
Abstract

In a data warehouse, updates are typically collected and
performed periodically in a batch mode, e.g., over night.
This standard approach of bulk incremental updates to data
warehouses has some drawbacks. First, the average runt-
ime for a single update is small but the total runtime for the
whole batch of updates may become rather large. Second,
the contents of the data warehouse is not always up to date.
In this paper, we introduce  the DC-tree, a fully dynamic in-
dex structure for data warehouses modeled as a data cube.
This new index structure is designed for applications where
the above drawbacks of the bulk update approach are crit-
ical. The DC-tree is a hierarchical index structure - similar
to the X-tree - exploiting the concept hierarchies typically
defined for the dimensions of a data cube. We conducted an
extensive experimental performance evaluation using the
TPC-D benchmark data. Our results demonstrate that the
DC-tree yields a significant speed-up compared to the X-
tree and the sequential search when processing general
range queries on a data cube. 

1. Introduction

A data warehouse [3] is a collection of data from mul-
tiple sources, integrated into a common repository and ex-
tended by summary information (such as aggregate views)
that is used primarily in organizational decision making.
Often, a data cube is used to model a data warehouse and a
relational database is used for its implementation. A data
cube [2] consists of several independent attributes, grouped
into dimensions, and some dependent attributes which are
called measures. A data cube can be viewed as a d-dimen-
sional array whose cells contain the measures for the re-
spective subcube.

Typical queries on a data cube involve a lot of data
records and tend to be very expensive. Therefore, it is a
common approach ([7], [8], [9]) to materialize the results of
many of the relevant queries in order to speed-up query pro-
cessing. This approach, however, fails in a  dynamic envi-

ronment where the queries are not known in advance and
where the number of possible queries becomes very large.
In such an environment general range queries should be
supported. A range query [6] specifies a contiguous range
for each of the dimensions of the data cube and applies a
given aggregation operator to the set of selected cells. Sev-
eral multi-dimensional index structures for data warehous-
es ([6], [12]) have been proposed which store some derived
information to efficiently support general range queries. 

Typically, a data warehouse is not updated immediate-
ly when insertions and deletions on the operational databas-
es occur. Updates are collected and applied to the data
warehouse periodically in a batch mode, e.g., each night
[9]. Then, all derived information such as index structures
has to be updated as well. This approach of bulk incremen-
tal updates, however, has two drawbacks:

(1) While the average runtime for one update is small,
the total runtime for the whole batch of updates is rather
large [12].  Bulk incremental updates require a considerable
time window where the data warehouse is not available for
OLAP. Global companies with branches all over the world,
however, will more and more want to have their data ware-
house available 24 hours a day.

(2) The contents of the data warehouse is not always
up to date. In many applications this may not be necessary,
but it may become critical in very dynamic applications
such as stock markets or the WWW.

In this paper, we introduce the DC-tree, a fully dynam-
ic index structure for data warehouses which avoids these
two drawbacks. This new index structure is designed for
applications where the above drawbacks of the well-known
approaches are critical.  This paper is organized as follows.
Section 2 discusses related work. Section 3 presents the
concepts of the DC-tree and section 4 discusses the major
algorithms for constructing and querying DC-trees. We
conducted an experimental evaluation of the DC-tree which
is reported in section 5. Section 6 summarizes the contribu-
tions of this paper and outlines some directions for future
research.
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2. Related work

In this section, we briefly review related work from
the area of data warehousing as well as from the area of
spatial index structures. 

The data cube [2] has been introduced as a multi-di-
mensional model for data warehouses. It is defined by sev-
eral independent attributes, the dimensions, and some de-
pendent attributes which are called measures. Each cell of a
data cube contains the measures for the respective subcube.
Often, a subset of the data cube is materialized to speed-up
query processing. [7] presents an efficient algorithm which
selects a nearly optimal subset of all cells for materializa-
tion. The proposed approach is static, i.e. it is useful only
for the initial load of the cube but does not support incre-
mental changes on dynamic updates of the data warehouse.

Several one-dimensional index structures have been
proposed for efficiently processing queries in a data ware-
house and, in particular, bitmap indices have become popu-
lar in this context. In a bitmap index, leaf pages of an index
structure do not contain lists of record ids but bit vectors
with one bit for each data record. For instance, [11] discuss-
es several types of bitmap index structures suitable for dif-
ferent query types. [10] introduces bitmap join indices
which precompute binary joins in a data warehouse. Bit-
map indices, however, are static because on the insertion of
a data record all index entries have to be updated. Further-
more, one-dimensional index structures build secondary in-
dices which do not impact the clustering of the database.
Therefore, they show poor performance for multi-dimen-
sional range queries of the data cube.

Several multi-dimensional index structures for data
cubes have been developed. [6] introduces a generalized
quad-tree where the entries of the nodes consist of the de-
scription of a subcube and the materialized maximum mea-
sure value for this subcube. This index structure efficiently
supports range-max queries but the branch-and-bound-op-
timization cannot be applied to other query types. For range-
sum queries in dense data cubes, multi-dimensional prefix
sums of the data cube are precomputed. For sparse data
cubes, a set of non-intersecting subcubes is found and the
prefix sum is only computed for these dense regions. An R*-
tree is used to manage the minimum bounding hyper-rect-
angles and the prefix sums of the dense subcubes. Unfortu-
nately, no experimental performance results are reported.

[12] introduces the Extended Datacube Model (EDM)
which allows to represent a data cube and its underlying
relational data in a uniform way. An EDM is mapped to a
cubetree and realized by a collection of packed R-trees.
Furthermore, an algorithm is presented to perform bulk in-
cremental updates of the cubetree. An experimental evalu-
ation demonstrates that the cubetree supports multi-dimen-
sional range queries very efficiently. The bulk update

experiments show that the required I/O time is very high
due to the huge size of the data cubes.

Many applications require the management of spatial
data (data with a location in a multi-dimensional space) such
as points, lines and polygons. To speed up query processing
in spatial databases, many spatial index structures have been
developed to restrict the search to the relevant part of the
space (cf [4] for a survey). The R-tree [5] generalizes the 1-
dimensional B-tree to d-dimensional data spaces, i.e. an R-
tree manages d-dimensional hyperrectangles instead of 1-
dimensional numeric keys. An R-tree may organize extend-
ed objects such as polygons using minimum bounding rect-
angles (MBR) as approximations as well as point objects as
a special case of rectangles. To answer a range query, starting
from the root, the set of MBRs intersecting the query range
is determined and then their referenced child nodes are
searched until the data pages are reached. 

Since the overlap of the MBRs in the directory nodes
grows with increasing dimension d, the R-tree and most
other spatial index structures are efficient only for moderate
values of d. Recently, several index structures such as the
X-tree [1] have been designed which are also efficient for
large values of d. If the standard topological split (consider-
ing properties of the MBRs such as their extension and their
partitioning of dead space) results in high overlap, the X-
tree  tries to find an overlap-minimal split  based on the split
history. If the number of MBRs in one of the resulting par-
titions is below a given threshold the split would be too un-
balanced and, therefore, the split algorithm terminates with-
out providing a split. In this case, the current node is
extended to become a so-called supernode with a multiple
of the standard block size.

3. The DC-tree

In this section, we introduce the structure of the DC-
tree, which is similar to that of the X-tree. To make use of
the concept hierarchies for the dimensions, the MBRs are
replaced by MDSs (minimum describing sequences). 

3.1. Concept hierarchies

A data cube [2] consists of several functional at-
tributes, grouped into dimensions, and some dependent at-
tributes which are called measures. A data cube can be
viewed as a d-dimensional array whose cells contain the
measures for the respective subcube. If more than one func-
tional attribute per dimension exists, these multiple at-
tributes are organized by hierarchy schemata. A concept hi-
erachy is an instance of a hierarchy schema. Figure 1 shows
an example for a dimension Customer and its functional
attributes Region, Nation and Customer ID. ALL is the root
of every concept hierarchy and denotes the union of all val-
ues in the concept hierarchy.



We can define a partial ordering on a dimension using its
concept hierarchy. This partial ordering is important for the
split algorithms of the DC-tree and the definition of MDSs.
The following definitions introduce these notions and the
concept of a data cube itself more formally.

Definition 1.  (Concept Hierarchy, Partial Ordering ≤, Hi-
erarchy Level) 

Let Di, 1≤ i ≤ d, be sets of attribute values with 

. A concept hierarchy for Di is a tree with 

the following properties:

• the nodes of the tree represent the elements of Di

• the root represents the special value ALL

• the edges of the tree represent the “is-a” relationship 
between the two connected nodes.

Let a, b ∈ Di, 1≤ i ≤ d. The partial ordering ≤ for Di is 
defined as follows: a ≤ b if and only if a is equal to b 
or a is a (direct or indirect) son of b in the concept 
hierarchy of dimension i.

The hierarchy level of an attribute value is defined as 
the distance of the node with that attribute level from 
the leaves, i.e. the leaves have a hierarchy level of 0.

Definition 2.  (Data Cube, Data Record)
We define a data cube D over the domains Di,1≤ i ≤ d, 
with m measures as follows: .

An element (a1, . ., ad, x1, . ., xm) of the datacube with 

 is called a data record.

For example, in the concept hierarchy of figure 1 Germany
≤ Europe and a ≤ ALL holds for each value a.

In order to apply a spatial access method such as the
X-tree for indexing a data cube, one could define an arbi-
trary total ordering for each dimension. The advantages of
a partial ordering compared to a total ordering are illustrat-
ed in figure 2 for the dimension Product. In a total ordering,
an ID has to be assigned to every single product. A problem
occurs when new products have to be inserted. For exam-
ple, a new Samsung TV would receive an unfavourable ID,
as it would naturally fit in between i and i+1. Furthermore,
the attributes are not treated equally by a total ordering. The
ordering in figure 2, for instance, would rather prefer range
queries by makes than by product types.

When using a partial ordering, the insertion of new
products is natural  because each leaf of the concept hierar-
chy is organized as a set. Although this structure prefers
range queries by product types, a range query by makes can
still be answered more efficiently by the leaf sets of the hi-
erarchy than by a totally ordered structure. This holds be-
cause an algorithm knows which leaves contain the relevant
data and does not have to scan the complete list of products. 

The DC-tree stores one concept hierarchy per dimen-
sion and assigns an ID to every attribute value of a data
record that is inserted. This assignment is performed to
avoid the storage of long strings, but not to define a total
ordering. Note that the DC-tree manages its concept hierar-
chies dynamically.  

An ID is represented by a 32-bit integer. The highest
four bits define the height of an ID in the concept hierarchy
of its dimension to distinguish IDs from different levels.

Figure 1. Hierarchy Schema and Concept 
Hierarchy for dimension Customer
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This representation of an ID has a fixed length and requires
only 4 bytes. The DC-tree represents the concept hierar-
chies by means of dictionaries that store the ID of the father
for each ID in one concept hierarchy. For the dimension
Customer of figure 1, for example, every data record in-
cludes one value each for Region, Nation and Customer ID.
The DC-tree assigns an ID to each value and updates its
concept hierarchy for the dimension Customer.

3.2. Minimum describing sequences

Minimum bounding rectangles (MBRs), used as the
approximation method of the X-tree, are not appropriate for
the DC-tree as demonstrated by the example in figure 3. For
two partially ordered dimensions A and B, let an arbitrary
total ordering be imposed on the dimensions given by the
indices of the values Ai and Bj. On the lefthand side we
have a MBR which assumes totally ordered dimensions.
([A2, A8], [B2, B5]) is a sufficient definition of this MBR
because [A2, A8], e.g., implictly includes each attribute
value between A2 and A8. This does not hold if the dimen-
sions are only partially ordered. Thus, we use so-called
MDSs (minimum describing sequences) instead of MBRs.

On the righthand side of figure 3 the same data records
are approximated by an MDS. Only attribute values occur-
ring for at least one data record are included in the defini-
tion of this MDS. For instance, A1 and A4 are not contained
in the first set of the MDS. Obviously, the MDS covers less
dead space than the MBR. On the other hand, an MDS has
to store more information and it has variable size. Note that
all attribute values of a given dimension must belong to the
same level of the concept hierarchy of that dimension.
More formally, an MDS is defined as follows.

Definition 3. (Minimum Describing Sequence, MDS, Rel-
evant Level)

Let D be a data cube with d dimensions Di. Let S ⊆ D 
be a subcube of D, i.e. a set of data records (a1, . ., ad, 

x1, . . ., xm) with . 

A minimum describing sequence (MDS) for S is a 

sequence of entries (M1, . . ., Md) where   

 describes dimension i by a set of 
attribute values   which all belong to the rele-
vant level li of the concept hierarchy of dimension i. 
di  has to  satisfy the following two properties:

1. (coverage) For all (a1, . . ., ad, x1, . . ., xm) ∈S and for 

all i, 1≤ i ≤ d, there is some mi ∈di with .

2. (minimality) If (N1, . . ., Nd) with  satis-
fies the  property of coverage, then for all i, 1≤ i ≤ d, 
and for all x ∈di, there is some y ∈ei with .

As an example, we examine the following data records (pri-
or to an assignment of IDs according to chapter 3.1) for a
data cube with dimensions Customer, Supplier and Time
and one measure:

(Germany, North America, 1996, 310.27 $)
(France, North America, 1997,1245.80 $)

For these data records, the MDS for the relevant levels 2, 2,
and 2 is ({Germany, France},{North America},{1996,
1997}) (see figure 9). For each dimension, only the at-
tribute values of the relevant level of the concept hierarchy
are depicted. If we chose the next higher concept level as
the relevant level of the first dimension, we would obtain an
MDS of ({Europe},{North America},{1996, 1997}).

The first MDS of a new DC-tree is the MDS (ALL, . ..,
ALL), i.e. the relevant level is initialized to the top level for
each dimension. When performing a (hierarchy) split of a
given node, one split dimension is selected and the relevant
level of this dimension may be decreased by one for the
MDSs of the two resulting subgroups. For example, the
MDS ({Europe},{North America},{1996, 1997}) may be
split into two MDS ({Germany, France, Nether-
land},{North America},{1996, 1997}) and ({Switzerland,
Greece, Italy},{North America},{1996, 1997}).

The last element of the above sample data record is the
measure value according to the measure attribute of the
data cube. The measure value is not part of the MDS, but is
related to it and will be stored together with the MDS in
each node of the DC-tree. The measure value for an MDS
of a data node or a directory node is the aggregation (e.g.
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the sum or the average) of the measure values of all data
records covered by this MDS. Finally, the following defini-
tion introduces several notions for MDSs which are essen-
tial for the algorithms of the DC-tree. 

Definition 4.  (Size, Contains,Volume, Overlap, Extension)
Let D be a data cube with d dimensions Di. Let M = 

(M1, . . ., Md), , and N = (N1, . . ., Nd), , 

be MDSs. Let |S| denote the cardinality of a set S.
The size of M, denoted as size(M), is defined as:

N contains M if for each dimension i, , and for 

all mi ∈Mi, there is some ni ∈Ni with .

The volume of M, denoted as volume(M), is defined as 

.

The overlap of M and N, denoted as overlap(M,N), is 

defined as 

The extension of M and N, denoted as extension(M,N), 

is defined as 

Note that  the definitions of overlap and extension as-
sume that in each dimension i the elements of both Mi and
Ni have to belong to the same level of the concept hierarchy.
This is necessary because, e.g., the union of American cus-
tomers and North America makes no sense.

4. Algorithms for the DC-tree

In this section, we present the major algorithms for
constructing and querying DC-trees. While the insert algo-
rithm is quite similar to that in the X-tree, we developed a
completely new split algorithm.

4.1. Insert

Figure 4 shows the insert procedure for directory
nodes. The data record to be inserted already contains the
assigned IDs for its attribute values and its measure value.

After updating the measure value of the directory node, the
choose-subtree algorithm selects a son  follow, in which the
data record will be further inserted. If  follow had to be split
as a result of this insertion, the directory node contains a
new son and can now be overfilled itself. In this case, the
split algorithm for directory nodes will be called. A suc-
cessful split will then create a new brother of this directory
node. If the split was not successful, a supernode will be
created or, if the directory node has already been a supern-
ode, the supernode will be enlarged.

4.2. Split

Again, the algorithm for directory nodes will illustrate
the split procedure of the DC-tree (see figure 5). The direc-
tory split runs through all dimensions, until it finds an ap-
propriate split or until it has examined every dimension.

The algorithm starts with selecting a split dimension by
considering the hierarchy level of the elements of the MDS
in the different dimensions. To induce a balanced structure
of the DC-tree, the algorithm always selects the dimension
with the highest hierarchy level of the elements of the MDS.
For instance, if an MDS contains only the ALL value in one
dimension and in all other dimensions attribute values from
lower levels of their concept hierarchies, then the dimension
with the ALL value will be selected as split dimension.

Mi Di⊆ Ni Di⊆

size M( ) Mi
i 1=

d

∑=

1 i d≤ ≤
mi ni≤

volume M( ) Mi
i 1=

d

∏=

overlap M N,( ) Mi Ni∩
i 1=

d

∏=

extension M N,( ) Mi Ni∪
i 1=

d

∏=

int DWTDirNode :: Insert (data *d)
{ Update measure value;

follow = choose_subtree (d);
follow -> insert (d);
If follow has been split :
{ Insert new son;

If the capacity is reached :
{ Split (DWTDirNode *NewBrother);

If split was successful:
return SPLIT;

Else :
return SUPERNODE; }

return NONE; }}

Figure 4. Insert Algorithm for Directory Nodes

DWTDirNode :: Split (DWTDirNode *NewBrother)
{ While found = FALSE and at least one dimension has not been processed :

{ Choose dimension by level of concept hierarchy;
Adapt MDSs of entries to MDS of directory node;
Hierarchy_split (Modified_MDSs[], Split_Dimension);
If nodes are balanced and overlap is not too high :

found = TRUE;}
If non of the splits was successful :
{ Create supernode;}}

Figure 5. Split Algorithm for Directory Nodes



Now the MDSs of the directory entries will be adapted
to the MDS of the directory node. The reason for this proce-
dure lies in the constraint for the operations with MDSs as
described in chapter 3.2. All MDSs corresponding to the
entries of a node have to be comparable to each other, i.e. in
every dimension they have to contain elements of the same
level in the corresponding concept hierarchy. Because the
MDS of a directory node itself contains all MDSs of the
entries of this directory node (see section 3.2), this directo-
ry MDS is the best choice for the adaption of the MDSs.

The modified MDSs and the chosen split dimension
are the parameters of the hierarchy split, an algorithm that
is described in the next section. It results in two groups of
MDSs. If these two groups are too unbalanced or their over-
lap is too high, another dimension will be selected. If no
appropriate split is found for any dimension, a supernode is
created. Note that the DC-tree allows to split a supernode
just like a normal directory node. Such a split is performed
if the directory node capacity multiplied by the number of
blocks of the supernode is exceeded. 

4.3. Hierarchy split

The hierarchy split is based on the quadratic split of
[5], that was initially developed for the R-tree and its vari-
ants. The idea of this algorithm is to split a group of MBRs
into two subgroups by first choosing two MBRs, so-called
seeds, that should not be contained in the same subgroup.
Then each remaining MBR is inserted into one of the sub-
groups, according to certain criteria such as the volume of
the resulting group. Because each run of the while-loop
considers each remaining MBR for the next insertion, the
runtime of the algorithm is quadratic.

The hierarchy split shown in figure 6 has the same ba-
sic structure as the original quadratic split in the R-tree, but
it exploits the partial ordering induced by the concept hier-
archy. First, two seeds are being chosen from all MDSs.
These two MDSs form the initial two groups of the algo-
rithm. In every run of the while loop, the algorithm has to

make two decisions: Which MDS will be inserted next and
into which group will this MDS be inserted?

The first decision is made by using the split dimension.
The purpose of splitting along a split dimension is to obtain
two groups with disjunct attribute values in the split dimen-
sion. The algorithm depicted in figure 6 considers the exten-
sion of the groups just in the split dimension (differing from
[5]). It selects a group such that the new MDS and the MDS
of the group share as many attribute values as possible in the
split dimension. In the best case, the two resulting groups
will contain disjoint attribute values in the split dimension. 

The second decision is based on three criteria: overlap,
extension and volume (in the order of their importance).
Thus, the chosen MDS will be inserted into the group with
the least resulting overlap of the two groups. Should the
overlap be equal, the extension will be considered. If even
the volume increase or the volume do not allow a decision,
any of the groups will be chosen.

4.4. Range query

To demonstrate how the DC-tree makes use of the
measure values stored in the entries of the tree, we will dis-
cuss the range query algorithm for directory nodes (see fig-
ure 7). The query range for this algorithm is specified by an
MDS, the so-called range_MDS.

The range query algorithm runs through every entry of
the directory node. The for-loop makes the two MDSs com-
parable to each other. It is similar to the one in the split
algorithm (see figure 5) but in this case here we do not
know which of the two MDSs contains the higher level at-
tribute values.

If the overlap between the range_MDS and the MDS
of the entry is empty, the entry is not relevant for the query
and the result remains as it is. If the MDS of the entry is
fully contained in the range, then the measure value stored
in the son node referenced by the current directory entry  is
added to the result. Otherwise, if the MDS of the entry and
the range overlap each other, we cannot use the measure

Hierachy_Split (MBAs[], split dimension)
{ Compute the covering MDS for each pair of MDSs;

Initiate the two seeds by choosing the pair with the largest MDS;
While remaining MDSs exist :
{ Compute the enlargement of the two groups in the split dimension

for each remaining MDS;
Choose the MDS by the greatest difference between the
enlargements of the two groups in the split dimension;
Insert this MDS into the group with the minimum resulting overlap
between the groups;
Resolve ties by choosing the minimum sum of extensions;
Resolve further ties by choosing the minimum sum of volumes; }}

Figure 6. Hierarchy Split



value and have to recursivly call the range query for the son
node. Note, that in this case the aggregation SUM is being
used within the algorithm. Any other aggregation, e.g.  AV-
ERAGE, would have to be treated accordingly.

5. Performance evaluation

The performance of the DC-tree is evaluated on a real-
istic data cube. We compare the DC-tree with the X-tree and
the sequential search. The sequential search was evaluated
on the same machine as the DC-tree and  the X-tree. This
allows further comparisons with other index structures
which also have been compared with the sequential search. 

5.1. Test environment

All performance tests use the database of the TPC
Benchmark D [13]. The intended data cube is created by
SQL select operations on the TPC-D database. The output
of these operations is stored in a flatfile which functions as
the insert file for the DC-tree and for the two other index
structures being compared with the DC-tree.

As not all attributes in the TPC-D database were im-
portant for this performance evaluation, the corresponding
database schema was simplified (see figure 8). Thus, the
resulting data cube consists of four dimensions: Supplier,
Customer, Part and Time. Figure 8 involves that each data
record contains 14 attributes organized in hierarchy sche-
mata as illustrated in figure 9. The 14th attribute is the mea-
sure attribute Extended Price..

5.2. Generation of the range queries

To evaluate the results, the generation of the range
queries and the processing of these queries in the X-tree and
in the sequential search are important. Our algorithm for the
generation of the range queries works as follows. 

The algorithm randomly chooses a level in the concept
hierarchy of each dimension that the set of the range_MDS

in this dimension will be assigned to. For dimension Cus-
tomer, e.g., the algorithm will randomly select Region, Na-
tion, Market Segment or Customer (see figure 9). Depend-
ing on its choice, the range_MDS will contain IDs of
regions, nations, market segments or customers.  The size
of each set of the range_MDS is limited by the selectivity.
For instance, a selectivity of 25 % involves a range that
contains up to 25 % of all attribute values of the chosen
level in each dimension. These attributes values will again
be randomly chosen.

The generation of a range query for a DC-tree is differ-
ent from that for an X-tree, because the X-tree was devel-
oped for using MBRs and therefore cannot use MDSs and
concept hierarchies. To use the existing range query algo-
rithms of the X-tree for our test environment, we assigned a

double DWTDirNode :: Range_Query (range_MDS)
{ result = 0.0;

For each directory entry :
{ For each dimension :

{ If the range_MDS and the MDS of the entry are not on the
same level in the current dimension, adapt the MDS with
the lower level to the one with the higher level; }

If there is overlap between range_MDS and the MDS of the entry :
{ If the MDS of the entry is contained in the range_MDS :

Result += measure value of entry;
Else :

Result += entry -> Range_Query (range_MDS); }}
return result;}

Figure 7. Range Query Algorithm

Figure 8. TPC-D Database Scheme
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dimension to each level of the concept hierarchies. Figure
10 shows the fourteen dimensions of the X-tree and the cor-
responding hierarchy levels of the DC-tree.

By using the total ordering of the IDs assigned to the
attribute values by the insert procedure (see section 3.1),
the range_MDS can be converted to a range_MBR for the
X-tree. Thus, we can compare an index structure using to-
tally ordered dimensions (the X-tree) with an index struc-
ture using partially ordered dimensions (the DC-tree).

 The range query algorithm for the sequential search
simply runs through every existing data record and deter-
mines whether this data record is contained in the
range_MDS or not. In the positive case, the measure value
of the data record is added to the result.

5.3. Results

In this section, we present the results of the compari-
son between the DC-tree, the X-tree and the sequential
search. The size of the underlying test data cubes ranges
from 50,000 data records to 350,000 data records. The in-
sertion time and the time per range query will be analyzed
for different selectivities.

Figure 11 (a) shows the insertion time for the DC-tree
and the X-tree for up to 350,000 data records. As the X-tree
does not store concept hierarchies and avoids many compu-
tations the DC-tree has to do, the insertion time is signifi-
cantly lower for the X-tree. However, figure 11 (b) depicts
that the insertion of a single data record into the DC-tree
takes only about 0.025 seconds on a HP C160 workstation

(64 PA-RISC) with 768 Megabyte RAM and HP UX 10.20.
Thus, the dynamic insertion of data records has no signifi-
cant impact on the runtime of a data warehouse and it is
reasonable to keep the DC-tree up-to-date at all times.

Several tests with range queries of different selectivi-
ties were performed to compare the efficiency of the DC-
tree to the X-tree and the sequential search. Figure 12
shows three comparative tests between the DC-tree and the
X-tree for the selectivities 1 %, 5 % and 25 % as well as a
comparison between the DC-tree and the sequential search.
For all selectivities the time per query is determined as the
average of 100 random queries.

To assure a fair comparison, the main memory avail-
able for the X-tree was restricted to the memory size that
the DC-tree uses. In all performed tests the range queries
are executed much faster on the DC-tree than on the com-
parative index structure. In fact, we obtain a speed-up of
about 4.5 for range queries on the DC-tree compared with
those on the X-tree.

When looking at the absolute numbers in figure 12 (a)
- (c), range queries with selectivity 5 % are processed faster
than the others. The reason for this fact lies in a trade-off
between the level on which the DC-tree can completely an-
swer a range query and the performance costs when execut-
ing the range queries with larger range-MDSs. The larger
the query MDS, the higher is the probability that the MDS
of an entry is fully contained in the query MDS. Thus, a
larger query MDS yields a better performance. On the other
hand, a larger query MDS involves more expensive compu-
tations of the overlap, because a large MDS consists of
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large sets for the single dimensions. While the query MDSs
of range queries with selectivity 1 % are in general too
small to answer the query on a high level of the DC-tree and
the query MDSs of range queries with a selectivity of 25 %
involve very expensive computations, the range queries
with selectivity 5 % seem to be the best compromise among
the performed tests.

The comparison between the DC-tree and the sequen-
tial search, depicted in figure 12 (d), shows that the sequen-

tial search is no reasonable alternative. Even when using a
selectivity of 25 % (the worst case for the DC-tree), we ob-
tain a speed-up of 12.5 for range queries on the DC-tree
compared to the sequential search.

Figure 13 depicts the node sizes, i.e. the average num-
ber of entries, for the two highest levels of the DC-tree be-
low the root node. The node size increases linearly with
increasing number of data records for the second highest
level  but the node size stabilizes at 15 entries on the highest

Figure 11. Insertion Time
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level. This effect is due to the way of splitting directory
nodes. Every split results in two new directory nodes with
MDSs that contain either less attribute values or attribute
values of a lower level of  the concept hierarchy in each
dimension. Furthermore, the possible attribute values of a
directory node’s MDS are constrained by the MDS of its
father node. Depending on the overall number of possible
attribute values per dimension at some level of the DC-tree,
it becomes hard to split a directory node simply because its
MDS does not contain enough attribute values in any di-
mension, i.e. the MDS is already too special to be split  fur-
ther more. Due to the relatively small number of possible
attribute values, the MDSs of the directory nodes already
start to become rather special on the second highest level
(see figure 13). Consequently, the split algorithm creates
more and more supernodes or further enlarges existing su-
pernodes, respectively. This results in an average number of
entries of about 2.5 times the capacity of a regular directory
node on the second highest level under the root node. This
effect and possible improvements of the split algorithm will
be further investigated in  future work.

6. Conclusions

In this paper, we introduced the DC-tree, a fully dy-
namic index structure for data warehouses. This new index
structure is designed for applications where the above
drawbacks of the well-known approaches are critical. The
DC-tree is a hierarchical index structure - similar to the X-
tree - exploiting the concept hierarchies typically defined
for the dimensions of a data cube. The DC-tree uses mini-
mum describing sequences and the partial ordering of the
attribute values induced by the concept hierarchies instead
of minimum bounding rectangles and an artificial total or-
dering. Furthermore, for each minimum describing se-
quence in the directory the values of the measure attributes
are materialized. Our experimental performance evaluation

on the TPC-D benchmark data demonstrated a significant
speed-up compared to the X-tree and the sequential search
when processing general range queries on a data cube. 

Future work includes the following issues. The split
algorithm of the DC-tree is rather expensive and, in partic-
ular, more expensive than the split algorithm of the X-tree.
Therefore, alternative split algorithms should be investigat-
ed which have less than quadratic cost but nevertheless
yield reasonably good splits. A data cube is typically imple-
mented by using a relational DBMS. Thus, the DC-tree
should be integrated into a commercial DBMS to evaluate
its performance in this context.
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