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Abstract

Metric databases are databases where a metric distance
function is defined for pairs of database objects. In such da-
tabases, similarity queries in the form of range queries or
k-nearest neighbor queries are the most important queries.
In traditional query processing, single queries are issued
independently by different users. In many data mining ap-
plications, however, the databaseistypically explored by it-
eratively asking similarity queries for answers of previous
similarity queries. In this paper, we introduce a generic
scheme for such data mining algorithms and weinvestigate
two orthogonal approaches, reducing 1/0 cost as well as
CPU cost, to speed-up the processing of multiple similarity
gueries. The proposed techniques apply to any type of sim-
ilarity query and to an implementation based on an index
or using a sequential scan. Parallelization yields an addi-
tional impressive speed-up. An extensive performance eval-
uation confirms the efficiency of our approach.

1. Introduction

Metric databases are databases where a metric dis-
tance function is defined for pairs of database objects. A
prominent special case are databases of objects from avec-
tor space, that is objects with numeric attributes. For exam-
ple, multimedia objects [8] are typically represented by a
large number of numeric features such as shape descriptors
or color histograms. In many scientific applications, e.g. in
astronomy [12], automatic facilities measure a large num-
ber of numeric values for each database object such as the
amplitude emitted in some frequency band. On the other
hand, in a database monitoring WWW accesses, the obj ects
may model URLs and these objects are not from a vector
space but a metric distance function can be supplied.

Similarity between database objects is expressed by
the distance function such that alow distance corresponds
to a high degree of similarity whereas two objects with a
large distance are considered to be rather dissimilar. Smi-
larity queries [22], e.g. range queries or k-nearest neighbor

gueries, arethe most important queriesin metric databases.
Such queries play amajor role in applications such as mul-
timedia systems, decision support systemsand datamining.

A lot of research on analyzing large databases - manu-
ally and automatically - has been conducted. Data explora-
tion isthe process of manually exploring adatabase[16]. A
user starts at a given database object and from there he or
she interactively navigates through the database, for exam-
ple by iteratively retrieving al similar objects. That is, the
answers of previous queries may be used as query objects
for new similarity queries. Knowledge discovery in data-
bases (KDD) has been defined as the non-trivial process of
discovering valid, novel, potentially useful, and ultimately
understandabl e patterns from data [9]. The core step of the
KDD processisthe step of data mining, i.e. the application
of appropriate algorithms that automatically produce a par-
ticular enumeration of patterns over the data. For example,
adensity-based clustering algorithm such as DBSCAN [7]
starts from some object and repeatedly retrieves the neigh-
borhood of objects which have been retrieved by previous
queries as long as the density in this neighborhood is large
enough.

In traditional query processing, single queries are is-
sued independently by different users. In manual data ex-
ploration as well as in automatic data mining, however,
many similarity queries must be answered in asingle appli-
cation. We define multiple queries as sets of queriesissued
simultaneously. Clearly, multiple queries provide much
more potential for query optimization than single queries.
In this paper, we investigate two orthogonal approaches to
speed-up the processing of multiple similarity queries in
metric databases: reduce 1/O cost (that is, the number of
disk accesses) and reduce CPU cost (that is, the number of
distance calculations). Furthermore, we explore the poten-
tial of parallelization. The proposed techniques can be com-
bined in order to obtain a maximum performance of pro-
cessing multiple similarity queries.

The rest of this paper is organized as follows. In
section 2, we briefly review the standard methods of pro-
cessing single similarity queries and we introduce some ba-
sic notions and algorithms. Section 3 introduces an algo-



rithmic scheme typical for many data mining applications
and discusses severa instances of this scheme. Further-
more, we devel op amethod to transform such al gorithms so
that they issue sets of multiple queries. The concepts of
multiple similarity queries are introduced in more detail in
section 4. Section 5 presents several techniques for effi-
ciently supporting multiple similarity queries. An extensive
performance evaluation of the proposed techniques on two
real databases is presented in section 6. Section 7 summa-
rizes the contributions of this paper and outlines some is-
suesfor future research.

2. Processing single similarity queries

L et the database obj ects be drawn from aset of Objects
and let dist beametric distance function for pairs of objects,
i.e. dist: Objects x Objects — 0", and dist satisfies the fol-
lowing conditions. L1 Oy, O,, O3 [ Objects:

1) d|St(Ol, 02) =0 - Ol = 02. (ldent|ty)

2) dist(O4, O5) = dist(O,, Oy). (symmetry)

3) dist(01,03) <dist(04,0,) + dist(O,,03). (A-inequality)
Often, the Euclidean distance or aweighted Euclidean dis-
tance is used as the distance function but, depending on the
application, other distance functions may be more appro-
priate. For instance, quadratic form distance functionswere
successfully applied for an image database using color his-
tograms as features [21].

Definition 1. (similarity query)

Let DB O Objects be a database and let Q O Objects be a
query object. Let T denote the type of the similarity query
and let Ssmy: Objects x Objects — Boolean be a predicate
defining the similarity of pairs of objectswrt. to the type T.
A similarity query, denoted as DB.similarity_query(Q,T),
returns the following database objects:

DB.similarity_query(Q, T) = {OODB]|sim;(O, Q)} .

The specification of the query type T consists of three
components:

* Trange areal number specifying a maximum distance

betweerQ and an answer.

¢ T.cardinality: an integer number defining the maximum

cardinality of the set of answers.

* Tkind: a string indicating how to combine the range

condition and the cardinality condition.

The well-known types of similarity queries are ob-

tained by different specializations of the query type.

Definition 2. (range query)

A rangequery with respect to a databab® 0 Objects  and
is a similarity query with

a query objectQ O Objects

T.range=¢, T.cardinality = +oo andT.kind = “range” which

returns the following subset of database objects:
DB.similarity_query(Q, T) = {OODB| dist(O, Q) <¢} .

Definition 3. (k-nearest neighbor query)
A k-nearest neighbor query with respect to a database
DB 0O Objects and a query objea O Objects  is a similar-
ity query withT.range = +oo, T.cardinality =k andT.kind =
“k-nearest neighbor” which returns a $eN5(k) O DB that
containsk objects from the database and for which the fol-
lowing condition holds:

0P 0 NNg(K), 0O 0 DB — NN(K): dist(P, Q) < dist(O, Q)

Other types of similarity queries have been proposed
in the literature. For instance, we may be interested ik-the
nearest neighbors but only in those within a specified range.

In order to speed-up similarity query processing,
many spatial index structures (for good surveys see [20],
[10]) have been developed which are applicable for the im-
portant special case where the database objects are from a
vector space. For instance, tReree [11] generalizes the
one-dimensional B-tree wdimensional data spaces, that
is an R-tree managaekdimensional hyper-rectangles in-
stead of one-dimensional numeric keys.

The R-tree and its variants such as tR&-tree [4] are
efficient only for relatively small numbers of dimensiahs
Recently, index structures have been designed which are also
efficient for some larger values dfFor instance, th¥-tree
[2] is similar to an R*-tree but introduces the conceppér-
nodes, i.e. nodes of variable size in the directory of the tree.
Directory nodes are “merged” into one supernode, i.e. directo-
ry nodes areot split, if there is a high probability that all parts
of the node have to be searched anyway for most queries.

In [14] and [22], it is shown that under the assumption
of uniformly distributed data, above a certain dimensional-
ity no index structure can process a nearest neighbor query
efficiently. Thus, it is suggested to use the sequential scan
which obtains at least the benefits of sequential rather than
random disk I/O. In th&/A-file [22], clever bit encodings of
the data are used to speed-up the scan.

The above index structures are only applicable for
vector spaces. The more general case of metric databases,
however, is also important in applications such as WWW
access log databases. Then, the database objects may be
sessions grouping all log entries with identical IP address
and user id within a given maximum time gap [19]. General
metric databases require other types of index structures, the
so called metric trees. In these metric treesribagleine-
quality is used to prune the search tree while processing a
similarity query. Most of these structures are static in the
sense that they do not allow dynamic insertions and dele-
tions of objects. A recent paper [5] has introduced a dynam-
ic metric index structure, thigl-tree, which is a balanced
tree that can be managed on secondary memory. The leaf
nodes of an M-tree store all the database objects. Directory
nodes store so-calleduting objects and associated cover-
ing radii to guide the search operations.



DB::similarity_query(object Q; type T)
Answers := initialize_answer_list();
determine_relevant_data_pages(Q, T);
QueryDist :=T.Range;
while Self.unprocessed_pages() do
NextPage :=read_next_page_from_disk();
for each object O in NextPage do
Distance := dist(0,Q);
if Distance < QueryDist then
Answers.insert(O); // in asc. order of dist(A,Q)
if Answers.cardinality() > T.Cardinality() then
Answers.remove_last_element();
QueryDist := adapt_query_dist
(Distance,QueryDist,T);
Self.prune_pages(QueryDist);
return Answers;

Figure 1. Algorithm similarity _query

Query processing using a sequential scan is straightfor-
ward: al objects must be visited to answer a query. When
using an index it may be possible to exclude large propor-
tionsof the datafrom asearch. To answer arange query using
atree-based index, the set of approximations (e.g. hyper-rect-
angles in case of an R-tree) intersecting the query region is
determined recursively starting from the root. In a directory
node, the entriesintersecting the query region are determined
and then their referenced child nodes are searched until the
data pages are reached. The procedure is more sophisticated
for ak-nearest neighbor query because we do not know the k-
nearest neighbor distance in advance. The agorithm pro-
posed by [13] has been provenin [3] to minimize the number
of pages read from disk. This algorithm processes the data
pagesin ascending order of distancefrom the query point and
does not load those pages with an approximation further
away than the k-nearest neighbor found so far.

To conclude this section, we present an algorithm for
processing single similarity queries. This algorithm is ap-
plicablefor any type of similarity query andit can beimple-
mented either by using an index structure or by performing
a sequentia scan. Figure 1 presents the agorithm as a
method of the class DB (database). It takes two arguments,
a query object Q and a query type T, and returns a list of
obj ects answering the similarity query.

We discuss the most important details of this algorithm.
The method DB::determine_relevant_data_pages(Q,T) is
based on the algorithm presented in[13] and it constructs a
seguence of the physical addresses of al data pages which
may contain answers of the similarity query specified by Q
and T. Note that the resulting sequence is managed as apri-
vate attribute of the class DB which is read by the method
DB.unprocessed_pages() and which is updated by
DB.read_next_page_from_disk(). If the implementation
makes use of an index structure, then a subset of all data
pages of DB may be recognized asirrelevant and thusis not

ExploreNeighborhoods(DB, StartObjects, SimType, ...)
ControlList := StartObjects;
while ( condition_check(ControlList, ...) = TRUE ) do
Object := ControlList.choose(...);
proc_1(Object, ...);
Answers := DB.similarity_query(Object, SimType);
proc_2(Answers, ...);
ControlList := (ControlList O filter(Answers, ...))
- {Object};

end while;

Figure 2. Algorithmic scheme
ExploreNeighborhoods

returned. Otherwise, if a sequential scan is performed, all
data pages of DB are relevant. In both cases, the relevant
data pages are ordered according to their physical address
such that the number of disk seeks is minimized.
DB.adapt_query_dist(Distance,QueryDist,T) changes the
QueryDist only in the case of ak-nearest neighbor query but
not in the case of a range query. DB.prune_pages(Query-
Dist) removes all elements page from the internal DB at-
tribute of relevant data pages satisfying dist(page,Q) > Que-
ryDist. Clearly, this method performs no operation if
QueryDist has not been adapted.

3. Data mining using multiple similarity
queries

In many data mining applications the database is ex-
plored by iteratively considering the neighborhood of some
start objects. In this section, we introduce a generic scheme
for such data mining algorithms and discuss some typical
instances of the scheme. Furthermore, we devel op amethod
totransform such algorithmsin away that they can use mul-
tiple similarity queriesinstead of single similarity queries.

3.1. Iterative neighborhood exploration

Many data mining algorithms start from a set of spec-
ified database objects and iteratively consider the neighbor-
hood of the visited objects. The neighborhood of a given
object is defined as the set of similar database objects with
respect to asimilarity query. Weintroduce ageneric scheme
for such algorithms which we call ExploreNeighborhoods.
Figure 2 depictsthe a gorithmic schemein pseudo code no-
tation where DB denotes a database, StartObjects denotesa
subset of DB and SimType specifies the type of similarity
query. The dotsin the argument list of some functionsindi-
cate additional arguments which may be necessary for dif-
ferent instances of this algorithmic scheme.

Starting from the objects in the set StartObjects, the
algorithm repeatedly retrieves the neighborhood of objects
taken from the ContolList as long as the function



condition_check returns TRUE for the ControlList. In the
most simple form, the function checks whether ControlList

is not empty. If the neighborhood of objects should only be
investigated up to a certain “depth”, then an additional pa-
rameter for the number of steps that have to be performed
can be used in the functi@ondition_check. The control
structure of the main loop works as follows: objects are se-
lected from theControlList, one at a time, and a similarity
query is performed for this object. The procedyres_1
andproc_2 perform some processing on the selected object
as well as on the answers of the similarity query that will
vary from task to task. Before repeating the loop Qe
trolList is updated. Some or all of the answers which are not
yet processed are simply inserted into @oetrolList. The
functionfilter(Answers, ...) removes from the set of answers
at least those objects which have already been iGdhe
trolList in previous states of the algorithm, if any exists. This
must be done to guarantee the termination of the algorithm.

3.2. Instances of iterative neighbor hood
exploration

In the following, we discuss several typical instances
of theExploreNeighborhoods scheme in order to show that
many data mining applications follow this scheme:

» Manual Data Exploration
When manually exploring a multimedia database, for ex-
ample, inproc_2 the answers are visualized and the user
may store the multimedia objects considered to be inter-
esting. In thdilter the user may prune answers which are
too dissimilar from the initial start objects.

» Spatial Association Rules
[15] introduces spatial association rules describing asso-
ciations between objects based on spatial neighborhood
relations. For instance, a rule may be discovered stating
that 80% of the selected towns are close to some water
such as a lake or river. In this algorithm, theSattOb-
jects is equal tahe set of all database objects of a speci-
fied type such as towisimType corresponds to the type
of spatial neighborhood suchiagersects which is given
by the usermroc_2 calculates the support, that is the rel-
ative frequency, of the retrieved pairs of objects and the

filter passes all of these pairs which have at least a speci-

fied minimum support.

* Density-Based Clustering

DBSCAN [7] is a typical density-based clustering algo-
rithm. To find a cluster, DBSCAN starts with some data-
base objecb and retrieves all objects density-reachable
from o with respect to two parameteEps and MinPts.
Initially, ControlList contains an arbitrary database object
and range queries with a rangé&p$are used as similarity
queriesproc_2 counts the answers and fiier passes all

answers which have not yet been assigned to some cluster
if the cardinality of the set of answers is at |dastPts.

» Smultaneous Classification of a Set of Objects
In an astronomy database [12], for example, all new stars
observed by a telescope during the night are processed
and added to the database the next day. Part of this pro-
cessing is to classify the set of new stars, that is to assign
each of them to one of the well-known clas&asearest
neighbor classifiers [18] are effective for this task and
they issue &-nearest neighbor query for each of the ob-
jects to be classified. In this capeyc_1 is emptyproc_2
finds the majority class in the setlohearest neighbors
andfilter always returns an empty list, that is no addition-
al query objects are generated.

* Jatial Trend Detection
A spatial trend has been defined as a regular change of one
or more non-spatial attributes when moving away from a
given start objeat [6]. Neighborhood paths starting fram
model the movement and a regression analysis is per-
formed on the respective attribute values for the objects of
a neighborhood path to describe the regularity of change.
For this data mining task, ttiexploreNeighborhoods loop
is additionally controlled by the number of steps (i.e. the
length of a neighborhood path) and the procedures 1
andproc_2 perform the regression analysis on the paths.

* Proximity Analysis
The goal of proximity analysis is to explain the existence
of some cluster of objects by using the features of neigh-
boring objects. [17] presents an algorithm which can ef-
ficiently find the “topk’ objects that are “closest” to a
given cluster. A second algorithm takes thesbjects as
input and finds the features that are common to most of
them. Characteristic properties such as “most of the clus-
ters are close to private schools and parks” may be dis-
covered. In this cas8tartObjects contains all the objects
of the specified clusteproc_2 considers the features of
the k-nearest neighbors and returns the most common
ones. Thdilter returns an empty list implying that no ad-
ditional query objects are added.

3.3. Transformation into multiple query form

An instance of Iterative Neighborhood Exploration
can benefit from a multiple similarity query because the al-
gorithmic scheme can be transformed into a multiple query
form such that it uses multiple similarity queries instead of
single similarity queries. If the evaluation of a multiple sim-
ilarity query form query objects can be performed more
efficiently than the evaluation of the correspondimgin-
gle similarity queries - which is possible as we will see in
the next sections - the runtime of the whole class of
ExploreNeighborhoods-algorithms will be improved. We
assume the following method to be available:



 ListOfAnswerSets DB::multiple_similarity _query 4. M ultiplesimilarity queries
(ListOfObjects, SimTypes);

Let the similarity queries for all of the query objects in ~ Inthis section, the notion of a multiple similarity que-
ListOfObjects be “somehow” performed simultaneously ry is presented in more detail.

and let the generated answers for all of these queries beDefinition 4. (multiple similarity query)

stored in some internal buffer of the DBMS. If each of the Let DB [ Objects be a database containingbjects. Let
queries is completely answered after the call of Queries=[Qq, Qs,...,Qmyl be a sequence ofquery objects
multiple_similarity_query, successive calls containing que- Q; O Objects and let SmTypes = [Ty, ..., T, be the
ries which were already asked in a previous call of the corresponding sequence of query types.

method then can just pick the answers from the buffer. A multiple  similarity  query,  denoted by
) . DB.multiple_similarity_query(Queries, SmTypes), returns
Note, however, that we do nagquire the multiple a sequencAnswers = [A,, ..., A, containing for each ele-

similarity query to generate a complete set of answers for mentQ, in Queries a corresponding sé of objects 0DB
each of the posed queries. One call of a multiple similarity where the following holds:

guery must only guarantee that the answers for the first que- 1.)A; = DB.similarity_query(Q,, T;), and

ry object are complete. We will discuss this weak specifica- 2.)A, O DB.similarity_query(Q;, T;) for all 2<i<m.
tion of a multiple similarity query in more detail in the next
section. The intuitive meaning is that if we ask a similarity
guery for the first object, we can additionally inform the

Only for the first queryall answers must be determined
in a single call of a multiple similarity query. The remaining
o X gueries may be answered completely or partially, depending
PBMS _that the similanity queries for the other query ob- on the implementation of the multiple similarity query. We
jects will probably be asked later and the DBMS may use i argue in the next subsection that an incremental imple-
this information to improve the overall runtime for the set entation. i.e. only the first query is answered completely
of queries by retrieving (some of) the respective answers in anq other queries are answered partially in a single call of

advance. The transformed algorithmic scheme catled the method, may be more efficient if we consider the overall
ploreNeighborhoodsMultiple is presented in figure 3. As  run-time of arExploreNeighborhoodsMultiple algorithm.

we can see, the reformulation can be done in a purely syn-  Using multiple similarity queries instead of single
tactical way. Thus, a query optimizer can automatically use similarity queries we may spend less I/O time and less CPU
multiple similarity queries to efficiently process &m- time for a set of queries. First, we read a single page only
ploreNeighborhoods-algorithm if a multiple similarity que- once for the whole set of queries. Second, knowing a whole
ry is available as a basic DBMS operation. set of query objects in advance, we can use the distances

between these query objects to replace expensive distance

Obviously, the algorithmic schenfxploreNeighbor- 05 tations by significantly cheaper distance compari-
hoodsMultiple performs exactly the same task as the origi- gopg using the triangle inequality.

nal ExploreNeighborhoods scheme. The only differences Our algorithm for a multiple similarity query is depicted
are that a set of objects is selected fromQiwetolList in- in figure 4. The only parts that differ from the algorithm for a
stead of selecting a single object and a multiple similarity single similarity query (see figure 1) - besides the obvious
query is performed instead of a single similarity query. handling ofmultiple query objects and types - are as follows:
However, in one execution of the main loop, the algorithm  « restore_from_buffer([Qy,...Qm].[T1,... Tm])

processes only the first element of the set of selected ob- e buffer_answers([Answers;,..,Answers,])

jects and its corresponding set of answers. In the beginning, we have to restore (partial) answers

ExploreNeighborhoodsMultiple(DB, StartObjects, SimTypes, ...)

ControlList := StartObjects;

while ( condition_check(ControlList, ...) = TRUE ) do
ListOfObjects := ControlList.choose_multiple(...); // ListOfObjects = [objecty, . . ., object,,]
proc_1(ListOfObjects.first(), ...);
SetOfAnswers:= DB.multiple_similarity_query(ListOfObjects, SimTypes);

Il SetOfAnswers=[answersy, . . .,answers,,], SimTypes=[SimTypey, . . .,.SimTypey,]

proc_2(SetOfAnswers.first(), ...);
ControlList := (ControlList O filter(SetOfAnswers.first(), ...)) - {ListOfObjects.first()};

end while;

Figure 3. Algorithmic scheme ExploreNeighborhoodsMultiple



DB::multiple_similarity_query(objects [Qq, ..., Qn]; types [Tq, ..., Tm])
[Answers;, ..., Answers,,] := Self.restore_from_buffer([Qq, ..., Qml, [T1, ---» TmD;
Self.determine_relevant_data_pages([Q1, ..., Qml, [T1, --+» Tmnl);
for i from 1 to m do QueryDists; := T;.Range;
forifrom 1to m, forjfrom i+1 to m do QObjDists; := dist(Q;, Q));
while Self.unprocessed_pages() do

NextPage := Self.read_next_page_from_disk();
for each object O in NextPage do
for i from 1 to m do AvoidingDists; := UNDEFINED;
forifrom 1to mdo
if Self.page_is_relevant(NextPage, Q;) then
if not avoid_dist_computation(O,Q;,QObjDists,AvoidingDists) then
Distance := dist(O, Q);
AvoidingDists; := Distance;
if Distance < QueryDists; then
Answers;.insert(O); /l in ascending order of dist(A,Q)
if Answers;.cardinality() > T;.Cardinality() then
Answers;.remove_last_element();
QueryDists; := Self.adapt_query_dist(Distance,QueryDists;,T;);
Self.prune_pages(QueryDists));
Self.buffer_answers([Answersy, ..., Answers,]);
return [Answersg, ..., Answersy,];

Figure 4. Algorithm multiple_similarity _query

from an internal buffer -if available- and we haveto store needed for the application of the triangle inequality per-
generated answersinto this buffer at the end. formed by avoid_dist_computation(O,Q;,QObjDists,
« determine_relevant_data_pages([Qy, .... Qul [T1, - Trn]) AvoidingDists). The details of avoiding distance calcula-

This procedure returns the set of all data pages relevant for ~ tions are presented in section 5.2.

Q, and, additionally, it returns some or all of the relevant

data pages for the remaining query objects, that is 5. Efficient support for multiple similarity
relevant_pages(Q,) [ determine_relevant_pages(..) O queries

d ﬁ relevant_pages(Q;)

i=1 In this section, we present techniques that significant-

* First, a subset of the set of all queries is chosen which |y reduce the amount of disk I/O as well as the number of
should be completely answered. If the implementation is CPU operations needed to evaluate a multiple similarity
based on the linear scan, each data page is relevant. If USin%uery Compared to a set of Sing|e S|m||ar|ty queries_ Fur-
an index structure such as the X-tree, the set of all data pag-thermore, we br|ef|y discuss how to achieve a further per-
es which cannot be excluded from the search for at least oneformance gain when using parallelization techniques for
of the selected queries is determined from the directory of the processing of multiple similarity queries. Note that
the tree. Note that our implementation ofa multlple similar- there is an upper limit for the numbmaiof mu|t|p|e similar-

ity query on top of an index structure converges to the ity queries which can be processed simultaneously. This
method for the linear scan when the page selectivity of the |imit is determined by the amount of main memory avail-
index decreases, e.g. with increasing dimension of the data gple to buffer the answers and by the computational over-
space. In the worst case, the index has no selectivity at all, head for calculating the inter-object distances between all
which means that no data page can be excluded from thepairs of query objects. Therefore, we assume that a total
Slmllarlty search. The details of determining the relevant number ofM > m S|m||ar|ty queries is processe%n con-

data pages are presented in section 5.1. secutive blocks af multiple queries.

* avoid_dist_computation(O,Q;,QObjDists,AvoidingDists) Letc' = C,',O + C'CPU be the cost for simultaneously
We calculate the inter-object distances for all pairs of processing similarity queries. Then, the cost for evaluating
query objects and store them i@@bjDists. Distances M queries using single similarity queries is equahtmcl ,

which must be calculated are temporarily stored into the cost for evaluatiniyl queries using multiple similarity
AvoidingDists. These distances and tkbjDists are queries is equal tc%xcm . Consequently, for a multiple



similarity query to improve the efficiency of single similar-
ity queries, thefollowing condition must hold: C™ < m x ct.

5.1. Reducing /O cost

We discuss the algorithm multiple_similarity_query
from an I/O cost point of view for two different implemen-
tations- oneontop of thelinear scan and another one ontop
of an index structure such asthe X-tree.

When performing alinear scan, the multiple similarity
query performs a condition check for al query objects
while performing a single scan over the database and re-
turns a sequence of answers for each query object. If the
dimension d of the data space is very high, the scan may
actually be the most efficient method to answer similarity
gueries because, in general, the performance of index struc-
tures degenerates with increasing dimension d.

When using a tree-like index structure (e.g. X-tree) to
answer a single similarity query, a set of data pages which
cannot be excluded from the search is determined from the
directory of the tree. These pages are then examined and the
answers to the query are determined. To answer a multiple
similarity query foraset Q =[Qq, ..., Q] Of query objects, we
propose asimilar procedure. First, wedeterminethe datapag-
esto beread asif answering only the similarity query for Q.
However, when processing these pages, we do not only col-
lect the answersin the neighborhood of Q, but weal so collect
answers for the Q; (i=2, ..., m) if the pages loaded for Q, are
also relevant for Q;. After thisfirst step, the query for Q4 is
completely finished and the answers for al the other objects
are partially determined. To determine the complete answers
for the other query objects [Q,, ..., Q] we have to call the
method repeatedly for [Q, ... Qul, [Qz: v Qml, -y [Qul-
However, in subsequent cdls the partial answers arefirst re-
stored from the internal buffer. For instance, the second call
for [Q,, ..., Qm] Will only consider data pageswhich arerele-
vant for Q, but which have not been processed inthefirst call.

Thisincremental processing of amultiple similarity que-
ry has the advantage that (partial) answersto al of the queries
can be presented to auser a avery early stage of the evalua-
tion. Furthermore, theincremental approachisvery efficient if
an ExploreNeigborhoods-algorithm dynamically adds new
query objectswhen processing the answers obtained for previ-
ous query objects. Let us assume a firg cal of
DB.multiple_similarity_query([Qy,...,Qm], [T1,---» Trn])- Further-
more, after this call let some answers A, ..., A, for the query
object Q; beinserted into the ControlList of the ExploreNeig-
borhoods-a gorithm and let these objects be inserted into the
sequence Q of query objects at the beginning of the second
execution of themainloop. Then, themultiple similarity query
isexecuted for Q = [Q,, ..., Qn, A1, ., A] implying that now
all data pages are considered which have not been processed
for object Q; but have to be loaded for object Q,. It is very
likely for an ExploreNeighborhoods-algorithm that some of
these pages must aso be considered for some of the objects

A (i1, ..., K). Then, the answersfor the objects A, are (partial-
ly) collected from the current data pages determined by the
object Q,. These pages will not be loaded again when A, be-
comesthefirst element of Q. If weuseanon-incremental eval-
uation of amultiplesimilarity query wemay haveto load these
pagesagain, resultinginanoverall higher number of disk 1/Os.

For mmultiple similarity queriesQq, ..., Q. the /O cost

[ relevant_pages(Q;)| where |
i=1

denotesthe cardinality of aset S Obvioudly, an I/O speed-up
is achieved if (and only if) there are data pages which are
relevant for more than one query object - more formally: if

C,o is proportiona to

< g |relevant_pages(Q;)| -
i1

lﬂlrelevanu)agas(Qi)

In the case of the linear scan, it holds that
Ch =Cjo , because relevant pages(Q;) = .. =
relevant_pages(Q,), and therefore, the condition
Ch <mxC,, isobviously satisfied. The average I/O
cost for one query object is C,,, /m and the speed-up fac-
tor for a multiple similarity query compared to m single
similarity queries (with respect to disk I/O) is exactly equal
tom.

In the case of a tree-like index structure, the ratio
g |relevant_pages(Q;)|/ ﬁ relevant_pages(Q;)| which de-
is1 i=1
termines the actual speed-up factor cannot be analytically
derived. However, in higher dimensionsitisvery likely that
adatapageisrelevant for morethan one query object, espe-
ciadly if the queries are dynamicaly generated by an Ex-
ploreNeighborhoods-algorithm. Therefore, we assume that

thecondition Cjjy <mx C,}O isalso setisfied inthiscase,

even though we expect the gain of amultiple similarity que-
ry on top of atree-like index to be smaller compared to an
implementation for the sequentia scan. Notethat the perfor-
mance of amultiple similarity query with respect to the 1/O
cost is never worse than the performance of asingle query.

5.2. Reducing CPU cost

The basic idea for reducing the CPU cost isto use the
triangle inequality to avoid distance computations which
are the most expensive operations when evaluating a simi-
larity query. The proposed approach makes use of the fact
that adistance calculation istypically much more expensive
than adistance comparison. To apply thetriangleinequality
to avoid distance cal cul ations, we need to know the distanc-
es for each pair of query objects (Q;,Q;) which have to be
calculated and stored in advance. This computational over-
head is (up to acertain value of mdepending on the number
n of database objects) relatively small compared to the sav-
ings of distance computations by such a preprocessing.
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Figure 5. lllustration of lemma 1 and lemma 2

Intuitively, there are two cases where the calculation
of dist(Q;,0) can be avoided for a query object Q; and a
database object O if we already know the distance between
Q; and asecond query object Q; and the distance dist(Q;,0)
has already been calculated: first, the query objects Q; and
Q are close to each other and dist(Q;,0) is large; second,
the query objects Q; and Q; have alarge distance from each
other and dist(Q;,0) issmall.

To outline the proposed method more formally, we
first define the notion of an avoidable distance calculation
in the context of multiple similarity queries.

Definition 5. (avoidable distance cal culation)

Let Queries=[Qy, ..., Q. be the query objects for amulti-
plesimilarity query, OO DB, andletl, 1< <m, beanatural
number. Furthermore, let the values of dist(Q;, Q) be
known forall 1<i<m,1<j<m, andlet dist(Q;,0) be
knownforall 1<i<I.Let QueryDist(Q;), 1<i < m, denote
the query distance of Q; in a current execution step of the
multiple similarity query. Then, we call the calculation of
dist(Q,+1,0) avoidable with respect to Queries if we can
conclude that dist(Q, ., ;, O) >QueryDist(Q, , ;) Wwithout
having to calculate dist(Q,+1,0).

To show that a distance calculation is avoidable, we
apply the triangle inequality - satisfied by the metric dis-
tance function dist - to the triangle defined by two query
objects Q, and Q, and a database object O. We obtain the
following three inegualities which hold simultaneously:

(1) dist(0, Q) <dist(O, Q,) + dist(Q,, Q;)

(@ dist(0,Q,) < dist(O, Q) + dist(Qy, Q)

(3 dist(Qy, Q,) < dist(Q,, O) + dist(O, Q,)

Inequality (1) can be used to show the avoidability of
the calculation of dist(Q,,0) becauseit yieldsalower bound
for dist(Q,,0). Thisisformalized in thefollowing lemma.

Areaof objectsO
for which calculation
of dist(Q,,0) can be
avoided

Q;: query objects
O;: database objects

QueryDist(Qy,)
calculated in advance
- — — - caculated for aprevious query

________ calculation can be avoided

Figure 6. Area of database objects for which
calculation of dist can be avoided

Lemmal. Let Qq, Q, [ Objects be query objectsand let O
[0 Objectsbe a database object. L et dist be ametric distance
function dist: Objects x Objects — 0 .

If dist(0, Q,) 2dist(Q,, Q,) + QueryDist(Q,) holds, then
it followsthat dist(O, Q,) = QueryDist(Q,) .

Proof. We reformulate inequality (1) as follows:
dist(0, Q,) = dist(0, Q;) —dist(Q,, Q,). By assumption,
dist(O, Q,) 2 dist(Q,, Q;) + QueryDist(Q,) . Then,
dist(0, Q;) —dist(Q,, Q;) = QueryDist(Q,) . By exploiting
the symmetry of dist we derive:
dist(0, Q,) 2 dist(O, Q;) —dist(Q,, Q;) = QueryDist(Q,) .

Figure5 (left) illustrates a situation where lemmal
holds and the calculation of dist(Q,,0) can be avoided. Ine-
quality (2) is not useful for the purpose of avoiding distance
calculations becauseit yields an upper bound and not alower
bound for dist(Q,,0). Inequality (3), however, can be used
analogoudy toinequality (1) and yieldsthefollowing lemma.

Lemma 2. Let Qq, Q, [ Objects be query objectsand let O
[0 Objectsbe a database object. L et dist be ametric distance
function dist: Objects x Objects — 0 .

If dist(Q,, Q) 2dist(O, Q,) + QueryDist(Q,) holds, then
it followsthat dist(O, Q,) = QueryDist(Q,) .

Proof. Analogous to proof of lemma 1.

Figure 5 (right) depicts a case where lemma 2 can be
applied to avoid the calculation of dist(Q,,0). To conclude
thetwo above lemmata, figure 6 illustrates the area of data-
base objects O for which the calculation of the distance
from a query object Q, can be avoided. For example, the
caculation of dist(Q,, O1) can be avoided because
dist(0Oy, Q;) = dist(Q,, Q;) —QueryDist(Q,) holds, and the
calculation of dist(Q,,0,) can also be avoided because
dist(0,, Q;) 2 dist(Q,, Q;) + QueryDist(Q,) holds.

The CPU cost for processing m multiple similarity
queriesisgiven by thefollowing formula

Cy = =D Mutimeqeis) +
avoiding_triesxtime(comparison) +
not_avoided x time(dist)



where avoiding_tries denotes the number of (successful or
not successful) applications of triangle inequalities and
not_avoided denotes the number of distance calculations
which actually have to be performed. Obviously, this for-
mula contains severa application dependent parameters
which can only be determined experimentally. In the worst
case, if no distance calculations can be avoided at al, it
holds that C [, >mx CZs,, . However, we observed that
Cépy issignificantly smaller than mx CclPU if missmall
compared to the database size (see section 6 for details).

5.3. Potentials for parallelization

Inthissection, wewill briefly discusstheimplementa
tion of amultiple similarity query ontop of aparallel query
processor for a shared nothing environment. In such an en-
vironment, the datais distributed among s servers such that
the same similarity query is performed on each server in
parallel. However, each process hasto look only at itslocal
part of the data which is s times smaller than the whole
database. The communication overhead in this setting is
very small so that a speed-up (compared to a sequential im-
plementation) in the order of scan be expected, i.e. the cost

c™ for performing m multiple similarity queries is re-

m
duced to % . Theimplementation of such aparallel query

processor istrivial for the linear scan. For aparallel imple-
mentation, for example, of the X-tree see [1].

The transition from one computer to s computers of
the same type aso makes s-times the main memory avail-
able. If we use these additional resources when performing
multiple similarity queries in paralel, we can gain a re-
markabl e speed-up factor for M=mxs similarity queries
which is larger than the number s of machines. This effect
isdueto thefact that we can increase the number mof query
objects to be processed simultaneously if we have more
memory to buffer the answers.

In a parallel environment each process produces only
one s-th of the answer set for aquery object on the average.
Therefore, instead of evaluating M similarity queries in
blocks of m queries on a single machine we can now use
blocks of mx s queries. This meansthat the cost for evalu-
ating M queries using parallel multiple similarity queriesis

mxs
equal to ml\ﬂ < compared to %"—1 xC" for the se-
guential implementation. Consequently, the speed-up fac-
tor for aparallel multiple query versusasequential multiple

query is larger than s if C™ °<sxCc™ holds. From
sections 5.1 and 5.2 we know that we can expect this condi-
tionto be satisfied at least for the I/O cost. We cannot prove
that the condition C(p,; <sxCgp, holds for the CPU
cost but section 6.2 demonstratesthis experimentally. Note,
however, that even if this condition did not hold, we till
would have the “normal” speed-up factorsafthen using
parallelization.

X

6. Performance evaluation

We performed an extensive experimental evaluation
of our technique for multiple similarity queries using real
databases. The first database, part of the so-cajigw
catalogue[12], was provided by the European Space Agen-
cy (ESA) and contains 2@feature vectors of 1,000,000
stars and galaxies. The second dataset was a large image
database containing @#ieolor histograms of 112,000 im-
ages from TV snapshots. We investigated two extreme in-
stances of iterative neighborhood exploration discussed in
section 3.2., one with independent queries and another one
with highly dependent queries:

* On the Astronomy database, we tessadultaneous
classification of a set of objects. M objects from the da-
tabase were chosen randomly arldreearest neighbor
query was performed for each of these query objects.

* On the image database, we simulateshual data ex-
ploration by a number of concurrent users in the fol-
lowing way. We randomly selected a first query object
for each of the users and performddreearest neighbor
query for each of them obtaining atotabof k ~ answers.
Then we performed the following loop. While each ofthe
hypothetic users chose one from kisurrent answers,
for each of the current answers we prefetched their
nearest neighbors. After restricting the set of answers to
the answers of the objects chosen by the users, we con-
tinued the loop with these new query objects etc. Thus, in
each loop we generated = cxk  new query objects
for which we performed#l-nearest neighbor queries.

We experimented with a broad rangekofalues and
found that the average cost genearest neighbor query
was quite robust to the valuelofAll the results reported in
the following were obtained fdc = 10 (Astronomy data-
base) antt = 20 (image database) which are typical param-
eter values for the respective applications.

All experiments were performed on Intel Pentium ||
(300 MHz) based workstations running Linux 6.0, each
workstation equipped with 128 MBytes of main memory.
Both, the linear scan and the X-tree were implemented in
C++. The block size of the X-tree was set to 32 KBytes and
the buffer size was set to 10% of the X-tree size.

6.1. Reduction of |/O cost

We begin by studying the effect of our technique on
the I/O cost. Figure 7 depicts the average /O cost per simi-
larity query with respect to the numbmarf multiple simi-
larity queries for the Astronomy database as well as for the
image database. For a single similarity query, the X-tree
outperforms the linear scan by a factor of 4.5 and 3.1mor
=100 query objects, however, the average 1/O cost of the X-
tree is 1.5 and 3.6 times the average I/O cost of the linear
scan. While the enormous reduction of I/O cost (a factor of
nearlym) is expected for the linear scan, it is worth noticing
that also the average I/O cost of the X-tree is reduced by a
factor of 8.7 and 15 for 100 multiple similarity queries.
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Figure 7. Average I/O cost per similarity query
6.2. Reduction of CPU cost

The amount of CPU cost which can be saved when a
data object is disqualified on the basis of the triangle ine-
quality depends on the dimensionality of the database since
the CPU cost for a distance calculation increases with the
dimensionality whereasthe CPU cost for evaluating the tri-
angleinequality isconstant. We measured the following av-
erage runtimes on our test databases. On 20-d data objects
the CPU cost for calculating the Euclidean distance
(4.3usec) was 52 timesthe CPU cost for evaluating atrian-
gleinequality (0.082usec) and on the 64-d data objects the
factor was 155 (12.7usec versus 0.082usec).

We measured the average CPU cost per query for 10,
20, 40, 50 and 100 multiple similarity queries (cf. figure 8).
For the linear scan, the average CPU cost for a similarity
query decreases from 4.3 sec to 0.6 sec on the Astronomy
database when increasing m from 1 to 100. This corre-
spondsto areduction of the CPU cost by afactor of 7.1. On
the image database, the factor of the CPU cost reductionis
even 28. This effect can be explained when considering the
distribution of the databases: the Astronomy databaseisal-
most uniformly distributed, theimage database, however, is
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Figure 8. Average CPU cost per similarity query

—o—— SCAN (Astronomy DB)
— -8 — X-tree (Astronomy DB)

" ---A--- SCAN (Image DB)

717 — - % - — X-tree (Image DB)

Average total query cost (sec)

Number of multiple similarity queries (m)

Figure 9. Average total query cost per
similarity query
highly clustered. The linear scan profits from clustered da-
tabases for the following reason: if the distance computa-
tion for one data object from a cluster can be avoided it is
likely that the distance computation for al other data ob-
jectslying in the same cluster can also be avoided.

For the X-tree, the effect of applying the triangle ine-
quality islessthanfor thelinear scan, itis2.1 onthe Astron-
omy database as well as on the image database. The reason
for this smaller performance gain of the X-tree is the fact
that dueto itsindexing properties, the X-tree solely investi-
gates data objects which are close to query objects. Since
dataobjectswhich havealarge distanceto the query objects
- and therefore a high probability to be excluded from the
distance calculation for most of the query objects - are not
considered, the potentia for CPU cost reductionislessthan
for the linear scan.

6.3. Reduction of thetotal query cost

We now consider the effect of our technique for multi-
ple similarity queries on the total query cost and determine
the achieved speed-up. For both databases, figure 9 shows
the average total query cost as the sum of the average 1/0
cost and the average CPU cost. This can be done since the
cost for managing the query process can be neglected com-
pared to the 1/0O cost and CPU cost. As expected, the aver-
agetotal query cost decreases with increasing mfor thelin-
ear scan and the X-tree. An important observation we made
isthat for m> 20 (Astronomy database) and m= 100 (im-
age database) the total query cost is dominated by the CPU
cost when performing alinear scan. The average query cost
of the X-treewas I/O bound for m < 100 . Since the perfor-
mance gainishigher for thelinear scan, thelinear scan out-
performsthe X-tree for m= 10 (Astronomy database) and
m= 100 (image database).

Figure 10 depicts the corresponding speed-up. When
comparing m = 100 to m = 1, the linear scan achieves a
speed-up of 28 on the Astronomy database and 68 on the
image database. For the X-tree, this speed-up is less due to
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the smaller benefits from the triangle inequality and the
smaller reduction of 1/O cost. However, we still observe a
speed-up of 7.2 on the Astronomy database and 12.1 on the
image database. Note that the speed-up factors are aways
higher on the image database. Similar to section 6.2, this ef-
fect can be explained with the distribution of the databases.

6.4. Effects of parallelization

We also investigated the achievable speed-up when
applying our technique for multiple similarity queries on
top of aparallel query processor. The setting we used wasa
shared nothing environment with a TCP/IP network inter-
connecting 16 servers. For the implementation details of a
paralel X-tree see [1]. For both databases, we performed
m =100 multiple k-nearest neighbor queries on a single
server and while we increased the number of servers (s=4,
8, 16) we proportionally increased m (m = 400, 800, 1600).
Our technique of parallelization increases min order to ex-
ploit the fact that s times the main memory becomes avail-
able (see section 5.3.). Figure 11 depicts the achieved
speed-up per similarity query comparing paralel multiple
similarity queriesto sequential multiple similarity queries.
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On the Astronomy database, the paralel linear scan
achieves a superlinear speed-up using up to 8 serversand a
near linear speed-up of 13.4 using 16 servers. For larger
server numbers, i.e. aso larger numbers m of queries, two
effects decrease the speed-up: (1) the cost for the computa:
tion of thedistancefor each pair of query objectsand (2) the
cost for applying the triangle inequalities for each database
object which - in theworst case - isalso quadraticinm. The
second effect islessimportant for the X-tree because the X-
tree visits only a considerably smaller number of database
objects. Thus, the X-tree aways achieves superlinear
speed-up factors such as 17.9 for 16 servers.

On the image database, the achieved speed-up is sub-
linear, for example 4.1 (linear scan) and 4.3 (X-tree) for s=
8. Furthermore, we observe that the speed-up for the paral-
lel linear scan as well as for the parallel X-tree using 16
serversislessthan the speed-up using 8 servers. Again, this
result isexplained by the two above effectswith a cost qua-
dratic in m. Note that the influence of theinitialization cost
for the query distance matrix - which is independent from
the database size - is much stronger here because the image
database (112,000 objects) is significantly smaller than the
Astronomy database (1,000,000 objects).

In figure 12 the overall speed-up of our techniqueisde-
picted with respect to s, i.e. the speed-up when performing
multiple similarity queries on top of a parald query proces-
sor compared to a sequentia processing of single similarity
queries. Thus, infigure 12 the combined effect of transforma-
tion into multiple queries and of parallelization is represent-
ed. Onthe Astronomy database, we observe an overall speed-
up of 374 for the parallel linear scan and an overall speed-up
of 128 for the paralel X-tree using 16 servers. On the image
database, the overall speed-up factorsusing 8 serversare 279
for the paralld linear scan and 52 for the parallel X-tree.

7. Conclusions

Similarity queries in the form of range queries and k-
nearest neighbor queries are the most important query types
in metric databases. Whereas in traditional query processing



queries are issued independently, the typical scenario of
many data mining applicationsis to explore the database by
iteratively investigating the neighborhood of some start ob-
jects. In this paper, we propose a new query type, the so-
called multiplesimilarity query, to speed-up such datamining
applications by simultaneoudly processing sets of similarity
queries. We introduced a generic scheme for many datamin-
ing algorithms and we developed a method to syntactically
transform those agorithmsin away that they can use multi-
plesimilarity queriesinstead of single similarity queries. Our
approach for efficiently processing multiple similarity que-
ries includes two orthogonal techniques: first, the reduction
of 1/0 cost by loading data pages only once and processing
them for each query object. Second, the reduction of CPU
cost by applying the triangle inequality in order to avoid ex-
pensive distance computations. Furthermore, we explored
the potential of parall€elization. The proposed techniques ap-
ply to any type of similarity query and to an implementation
based on an index or using a sequential scan. An extensive
experimental evaluation on real databases demonstrated the
efficiency of our approach: by combining al of our tech-
niqueswe achieved an overall speed-up with 16 serversinthe
order of 100 for an index-based implementation and in the
order of 300 for an implementation using a sequential scan.

We argue that multiple similarity queries should be
provided as a basic DBMS operation since they alow to
speed-up the processing of many data mining algorithms.
There are severa directions to improve the efficiency of
multiple similarity queries even more. We will investigate
methods to reduce the initialization overhead implied by
the query distance matrix. Furthermore, the potential of
paralelization should be explored in more detail, e.g. the
effects of various data declustering strategies.
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