
Abstract

Metric databases are databases where a metric distance
function is defined for pairs of database objects. In such da-
tabases, similarity queries in the form of range queries or
k-nearest neighbor queries are the most important queries.
In traditional query processing, single queries are issued
independently by different users. In many data mining ap-
plications, however, the database is typically explored by it-
eratively asking similarity queries for answers of previous
similarity queries. In this paper, we introduce a generic
scheme for such data mining algorithms and we investigate
two orthogonal approaches, reducing I/O cost as well as
CPU cost, to speed-up the processing of multiple similarity
queries. The proposed techniques apply to any type of sim-
ilarity query and to an implementation based on an index
or using a sequential scan. Parallelization yields an addi-
tional impressive speed-up. An extensive performance eval-
uation confirms the efficiency of our approach.

1. Introduction

Metric databases are databases where a metric dis-
tance function is defined for pairs of database objects. A
prominent special case are databases of objects from a vec-
tor space, that is objects with numeric attributes. For exam-
ple, multimedia objects [8] are typically represented by a
large number of numeric features such as shape descriptors
or color histograms. In many scientific applications, e.g. in
astronomy [12], automatic facilities measure a large num-
ber of numeric values for each database object such as the
amplitude emitted in some frequency band. On the other
hand, in a database monitoring WWW accesses, the objects
may model URLs and these objects are not from a vector
space but a metric distance function can be supplied.

Similarity between database objects is expressed by
the distance function such that a low distance corresponds
to a high degree of similarity whereas two objects with a
large distance are considered to be rather dissimilar. Simi-
larity queries [22], e.g. range queries or k-nearest neighbor

queries, are the most important queries in metric databases.
Such queries play a major role in applications such as mul-
timedia systems, decision support systems and data mining.

A lot of research on analyzing large databases - manu-
ally and automatically - has been conducted. Data explora-
tion is the process of manually exploring a database [16]. A
user starts at a given database object and from there he or
she interactively navigates through the database, for exam-
ple by iteratively retrieving all similar objects. That is, the
answers of previous queries may be used as query objects
for new similarity queries. Knowledge discovery in data-
bases (KDD) has been defined as the non-trivial process of
discovering valid, novel, potentially useful, and ultimately
understandable patterns from data [9]. The core step of the
KDD process is the step of data mining, i.e. the application
of appropriate algorithms that automatically produce a par-
ticular enumeration of patterns over the data. For example,
a density-based clustering algorithm such as DBSCAN [7]
starts from some object and repeatedly retrieves the neigh-
borhood of objects which have been retrieved by previous
queries as long as the density in this neighborhood is large
enough. 

In traditional query processing, single queries are is-
sued independently by different users. In manual data ex-
ploration as well as in automatic data mining, however,
many similarity queries must be answered in a single appli-
cation. We define multiple queries as sets of queries issued
simultaneously. Clearly, multiple queries provide much
more potential for query optimization than single queries.
In this paper, we investigate two orthogonal approaches to
speed-up the processing of multiple similarity queries in
metric databases: reduce I/O cost (that is, the number of
disk accesses) and reduce CPU cost (that is, the number of
distance calculations). Furthermore, we explore the poten-
tial of parallelization. The proposed techniques can be com-
bined in order to obtain a maximum performance of pro-
cessing multiple similarity queries.

The rest of this paper is organized as follows. In
section 2, we briefly review the standard methods of pro-
cessing single similarity queries and we introduce some ba-
sic notions and algorithms. Section 3 introduces an algo-
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rithmic scheme typical for many data mining applications
and discusses several instances of this scheme. Further-
more, we develop a method to transform such algorithms so
that they issue sets of multiple queries. The concepts of
multiple similarity queries are introduced in more detail in
section 4. Section 5 presents several techniques for effi-
ciently supporting multiple similarity queries. An extensive
performance evaluation of the proposed techniques on two
real databases is presented in section 6. Section 7 summa-
rizes the contributions of this paper and outlines some is-
sues for future research. 

2. Processing single similarity queries

Let the database objects be drawn from a set of Objects
and let dist be a metric distance function for pairs of objects,
i.e. dist: , and dist satisfies the fol-
lowing conditions. ∀ O1, O2, O3 ∈ Objects:

1) dist(O1, O2 ) = 0 ⇔ O1 = O2. (identity)
2) dist(O1, O2 ) = dist(O2, O1). (symmetry)
3) dist(O1,O3) ≤ dist(O1,O2) + dist(O2,O3). (∆-inequality)

Often, the Euclidean distance or a weighted Euclidean dis-
tance is used as the distance function but, depending on the
application, other distance functions may be more appro-
priate. For instance, quadratic form distance functions were
successfully applied for an image database using color his-
tograms as features [21]. 

Definition 1. (similarity query) 
Let  be a database and let  be a
query object. Let T denote the type of the similarity query
and let simT:  be a predicate
defining the similarity of pairs of objects wrt. to the type T.
A similarity query, denoted as DB.similarity_query(Q,T),
returns the following database objects:

.

The specification of the query type T consists of three
components:
• T.range: a real number specifying a maximum distance

between Q and an answer.
• T.cardinality: an integer number defining the maximum

cardinality of the set of answers.
• T.kind: a string indicating how to combine the range

condition and the cardinality condition.
The well-known types of similarity queries are ob-

tained by different specializations of the query type.

Definition 2. (range query) 
A range query with respect to a database  and
a query object  is a similarity query with
T.range = ε, T.cardinality = +∞ and T.kind = “range” which
returns the following subset of database objects: 

.

Definition 3. (k-nearest neighbor query) 
A k-nearest neighbor query with respect to a database

 and a query object  is a similar-
ity query with T.range = +∞, T.cardinality = k and T.kind =
“k-nearest neighbor” which returns a set  that
contains k objects from the database and for which the fol-
lowing condition holds:

Other types of similarity queries have been proposed
in the literature. For instance, we may be interested in the k-
nearest neighbors but only in those within a specified range.

In order to speed-up similarity query processing,
many spatial index structures (for good surveys see [20],
[10]) have been developed which are applicable for the im-
portant special case where the database objects are from a
vector space. For instance, the R-tree [11] generalizes the
one-dimensional B-tree to d-dimensional data spaces, that
is an R-tree manages d-dimensional hyper-rectangles in-
stead of one-dimensional numeric keys. 

The R-tree and its variants such as the R*-tree [4] are
efficient only for relatively small numbers of dimensions d.
Recently, index structures have been designed which are also
efficient for some larger values of d. For instance, the X-tree
[2] is similar to an R*-tree but introduces the concept of super-
nodes, i.e. nodes of variable size in the directory of the tree.
Directory nodes are “merged” into one supernode, i.e. directo-
ry nodes are not split, if there is a high probability that all parts
of the node have to be searched anyway for most queries. 

In [14] and [22], it is shown that under the assumption
of uniformly distributed data, above a certain dimensional-
ity no index structure can process a nearest neighbor query
efficiently. Thus, it is suggested to use the sequential scan
which obtains at least the benefits of sequential rather than
random disk I/O. In the VA-file [22], clever bit encodings of
the data are used to speed-up the scan.

The above index structures are only applicable for
vector spaces. The more general case of metric databases,
however, is also important in applications such as WWW
access log databases. Then, the database objects may be
sessions grouping all log entries with identical IP address
and user id within a given maximum time gap [19]. General
metric databases require other types of index structures, the
so called metric trees. In these metric trees the triangle ine-
quality is used to prune the search tree while processing a
similarity query. Most of these structures are static in the
sense that they do not allow dynamic insertions and dele-
tions of objects. A recent paper [5] has introduced a dynam-
ic metric index structure, the M-tree, which is a balanced
tree that can be managed on secondary memory. The leaf
nodes of an M-tree store all the database objects. Directory
nodes store so-called routing objects and associated cover-
ing radii to guide the search operations.
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Query processing using a sequential scan is straightfor-
ward: all objects must be visited to answer a query. When
using an index it may be possible to exclude large propor-
tions of the data from a search. To answer a range query using
a tree-based index, the set of approximations (e.g. hyper-rect-
angles in case of an R-tree) intersecting the query region is
determined recursively starting from the root. In a directory
node, the entries intersecting the query region are determined
and then their referenced child nodes are searched until the
data pages are reached. The procedure is more sophisticated
for a k-nearest neighbor query because we do not know the k-
nearest neighbor distance in advance. The algorithm pro-
posed by [13] has been proven in [3] to minimize the number
of pages read from disk. This algorithm processes the data
pages in ascending order of distance from the query point and
does not load those pages with an approximation further
away than the k-nearest neighbor found so far. 

To conclude this section, we present an algorithm for
processing single similarity queries. This algorithm is ap-
plicable for any type of similarity query and it can be imple-
mented either by using an index structure or by performing
a sequential scan. Figure 1 presents the algorithm as a
method of the class DB (database). It takes two arguments,
a query object Q and a query type T, and returns a list of
objects answering the similarity query.

We discuss the most important details of this algorithm.
The method DB::determine_relevant_data_pages(Q,T) is
based on the algorithm presented in [13] and it constructs a
sequence of the physical addresses of all data pages which
may contain answers of the similarity query specified by Q
and T. Note that the resulting sequence is managed as a pri-
vate attribute of the class DB which is read by the method
DB.unprocessed_pages() and which is updated by
DB.read_next_page_from_disk(). If the implementation
makes use of an index structure, then a subset of all data
pages of DB may be recognized as irrelevant and thus is not

returned. Otherwise, if a sequential scan is performed, all
data pages of DB are relevant. In both cases, the relevant
data pages are ordered according to their physical address
such that the number of disk seeks is minimized.
DB.adapt_query_dist(Distance,QueryDist,T) changes the
QueryDist only in the case of a k-nearest neighbor query but
not in the case of a range query. DB.prune_pages(Query-
Dist) removes all elements page from the internal DB at-
tribute of relevant data pages satisfying dist(page,Q) > Que-
ryDist. Clearly, this method performs no operation if
QueryDist has not been adapted.

3. Data mining using multiple similarity 
queries

In many data mining applications the database is ex-
plored by iteratively considering the neighborhood of some
start objects. In this section, we introduce a generic scheme
for such data mining algorithms and discuss some typical
instances of the scheme. Furthermore, we develop a method
to transform such algorithms in a way that they can use mul-
tiple similarity queries instead of single similarity queries. 

3.1. Iterative neighborhood exploration

Many data mining algorithms start from a set of spec-
ified database objects and iteratively consider the neighbor-
hood of the visited objects. The neighborhood of a given
object is defined as the set of similar database objects with
respect to a similarity query. We introduce a generic scheme
for such algorithms which we call ExploreNeighborhoods.
Figure 2 depicts the algorithmic scheme in pseudo code no-
tation where DB denotes a database, StartObjects denotes a
subset of DB and SimType specifies the type of similarity
query. The dots in the argument list of some functions indi-
cate additional arguments which may be necessary for dif-
ferent instances of this algorithmic scheme. 

Starting from the objects in the set StartObjects, the
algorithm repeatedly retrieves the neighborhood of objects
taken from the ContolList as long as the function

Figure 1. Algorithm similarity_query

DB::similarity_query(object Q; type T)
Answers := initialize_answer_list(); 
determine_relevant_data_pages(Q, T);
QueryDist :=T.Range;
while Self.unprocessed_pages() do

NextPage := read_next_page_from_disk();
for each object O in NextPage do

Distance := dist(O,Q);
if Distance ≤ QueryDist then

Answers.insert(O); // in asc. order of dist(A,Q)
if Answers.cardinality() > T.Cardinality() then

Answers.remove_last_element();
QueryDist := adapt_query_dist

(Distance,QueryDist,T); 
Self.prune_pages(QueryDist);

return Answers;

ExploreNeighborhoods(DB, StartObjects, SimType, ...)
ControlList := StartObjects; 
while ( condition_check(ControlList, ...) = TRUE ) do

Object := ControlList.choose(...);
proc_1(Object, ...);
Answers := DB.similarity_query(Object, SimType);
proc_2(Answers, ...);
ControlList := (ControlList ∪ filter(Answers, ...)) 

- {Object};
end while;

Figure 2. Algorithmic scheme 
ExploreNeighborhoods



condition_check returns TRUE for the ControlList. In the
most simple form, the function checks whether ControlList
is not empty. If the neighborhood of objects should only be
investigated up to a certain “depth”, then an additional pa-
rameter for the number of steps that have to be performed
can be used in the function condition_check. The control
structure of the main loop works as follows: objects are se-
lected from the ControlList, one at a time, and a similarity
query is performed for this object. The procedures proc_1
and proc_2 perform some processing on the selected object
as well as on the answers of the similarity query that will
vary from task to task. Before repeating the loop, the Con-
trolList is updated. Some or all of the answers which are not
yet processed are simply inserted into the ControlList. The
function filter(Answers, ...) removes from the set of answers
at least those objects which have already been in the Con-
trolList in previous states of the algorithm, if any exists. This
must be done to guarantee the termination of the algorithm. 

3.2. Instances of iterative neighborhood 
exploration

In the following, we discuss several typical instances
of the ExploreNeighborhoods scheme in order to show that
many data mining applications follow this scheme:

• Manual Data Exploration
When manually exploring a multimedia database, for ex-
ample, in proc_2 the answers are visualized and the user
may store the multimedia objects considered to be inter-
esting. In the filter the user may prune answers which are
too dissimilar from the initial start objects. 

• Spatial Association Rules
[15] introduces spatial association rules describing asso-
ciations between objects based on spatial neighborhood
relations. For instance, a rule may be discovered stating
that 80% of the selected towns are close to some water
such as a lake or river. In this algorithm, the set StartOb-
jects is equal to the set of all database objects of a speci-
fied type such as town. SimType corresponds to the type
of spatial neighborhood such as intersects which is given
by the user. proc_2 calculates the support, that is the rel-
ative frequency, of the retrieved pairs of objects and the
filter passes all of these pairs which have at least a speci-
fied minimum support. 

• Density-Based Clustering 
DBSCAN [7] is a typical density-based clustering algo-
rithm. To find a cluster, DBSCAN starts with some data-
base object o and retrieves all objects density-reachable
from o with respect to two parameters Eps and MinPts.
Initially, ControlList contains an arbitrary database object
and range queries with a range of Eps are used as similarity
queries. proc_2 counts the answers and the filter passes all

answers which have not yet been assigned to some cluster
if the cardinality of the set of answers is at least MinPts.

• Simultaneous Classification of a Set of Objects
In an astronomy database [12], for example, all new stars
observed by a telescope during the night are processed
and added to the database the next day. Part of this pro-
cessing is to classify the set of new stars, that is to assign
each of them to one of the well-known classes. k-nearest
neighbor classifiers [18] are effective for this task and
they issue a k-nearest neighbor query for each of the ob-
jects to be classified. In this case, proc_1 is empty. proc_2
finds the majority class in the set of k-nearest neighbors
and filter always returns an empty list, that is no addition-
al query objects are generated.

• Spatial Trend Detection 
A spatial trend has been defined as a regular change of one
or more non-spatial attributes when moving away from a
given start object o [6]. Neighborhood paths starting from o
model the movement and a regression analysis is per-
formed on the respective attribute values for the objects of
a neighborhood path to describe the regularity of change.
For this data mining task, the ExploreNeighborhoods loop
is additionally controlled by the number of steps (i.e. the
length of a neighborhood path) and the procedures proc_1
and proc_2 perform the regression analysis on the paths. 

• Proximity Analysis
The goal of proximity analysis is to explain the existence
of some cluster of objects by using the features of neigh-
boring objects. [17] presents an algorithm which can ef-
ficiently find the “top-k” objects that are “closest” to a
given cluster. A second algorithm takes these k objects as
input and finds the features that are common to most of
them. Characteristic properties such as “most of the clus-
ters are close to private schools and parks” may be dis-
covered. In this case, StartObjects contains all the objects
of the specified cluster. proc_2 considers the features of
the k-nearest neighbors and returns the most common
ones. The filter returns an empty list implying that no ad-
ditional query objects are added.

3.3.  Transformation into multiple query form

An instance of Iterative Neighborhood Exploration
can benefit from a multiple similarity query because the al-
gorithmic scheme can be transformed into a multiple query
form such that it uses multiple similarity queries instead of
single similarity queries. If the evaluation of a multiple sim-
ilarity query for m query objects can be performed more
efficiently than the evaluation of the corresponding m sin-
gle similarity queries - which is possible as we will see in
the next sections - the runtime of the whole class of
ExploreNeighborhoods-algorithms will be improved. We
assume the following method to be available:



• ListOfAnswerSets DB::multiple_similarity_query 
(ListOfObjects, SimTypes);

Let the similarity queries for all of the query objects in
ListOfObjects be “somehow” performed simultaneously
and let the generated answers for all of these queries be
stored in some internal buffer of the DBMS. If each of the
queries is completely answered after the call of
multiple_similarity_query, successive calls containing que-
ries which were already asked in a previous call of the
method then can just pick the answers from the buffer. 

Note, however, that we do not require the multiple
similarity query to generate a complete set of answers for
each of the posed queries. One call of a multiple similarity
query must only guarantee that the answers for the first que-
ry object are complete. We will discuss this weak specifica-
tion of a multiple similarity query in more detail in the next
section. The intuitive meaning is that if we ask a similarity
query for the first object, we can additionally inform the
DBMS that the similarity queries for the other query ob-
jects will probably be asked later and the DBMS may use
this information to improve the overall runtime for the set
of queries by retrieving (some of) the respective answers in
advance. The transformed algorithmic scheme called Ex-
ploreNeighborhoodsMultiple is presented in figure 3. As
we can see, the reformulation can be done in a purely syn-
tactical way. Thus, a query optimizer can automatically use
multiple similarity queries to efficiently process an Ex-
ploreNeighborhoods-algorithm if a multiple similarity que-
ry is available as a basic DBMS operation.

Obviously, the algorithmic scheme ExploreNeighbor-
hoodsMultiple performs exactly the same task as the origi-
nal ExploreNeighborhoods scheme. The only differences
are that a set of objects is selected from the ContolList in-
stead of selecting a single object and a multiple similarity
query is performed instead of a single similarity query.
However, in one execution of the main loop, the algorithm
processes only the first element of the set of selected ob-
jects and its corresponding set of answers. 

4. Multiple similarity queries

In this section, the notion of a multiple similarity que-
ry is presented in more detail.

Definition 4. (multiple similarity query) 
Let DB ⊆ Objects be a database containing n objects. Let
Queries = [Q1, Q2 , ..., Qm] be a sequence of m query objects
Qi ∈ Objects and let SimTypes = [T1, ..., Tm] be the
corresponding sequence of query types. 
A multiple similarity query, denoted by
DB.multiple_similarity_query(Queries, SimTypes), returns
a sequence Answers = [A1, ..., Am], containing for each ele-
ment Qi in Queries a corresponding set Ai of objects of DB
where the following holds:

1.) A1 = DB.similarity_query(Q1, T1), and
2.) Ai ⊆ DB.similarity_query(Qi, Ti) for all 2 ≤ i ≤ m.

Only for the first query, all answers must be determined
in a single call of a multiple similarity query. The remaining
queries may be answered completely or partially, depending
on the implementation of the multiple similarity query. We
will argue in the next subsection that an incremental imple-
mentation, i.e. only the first query is answered completely
and other queries are answered partially in a single call of
the method, may be more efficient if we consider the overall
run-time of an ExploreNeighborhoodsMultiple algorithm. 

Using multiple similarity queries instead of single
similarity queries we may spend less I/O time and less CPU
time for a set of queries. First, we read a single page only
once for the whole set of queries. Second, knowing a whole
set of query objects in advance, we can use the distances
between these query objects to replace expensive distance
computations by significantly cheaper distance compari-
sons using the triangle inequality. 

Our algorithm for a multiple similarity query is depicted
in figure 4. The only parts that differ from the algorithm for a
single similarity query (see figure 1) - besides the obvious
handling of multiple query objects and types - are as follows:
• restore_from_buffer([Q1,..,Qm],[T1,..,Tm])
• buffer_answers([Answers1,..,Answersm])

In the beginning, we have to restore (partial) answers

ExploreNeighborhoodsMultiple(DB, StartObjects, SimTypes, ...)
ControlList := StartObjects; 
while ( condition_check(ControlList, ...) = TRUE ) do

ListOfObjects := ControlList.choose_multiple(...); // ListOfObjects = [object1, . . ., objectm]
proc_1(ListOfObjects.first(), ...);
SetOfAnswers:= DB.multiple_similarity_query(ListOfObjects, SimTypes);

// SetOfAnswers=[answers1, . . .,answersm], SimTypes=[SimType1, . . .,SimTypem]
proc_2(SetOfAnswers.first(), ...);
ControlList := (ControlList ∪ filter(SetOfAnswers.first(), ...)) - {ListOfObjects.first()};

end while;

Figure 3. Algorithmic scheme ExploreNeighborhoodsMultiple



from an internal buffer -if available- and we have to store
generated answers into this buffer at the end.

• determine_relevant_data_pages([Q1, ..., Qm], [T1, ..., Tm])
This procedure returns the set of all data pages relevant for
Q1 and, additionally, it returns some or all of the relevant
data pages for the remaining query objects, that is 

• First, a subset of the set of all queries is chosen which
should be completely answered. If the implementation is
based on the linear scan, each data page is relevant. If using
an index structure such as the X-tree, the set of all data pag-
es which cannot be excluded from the search for at least one
of the selected queries is determined from the directory of
the tree. Note that our implementation of a multiple similar-
ity query on top of an index structure converges to the
method for the linear scan when the page selectivity of the
index decreases, e.g. with increasing dimension of the data
space. In the worst case, the index has no selectivity at all,
which means that no data page can be excluded from the
similarity search. The details of determining the relevant
data pages are presented in section 5.1.

• avoid_dist_computation(O,Qi,QObjDists,AvoidingDists) 
We calculate the inter-object distances for all pairs of
query objects and store them into QObjDists. Distances
which must be calculated are temporarily stored into
AvoidingDists. These distances and the QObjDists are

needed for the application of the triangle inequality per-
formed by avoid_dist_computation(O,Qi,QObjDists,
AvoidingDists). The details of avoiding distance calcula-
tions are presented in section 5.2.

5. Efficient support for multiple similarity 
queries

In this section, we present techniques that significant-
ly reduce the amount of disk I/O as well as the number of
CPU operations needed to evaluate a multiple similarity
query compared to a set of single similarity queries. Fur-
thermore, we briefly discuss how to achieve a further per-
formance gain when using parallelization techniques for
the processing of multiple similarity queries. Note that
there is an upper limit for the number m of multiple similar-
ity queries which can be processed simultaneously. This
limit is determined by the amount of main memory avail-
able to buffer the answers and by the computational over-
head for calculating the inter-object distances between all
pairs of query objects. Therefore, we assume that a total
number of  similarity queries is processed in  con-
secutive blocks of m multiple queries.

Let  be the cost for simultaneously
processing i similarity queries. Then, the cost for evaluating
M queries using single similarity queries is equal to ,
the cost for evaluating M queries using multiple similarity
queries is equal to . Consequently, for a multiple

Figure 4. Algorithm multiple_similarity_query

DB::multiple_similarity_query(objects [Q1, ..., Qm]; types [T1, ..., Tm])
[Answers1, ..., Answersm] := Self.restore_from_buffer([Q1, ..., Qm], [T1, ..., Tm]);
Self.determine_relevant_data_pages([Q1, ..., Qm], [T1, ..., Tm]);
for i from 1 to m do QueryDistsi := Ti.Range;
for i from 1 to m, for j from i+1 to m do QObjDistsij := dist(Qi, Qj);
while Self.unprocessed_pages() do

NextPage := Self.read_next_page_from_disk();
for each object O in NextPage do

for i from 1 to m do AvoidingDistsi := UNDEFINED;
for i from 1 to m do

if Self.page_is_relevant(NextPage, Qi) then 
if not avoid_dist_computation(O,Qi,QObjDists,AvoidingDists) then

Distance := dist(O, Qi);
AvoidingDistsi := Distance;
if Distance ≤ QueryDistsi then

Answersi.insert(O); // in ascending order of dist(A,Q)
if Answersi.cardinality() > Ti.Cardinality() then

Answersi.remove_last_element();
QueryDistsi := Self.adapt_query_dist(Distance,QueryDistsi,Ti); 
Self.prune_pages(QueryDistsi);

Self.buffer_answers([Answers1, ..., Answersm]);
return [Answers1, ..., Answersm];
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similarity query to improve the efficiency of single similar-
ity queries, the following condition must hold: .

5.1. Reducing I/O cost

We discuss the algorithm multiple_similarity_query
from an I/O cost point of view for two different implemen-
tations - one on top of the linear scan and another one on top
of an index structure such as the X-tree. 

When performing a linear scan, the multiple similarity
query performs a condition check for all query objects
while performing a single scan over the database and re-
turns a sequence of answers for each query object. If the
dimension d of the data space is very high, the scan may
actually be the most efficient method to answer similarity
queries because, in general, the performance of index struc-
tures degenerates with increasing dimension d. 

When using a tree-like index structure (e.g. X-tree) to
answer a single similarity query, a set of data pages which
cannot be excluded from the search is determined from the
directory of the tree. These pages are then examined and the
answers to the query are determined. To answer a multiple
similarity query for a set Q = [Q1, ..., Qm] of query objects , we
propose a similar procedure. First, we determine the data pag-
es to be read as if answering only the similarity query for Q1.
However, when processing these pages, we do not only col-
lect the answers in the neighborhood of Q1 but we also collect
answers for the Qi (i=2, ..., m) if the pages loaded for Q1 are
also relevant for Qi. After this first step, the query for Q1 is
completely finished and the answers for all the other objects
are partially determined. To determine the complete answers
for the other query objects [Q2, ..., Qm] we have to call the
method repeatedly for [Q2, ..., Qm], [Q3, ..., Qm], ..., [Qm].
However, in subsequent calls the partial answers are first re-
stored from the internal buffer. For instance, the second call
for  [Q2, ..., Qm] will only consider data pages which are rele-
vant for Q2 but which have not been processed in the first call.

This incremental processing of a multiple similarity que-
ry has the advantage that (partial) answers to all of the queries
can be presented to a user at a very early stage of the evalua-
tion. Furthermore, the incremental approach is very efficient if
an ExploreNeigborhoods-algorithm dynamically adds new
query objects when processing the answers obtained for previ-
ous query objects. Let us assume a first call of
DB.multiple_similarity_query([Q1,...,Qm], [T1,..., Tm]). Further-
more, after this call let some answers A1, ..., Ak for the query
object Q1 be inserted into the ControlList of the ExploreNeig-
borhoods-algorithm and let these objects be inserted into the
sequence Q of query objects at the beginning of the second
execution of the main loop. Then, the multiple similarity query
is executed for Q = [Q2, ..., Qm, A1, ..., Ak] implying that now
all data pages are considered which have not been processed
for object Q1 but have to be loaded for object Q2. It is very
likely for an ExploreNeighborhoods-algorithm that some of
these pages must also be considered for some of the objects

Ai (i=1, ..., k). Then, the answers for the objects Ai are (partial-
ly) collected from the current data pages determined by the
object Q2. These pages will not be loaded again when Ai be-
comes the first element of Q. If we use a non-incremental eval-
uation of a multiple similarity query we may have to load these
pages again, resulting in an overall higher number of disk I/Os. 

For m multiple similarity queries Q1, ..., Qm the I/O cost

 is proportional to  where |S|

denotes the cardinality of a set S. Obviously, an I/O speed-up
is achieved if (and only if) there are data pages which are
relevant for more than one query object - more formally: if

.

In the case of the linear scan, it holds that
, because relevant_pages(Q1) = ... =

relevant_pages(Qm), and therefore, the condition
 is obviously satisfied. The average I/O

cost for one query object is  and the speed-up fac-
tor for a multiple similarity query compared to m single
similarity queries (with respect to disk I/O) is exactly equal
to m. 

In the case of a tree-like index structure, the ratio

 which de-

termines the actual speed-up factor cannot be analytically
derived. However, in higher dimensions it is very likely that
a data page is relevant for more than one query object, espe-
cially if the queries are dynamically generated by an Ex-
ploreNeighborhoods-algorithm. Therefore, we assume that

the condition  is also satisfied in this case,

even though we expect the gain of a multiple similarity que-
ry on top of a tree-like index to be smaller compared to an
implementation for the sequential scan. Note that the perfor-
mance of a multiple similarity query with respect to the I/O
cost is never worse than the performance of a single query.

5.2. Reducing CPU cost

The basic idea for reducing the CPU cost is to use the
triangle inequality to avoid distance computations which
are the most expensive operations when evaluating a simi-
larity query. The proposed approach makes use of the fact
that a distance calculation is typically much more expensive
than a distance comparison. To apply the triangle inequality
to avoid distance calculations, we need to know the distanc-
es for each pair of query objects (Qi,Qj) which have to be
calculated and stored in advance. This computational over-
head is (up to a certain value of m depending on the number
n of database objects) relatively small compared to the sav-
ings of distance computations by such a preprocessing.
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Intuitively, there are two cases where the calculation
of dist(Qj,O) can be avoided for a query object Qj and a
database object O if we already know the distance between
Qj and a second query object Qi and the distance dist(Qi,O)
has already been calculated: first, the query objects Qi and
Qj are close to each other and dist(Qi,O) is large; second,
the query objects Qi and Qj have a large distance from each
other and dist(Qi,O) is small. 

To outline the proposed method more formally, we
first define the notion of an avoidable distance calculation
in the context of multiple similarity queries.

Definition 5. (avoidable distance calculation) 
Let Queries=[Q1, ..., Qm] be the query objects for a multi-
ple similarity query, O ∈ DB, and let l, 1 ≤ l < m, be a natural
number. Furthermore, let the values of dist(Qi, Qj) be
known for all 1 ≤ i ≤ m, 1 ≤ j ≤ m, and let dist(Qi,O) be
known for all 1 ≤ i ≤ l. Let QueryDist(Qi), 1 ≤ i ≤ m, denote
the query distance of Qi in a current execution step of the
multiple similarity query. Then, we call the calculation of
dist(Ql+1,O) avoidable with respect to Queries if we can
conclude that  without
having to calculate dist(Ql+1,O).

To show that a distance calculation is avoidable, we
apply the triangle inequality - satisfied by the metric dis-
tance function dist - to the triangle defined by two query
objects Q1 and Q2 and a database object O. We obtain the
following three inequalities which hold simultaneously:

.

Inequality (1) can be used to show the avoidability of
the calculation of dist(Q2,O) because it yields a lower bound
for dist(Q2,O). This is formalized in the following lemma.

Lemma 1. Let Q1, Q2 ∈ Objects be query objects and let O
∈ Objects be a database object. Let dist be a metric distance
function dist: .
If  holds, then
it follows that .

Proof. We reformulate inequality (1) as follows:
. By assumption,

. Then,
. By exploiting

the symmetry of dist we derive:
.

❏
Figure 5 (left) illustrates a situation where lemma 1

holds and the calculation of dist(Q2,O) can be avoided. Ine-
quality (2) is not useful for the purpose of avoiding distance
calculations because it yields an upper bound and not a lower
bound for dist(Q2,O). Inequality (3), however, can be used
analogously to inequality (1) and yields the following lemma.

Lemma 2. Let Q1, Q2 ∈ Objects be query objects and let O
∈ Objects be a database object. Let dist be a metric distance
function dist: .
If  holds, then
it follows that . 

Proof. Analogous to proof of lemma 1. 
Figure 5 (right) depicts a case where lemma 2 can be

applied to avoid the calculation of dist(Q2,O). To conclude
the two above lemmata, figure 6 illustrates the area of data-
base objects O for which the calculation of the distance
from a query object Q2 can be avoided. For example, the
calculation of dist(Q2, O1) can be avoided because

 holds, and the
calculation of dist(Q2,O2) can also be avoided because

 holds.
The CPU cost for processing m multiple similarity

queries is given by the following formula 

calculated in advance

calculated for a previous query 
calculation can be avoided

QueryDist(Q2)

O: database object Q1, Q2 : query objects

Figure 5. Illustration of lemma 1 and lemma 2
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where avoiding_tries denotes the number of (successful or
not successful) applications of triangle inequalities and
not_avoided denotes the number of distance calculations
which actually have to be performed. Obviously, this for-
mula contains several application dependent parameters
which can only be determined experimentally. In the worst
case, if no distance calculations can be avoided at all, it
holds that . However, we observed that

 is significantly smaller than  if m is small
compared to the database size (see section 6 for details). 

5.3. Potentials for parallelization

In this section, we will briefly discuss the implementa-
tion of a multiple similarity query on top of a parallel query
processor for a shared nothing environment. In such an en-
vironment, the data is distributed among s servers such that
the same similarity query is performed on each server in
parallel. However, each process has to look only at its local
part of the data which is s times smaller than the whole
database. The communication overhead in this setting is
very small so that a speed-up (compared to a sequential im-
plementation) in the order of s can be expected, i.e. the cost

 for performing m multiple similarity queries is re-

duced to . The implementation of such a parallel query

processor is trivial for the linear scan. For a parallel imple-
mentation, for example, of the X-tree see [1]. 

The transition from one computer to s computers of
the same type also makes s-times the main memory avail-
able. If we use these additional resources when performing
multiple similarity queries in parallel, we can gain a re-
markable speed-up factor for  similarity queries
which is larger than the number s of machines. This effect
is due to the fact that we can increase the number m of query
objects to be processed simultaneously if we have more
memory to buffer the answers. 

In a parallel environment each process produces only
one s-th of the answer set for a query object on the average.
Therefore, instead of evaluating M similarity queries in
blocks of m queries on a single machine we can now use
blocks of  queries. This means that the cost for evalu-
ating M queries using parallel multiple similarity queries is

equal to  compared to  for the se-

quential implementation. Consequently, the speed-up fac-
tor for a parallel multiple query versus a sequential multiple

query is larger than s if  holds. From
sections 5.1 and 5.2 we know that we can expect this condi-
tion to be satisfied at least for the I/O cost. We cannot prove
that the condition  holds for the CPU
cost but section 6.2 demonstrates this experimentally. Note,
however, that even if this condition did not hold, we still
would have the “normal” speed-up factor of s when using
parallelization. 

6. Performance evaluation

We performed an extensive experimental evaluation
of our technique for multiple similarity queries using real
databases. The first database, part of the so-called Tycho
catalogue [12], was provided by the European Space Agen-
cy (ESA) and contains 20-d feature vectors of 1,000,000
stars and galaxies. The second dataset was a large image
database containing 64-d color histograms of 112,000 im-
ages from TV snapshots. We investigated two extreme in-
stances of iterative neighborhood exploration discussed in
section 3.2., one with independent queries and another one
with highly dependent queries:
• On the Astronomy database, we tested simultaneous

classification of a set of objects. M objects from the da-
tabase were chosen randomly and a k-nearest neighbor
query was performed for each of these query objects.

• On the image database, we simulated manual data ex-
ploration by a number of c concurrent users in the fol-
lowing way. We randomly selected a first query object
for each of the users and performed a k-nearest neighbor
query for each of them obtaining a total of  answers.
Then we performed the following loop. While each of the
hypothetic users chose one from his k current answers,
for each of the current answers we prefetched their k-
nearest neighbors. After restricting the set of answers to
the answers of the objects chosen by the users, we con-
tinued the loop with these new query objects etc. Thus, in
each loop we generated  new query objects
for which we performed k-nearest neighbor queries.

We experimented with a broad range of k values and
found that the average cost per k-nearest neighbor query
was quite robust to the value of k. All the results reported in
the following were obtained for k = 10 (Astronomy data-
base) and k = 20 (image database) which are typical param-
eter values for the respective applications.

All experiments were performed on Intel Pentium II
(300 MHz) based workstations running Linux 6.0, each
workstation equipped with 128 MBytes of main memory.
Both, the linear scan and the X-tree were implemented in
C++. The block size of the X-tree was set to 32 KBytes and
the buffer size was set to 10% of the X-tree size. 

6.1. Reduction of I/O cost

We begin by studying the effect of our technique on
the I/O cost. Figure 7 depicts the average I/O cost per simi-
larity query with respect to the number m of multiple simi-
larity queries for the Astronomy database as well as for the
image database. For a single similarity query, the X-tree
outperforms the linear scan by a factor of 4.5 and 3.1. For m
= 100 query objects, however, the average I/O cost of the X-
tree is 1.5 and 3.6 times the average I/O cost of the linear
scan. While the enormous reduction of I/O cost (a factor of
nearly m) is expected for the linear scan, it is worth noticing
that also the average I/O cost of the X-tree is reduced by a
factor of 8.7 and 15 for 100 multiple similarity queries.
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6.2. Reduction of CPU cost

The amount of CPU cost which can be saved when a
data object is disqualified on the basis of the triangle ine-
quality depends on the dimensionality of the database since
the CPU cost for a distance calculation increases with the
dimensionality whereas the CPU cost for evaluating the tri-
angle inequality is constant. We measured the following av-
erage runtimes on our test databases. On 20-d data objects
the CPU cost for calculating the Euclidean distance
( ) was 52 times the CPU cost for evaluating a trian-
gle inequality ( ) and on the 64-d data objects the
factor was 155 (  versus ). 

We measured the average CPU cost per query for 10,
20, 40, 50 and 100 multiple similarity queries (cf. figure 8).
For the linear scan, the average CPU cost for a similarity
query decreases from 4.3 sec to 0.6 sec on the Astronomy
database when increasing m from 1 to 100. This corre-
sponds to a reduction of the CPU cost by a factor of 7.1. On
the image database, the factor of the CPU cost reduction is
even 28. This effect can be explained when considering the
distribution of the databases: the Astronomy database is al-
most uniformly distributed, the image database, however, is

highly clustered. The linear scan profits from clustered da-
tabases for the following reason: if the distance computa-
tion for one data object from a cluster can be avoided it is
likely that the distance computation for all other data ob-
jects lying in the same cluster can also be avoided. 

For the X-tree, the effect of applying the triangle ine-
quality is less than for the linear scan, it is 2.1 on the Astron-
omy database as well as on the image database. The reason
for this smaller performance gain of the X-tree is the fact
that due to its indexing properties, the X-tree solely investi-
gates data objects which are close to query objects. Since
data objects which have a large distance to the query objects
- and therefore a high probability to be excluded from the
distance calculation for most of the query objects - are not
considered, the potential for CPU cost reduction is less than
for the linear scan. 

6.3. Reduction of the total query cost

We now consider the effect of our technique for multi-
ple similarity queries on the total query cost and determine
the achieved speed-up. For both databases, figure 9 shows
the average total query cost as the sum of the average I/O
cost and the average CPU cost. This can be done since the
cost for managing the query process can be neglected com-
pared to the I/O cost and CPU cost. As expected, the aver-
age total query cost decreases with increasing m for the lin-
ear scan and the X-tree. An important observation we made
is that for  (Astronomy database) and  (im-
age database) the total query cost is dominated by the CPU
cost when performing a linear scan. The average query cost
of the X-tree was I/O bound for . Since the perfor-
mance gain is higher for the linear scan, the linear scan out-
performs the X-tree for  (Astronomy database) and

 (image database). 
Figure 10 depicts the corresponding speed-up. When

comparing m = 100 to m = 1, the linear scan achieves a
speed-up of 28 on the Astronomy database and 68 on the
image database. For the X-tree, this speed-up is less due to

Figure 7. Average I/O cost per similarity query
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the smaller benefits from the triangle inequality and the
smaller reduction of I/O cost. However, we still observe a
speed-up of 7.2 on the Astronomy database and 12.1 on the
image database. Note that the speed-up factors are always
higher on the image database. Similar to section 6.2, this ef-
fect can be explained with the distribution of the databases.

6.4. Effects of parallelization

We also investigated the achievable speed-up when
applying our technique for multiple similarity queries on
top of a parallel query processor. The setting we used was a
shared nothing environment with a TCP/IP network inter-
connecting 16 servers. For the implementation details of a
parallel X-tree see [1]. For both databases, we performed
m = 100 multiple k-nearest neighbor queries on a single
server and while we increased the number of servers (s = 4,
8, 16) we proportionally increased m (m = 400, 800, 1600).
Our technique of parallelization increases m in order to ex-
ploit the fact that s times the main memory becomes avail-
able (see section 5.3.). Figure 11 depicts the achieved
speed-up per similarity query comparing parallel multiple
similarity queries to sequential multiple similarity queries. 

On the Astronomy database, the parallel linear scan
achieves a superlinear speed-up using up to 8 servers and a
near linear speed-up of 13.4 using 16 servers. For larger
server numbers, i.e. also larger numbers m of queries, two
effects decrease the speed-up: (1) the cost for the computa-
tion of the distance for each pair of query objects and (2) the
cost for applying the triangle inequalities for each database
object which - in the worst case - is also quadratic in m. The
second effect is less important for the X-tree because the X-
tree visits only a considerably smaller number of database
objects. Thus, the X-tree always achieves superlinear
speed-up factors such as 17.9 for 16 servers.

On the image database, the achieved speed-up is sub-
linear, for example 4.1 (linear scan) and 4.3 (X-tree) for s =
8. Furthermore, we observe that the speed-up for the paral-
lel linear scan as well as for the parallel X-tree using 16
servers is less than the speed-up using 8 servers. Again, this
result is explained by the two above effects with a cost qua-
dratic in m. Note that the influence of the initialization cost
for the query distance matrix - which is independent from
the database size - is much stronger here because the image
database (112,000 objects) is significantly smaller than the
Astronomy database (1,000,000 objects).

In figure 12 the overall speed-up of our technique is de-
picted with respect to s, i.e. the speed-up when performing
multiple similarity queries on top of a parallel query proces-
sor compared to a sequential processing of single similarity
queries. Thus, in figure 12 the combined effect of transforma-
tion into multiple queries and of parallelization is represent-
ed. On the Astronomy database, we observe an overall speed-
up of 374 for the parallel linear scan and an overall speed-up
of 128 for the parallel X-tree using 16 servers. On the image
database, the overall speed-up factors using 8 servers are 279
for the parallel linear scan and 52 for the parallel X-tree.

7. Conclusions

Similarity queries in the form of range queries and k-
nearest neighbor queries are the most important query types
in metric databases. Whereas in traditional query processing

Figure 10. Speed-up with respect to m
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queries are issued independently, the typical scenario of
many data mining applications is to explore the database by
iteratively investigating the neighborhood of some start ob-
jects. In this paper, we propose a new query type, the so-
called multiple similarity query, to speed-up such data mining
applications by simultaneously processing sets of similarity
queries. We introduced a generic scheme for many data min-
ing algorithms and we developed a method to syntactically
transform those algorithms in a way that they can use multi-
ple similarity queries instead of single similarity queries. Our
approach for efficiently processing multiple similarity que-
ries includes two orthogonal techniques: first, the reduction
of I/O cost by loading data pages only once and processing
them for each query object. Second, the reduction of CPU
cost by applying the triangle inequality in order to avoid ex-
pensive distance computations. Furthermore, we explored
the potential of parallelization. The proposed techniques ap-
ply to any type of similarity query and to an implementation
based on an index or using a sequential scan. An extensive
experimental evaluation on real databases demonstrated the
efficiency of our approach: by combining all of our tech-
niques we achieved an overall speed-up with 16 servers in the
order of 100 for an index-based implementation and in the
order of 300 for an implementation using a sequential scan.

We argue that multiple similarity queries should be
provided as a basic DBMS operation since they allow to
speed-up the processing of many data mining algorithms.
There are several directions to improve the efficiency of
multiple similarity queries even more. We will investigate
methods to reduce the initialization overhead implied by
the query distance matrix. Furthermore, the potential of
parallelization should be explored in more detail, e.g. the
effects of various data declustering strategies.
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