarity
or dissimilarity w.r.t. an underlying notion of similarity. A key
feature of this approach is that the influence of each representa-
tion is adjusted to the strength of evidence it provides for either
similarity or dissimilarity. If a given distance value does not
hint to either statement, it remains rather neutral and the joint
similarity measure relies more on the other representations.
If available, the given notion of similarity can be provided by
user feedback. Additionally, we propose a method for finding a
good combination rule without any training examples based on
the observation that the provided representations are usually
useful for the given task. Thus, two objects having a very
small or a very large distance in all representations, are usually
considered as similar or dissimilar. Thus, we propose an
iterative process to fit both types of estimates by maximizing
the agreement between the estimates in each representation.
In our experimental evaluation, we demonstrate that our new
method is capable to improve precision and recall of similarity
queries.

II. RELATED WORK

A good overview about combining approaches in informa-
tion retrieval can be found in [1]. In [2] the authors use logistic
regression on user feedback to weight the influence of each
representation. The authors of [3] suggest another technique
calculating a weighted distance function that uses the standard
deviations of the features. Further approaches to approximate
weights employing user feedback are described in [4], [5].

In comparison to our approach, these methods employ global
weights for each representation and no self-adjusting distance
tuning is proposed.

III. SIMILARITY AND DISSIMILARITY ESTIMATES

To compare two multi-represented objects o1 and o2, we
have to combine the distances that can be derived from each
representation. The core idea of our method is to derive two
types of estimates from each representation describing the
distribution of similarity and dissimilarity over the observed
distance values. By combining both aspects into a joint esti-
mate, the distance in each representation is transformed into
a similarity score expressing similarity, dissimilarity or ambi-
guity of meaning. Afterwards, we can combine the estimates
from all representations for deriving a joint similarity score.

To define our new model, we assume that there is a ground
truth of the pairwise similarity between data objects o1, o2

which is described by a similarity score simo1,o2 ∈ [0..1].
To define dissimilarity, we can invert simo1,o2 by substraction
from 1, i.e. dissimo1,o2 = 1 − simo1,o2 . The main problem
of judging similarity is that the distance between o1 and
o2 in representation R often mimics this ground truth only
insufficiently, i.e. simo1,o2 might vary from simo3,o4 even if
dR(o1, o2) = dR(o3, o4).

If the majority of pairwise similarity is observed for dis-
tances dR(oi, oj) ≤ τ , it can be concluded that the portion
of similarity being observed for distances dR(ol, ok) > τ is
rather small. Thus, for distance values being larger than τ , the
objects are likely to be rather dissimilar. Correspondingly, we
can consider the portion of dissimilarity being observed for
objects having a larger distance dR(oi, oj) ≥ τ . If most of
the dissimilarity corresponds to larger distance values than τ ,
objects having dR(o1, o2) < τ will most likely be similar. The
advantage of estimating similarity by the absence of dissimilar-
ity and vice versa is that the ambiguity is captured in a natural
way. An ambiguous meaning is caused by rather similar and
rather dissimilar objects displaying the same distance. If a
certain interval of distance values does not display a large
amount of similarity, it is natural that the meaning of a distance
in this interval is rather indicating object dissimilarity. To
capture this idea in a mathematical formulation, we consider
the total amount of similarity or dissimilarity :

TotSim(DB) =
∑

o1,o2∈DB

simo1,o2
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Correspondingly, the total dissimilarity is defined as:

TotDissim(DB) =
∑

o1,o2∈DB

dissimo1,o2

Now, a similarity estimate can be defined as the absence
of dissimilarity and a dissimilarity estimate by the absence of
similarity.

Definition 1 (Similarity and Dissimilarity Estimate): Let
DB be a database with the total similarity TotSim(DB)
and the total dissimilarity TotDissim(DB). Furthermore,
let R be a representation with the distance measure
dR : R × R → [0 . . . 1]. Then, we define the set
Φ(x) = {(u1, u2)|(u1, u2) ∈ R×R∧ dR(u1, u2) ≥ x} as the
set of all object pairs having a distance larger than or equal
to x. The similarity estimate εS

R(x) is defined as follows:

εS
R(x) =

∑
(o1,o2)∈ΦR(x) dissimo1,o2

TotDissim(DB)

Let Ψ(x) = {(u1, u2)|(u1, u2) ∈ R×R∧dR(u1, u2) ≤ x} be
the set of all object pairs having a distance less than or equal
to x. The dissimilarity estimate εD

R (x) is defined as follows:

εD
R (x) =

∑
(o1,o2)∈ΨR(x) simo1,o2

TotSim(DB)
To find a joint statement about object similarity in rep-

resentation R, we employ the estimate making a stronger
implication because the reliability of the estimate increases
with the portion of the covered similarity or dissimilarity.
Furthermore, to find a joint distance measure, we invert the
similarity estimate by subtracting it from one. The joint
estimate εR() for representation R is defined as follows:

Definition 2 (Joint Estimate):
Let DB be a database and let R be a representation with
the distance measure dR : R × R → [0 . . . 1]. Furthermore,
let εS

R(x) be the similarity estimate and let εD
R (x) be the

dissimilarity estimate for the distance value x. Then, the joint
estimate for x is defined as follows:

εR(x) =
{

1− εS
R(x) if εS

R(x) > εD
R (x)

εD
R (x) else

The joint estimate represents a statement about the assumed
object dissimilarity from each representation. Considering
the case of missing representations as described above, the
estimate distance is formulated as follows:

Definition 3 (Estimate Distance):
Let o1 and o2 be two multi-represented objects over the
representations ρ = {R1, . . . , Rn}. For each feature space
Fi corresponding to representation Ri, we consider the joint
estimate εR(x). The estimate distance dEST between o1 and
o2 is defined as follows:

dEST : (R1 × . . .×Rn)× (R1 × . . .×Rn) → R+
o

dEST(o1, o2) =

(∏
i∈M

εRi(dRi(o1, o2))

) 1
|ρ|

IV. CALCULATING ESTIMATES AND PARAMETER TUNING

a) User Feedback: In the basic case, there exists a
sufficiently large set of user feedback, i.e. there already
exist pairs of distance values and similarity scores in each
representation. To learn the estimates, we employ regression
based on a sigmoid function which displayed the best results
in our experiments.

sigα,β(x) =
1

1 + exp (α · x + β)

A similarity estimate is expressed by a sigmoid function
having a negative α-value. Correspondingly, dissimilarity es-
timates are approximated by a sigmoid function having a
positive α-value.

In the following, we sketch the steps to determine the
parameters α and β. Given the user feedback DBu ⊆
DB × DB × [0..1], the following steps are performed for
representation R: (1) Insert each triple (o1, o2, dissimo1,o2)
into a priority queue which is ordered w.r.t. dR(o1, o2) in
descending order. Simultaneously, sum up TotDissim(DBu).
(2) Process all elements in the priority queue. Determine the
estimate points by taking the distances as x-values. The y-
values are calculated by dissimo1,o2

TotDissim(DBu) . (3) Employ the
numerical method proposed by Levenberg and Marquardt [6]
for fitting the sigmoid function to the sample points.

Correspondingly, the dissimilarity estimate is calculated by
ordering the priority queue in ascending order and employing
similarity scores.

b) Self Adjustment: In the case that there is no user
feedback available, we can still derive a good parameter setting
by employing the following iterative algorithm. Therefore, we
have to find a way to maximize the agreement between the
estimates. Formally, we can capture the agreement between
the estimates in all representations by the average variance of
estimate values on a training data set DB:

Definition 4: Let ρ = {R1, . . . , Rn} be a set of represen-
tations and let εS

Ri
() and εD

Ri
() be similarity and dissimilarity

estimates for all Ri with 1 ≤ i ≤ n, respectively. Then the
average similarity εS

avg() and dissimilarity estimate εD
avg() for

the comparison of two multi-represented objects o1, o2 are
defined as :

εS
avg(o1, o2) =

∑
Ri∈R εS

Ri
(o1, o2))

|R|

εD
avg(o1, o2) =

∑
Ri∈R εD

Ri
(o1, o2))

|R|

Consequently, the average variance of a given example set DB
consisting of multi-represented objects is given by:

V ar(DB) =
∑

(on,om)∈DB

∑
Ri∈R

(εS
Ri

(on, om)− εS
avg(on, om))2

+(εD
Ri

(on, om)− εD
avg(on, om))2

After providing a measure of the agreement between es-
timates on a given example set DB, we now introduce an
iterative method for finding parameters minimizing V ar(DB).



FUNCTION selfAdjustingParameterTuning(pct)
BEGIN

D := generateDistanceVectors()
FOR EACH representation Ri ∈ ρ DO

initEstimates(D)
END DO
DO
\\ built joint model
εS
avg := calculateAVGSIM(D)

εD
avg := calculateAVGDISSIM(D)
\\ fit estimates to joint model
FOR EACH representation Ri ∈ ρ DO

approximateEstimates(D, εS
avg , εD

avg)
END DO

WHILE(old parameters 6= new parameters)
END

Fig. 1. The algorithm for self-adjusting parameter tuning.

Figure 1 displays our approximation algorithm. in pseudo
code. The algorithm starts with an initial estimate in each
representation Ri inducing εS

avg and εD
avg for all distances that

can be observed in the training set. Thus, εS
avg and εD

avg are
considered as the current model of the notion similarity. In a
maximization step, we now adjust our estimates to resemble
this notion of similarity in a best possible way. Therefore,
we apply the method described in the previous subsection.
However, since we do not have any definite statement about
the similarity of two objects, we need to consider each
object comparison for both types of estimates and assign
the current estimate value as current similarity score. Thus,
the comparison between o1 and o2 is considered to have the
similarity of εS

avg(o1, o2) when fitting the similarity estimates.
Correspondingly, εD

avg(o1, o2) is used as similarity score when
fitting the dissimilarity estimates. After adjusting the estimate
parameters to the current notion of similarity, we update the
average estimates εS

avg and εD
avg which can be done by directly

applying the definition. Both steps are continued until the
estimate parameters do not change significantly any more
which is usually the case after 3 to 7 iterations.

V. EVALUATION

We performed experiments on five real world data sets
displaying comparable performance. However due to space
restrictions, we cannot discuss all of our results. In the
following, we will describe our results on one of these data
sets. We compared our new approach to a weighted sum of
distances (“WAVG”), the approach using logistic regression [2]
(“LogReg”) and the best single representation. These methods
and our new approach were implements in JAVA 1.5. The
conf-data-set contains 183 pictures belonging to 35 classes
which were Taken during two sightseeing trips. We extracted
color histograms [7], gray histograms, roughness and facet-
orientation [8]. We employed the iterative method without user
feedback to determine the parameters for the estimate distance.

Figure 2 displays the improvement of the precision recall
graph compared to WAVG, LogReg and the single represen-
tation displaying the best result. In all cases, the estimate
distance showed a significant improvement of the precision
of up to 4 %.
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Fig. 2. Improvement of precision w.r.t. to five different levels of recall for
the conf data set.

To get a further impression of the performance of our
new method, we additionally employed nearest neighbor clas-
sification based on four distances. For this experiment, we
employed 10-fold cross validation to test the distance measures
on unknown samples as well. The estimate distance allowed
distance-based classification with an accuracy of 87 %. WAVG
and LogReg performed worse by showing accuracies of 84%.
The best single representation outperformed the two estab-
lished methods by 1% allowing an accuracy of 85 %.

VI. CONCLUSIONS

In this paper, we propose a novel technique for similarity
estimation in multi-represented similarity search. Therefore,
similarity and dissimilarity estimates are introduced describing
the strength of the similarity and dissimilarity statements
in each representation. After combining both statements for
each representation, a new combined distance measure, called
estimate distance, is composed. For fitting both types of esti-
mates to a given application, we propose a method employing
user feedback. Furthermore, an iterative method is proposed
that does not rely on user feedback. In our experiments,
the estimate distance outperforms state-of-the-art combination
methods w.r.t. precision and recall.
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