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Abstract— The problem of modeling and managing uncertain
data has received a great deal of interest, due to its manifold ap-
plications in spatial, temporal, multimedia and sensor databases.
There exists a wide range of work covering spatial uncertainty
in the static (snapshot) case, where only one point of time is
considered. In contrast, the problem of modeling and querying
uncertain spatio-temporal data has only been treated as a simple
extension of the spatial case, disregarding time dependencies
between consecutive timestamps. We present a framework for
efficiently modeling and querying uncertain spatio-temporal data.
The key idea of our approach is to model possible object
trajectories by stochastic processes. This approach has three
major advantages over previous work. First it allows answering
queries in accordance with the possible worlds model. Second,
dependencies between object locations at consecutive points in
time are taken into account. And third it is possible to reduce all
queries on this model to simple matrix multiplications. Based
on these concepts we propose efficient solutions for different
probabilistic spatio-temporal queries for a particular stochastic
process, the Markov chain. In an experimental evaluation we
show that our approaches are several order of magnitudes faster
than state-of-the-art competitors.

I. INTRODUCTION

Uncertain data management has received a lot of attention
in the past decade, due to the abundance of uncertain data,
typically collected by modern monitoring devices, such as
GPS receivers and sensors. There exists a wide range of work
studying spatial uncertainty in the static (snapshot) case, where
only one point of time is considered, e.g. [1], [2], [3], [4],
[5], [6], [7]. On the other hand, the problem of modeling
and managing uncertain data with a temporal component
has only received limited attention by the community. Most
of the existing works treat spatio-temporal uncertainty as
a simple extension of spatial uncertainty. For instance, the
methods of [8] and [9] assume that for each timestamp in
the history and every object, there is a location sample, which
carries uncertainty. The samples are then modeled as uncertain
regions, using probability density functions (PDFs) and these
regions are connected to form the trajectories. Given a spatio-
temporal range query [8], we can then estimate the probability
that a trajectory intersects the window by the overlap of the
corresponding PDFs with the window.

These types of models, however, may not be acceptable
in the case where we only have a sample of locations in the

moving history of an object. In this case, for timestamps where
locations are not sampled, we have to infer the whereabouts of
the object with the help of stochastic models. These models
are particularly useful when predicting the future locations
of objects, with the help of current (or recent) location and
movement observations. In addition, these models allow for
the economic representation and storage of the data, since only
a subset of the object locations need to be sampled and used
for the inference of their remaining locations.

As an exemplary application, consider the problem of mon-
itoring iceberg activity in the North Atlantic. Ships transiting
between Europe and east coast ports of North America traverse
a great circular route that brings them into the vicinity of
icebergs carried south by the cold Labrador Current. It was
here that the R.M.S. Titanic sank in 1912, after it struck an
iceberg. This disaster resulted in the loss of 1517 lives and
led directly to the founding of the The International Ice Patrol
(IIP) in 1914. The mission of the IIP is to monitor iceberg
danger near the Grand Banks of Newfoundland and provide
the locations of all known ice to the maritime community. The
IIP does this by sighting icebergs, using visual observations
from ships and aircrafts, as well as data from buoys and
radars. A database stores the recorded positions and extents
of observed icebergs and data models are used to predict
their movement, based on the uncertainty of the recorded
observations. Estimating the position of an iceberg at a time t
underlies two sources of error: (i) the observation measurement
error and (ii) the obsoleteness of the most recent observation.
Using a model to describe this uncertainty, we can derive at
each time t and each uncertain object o (i.e. an iceberg) a
probability density function (pdf) describing the position of
object o at time t, and answer any related queries.

We found that uncertain spatio-temporal data management
based on such models has not been adequately studied in the
past. This paper aims at filling this gap. Section II discusses
related work. In Section III, we formally define the uncertain
spatio-temporal data that we deal with in this paper and the
queries that we will study. Then, we provide details on mod-
eling uncertain spatio-temporal data with time dependencies
(Section IV). The main contribution of the paper is presented
in Section V, which includes a framework for processing
spatio-temporal queries on such data. Our framework relies
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on efficient analysis of the space of possible worlds by
multiplying Markov-Chain transition matrices. Our approach
is exploits the power of existing tools for matrix multiplication,
e.g. provided by Matlab, in order to accelerate the computation
of spatio-temporal data distributions in accordance to possible
worlds semantics. We gracefully integrate pruning approaches
into the Markov Chain matrices, which results in drastically
reducing the search space and the computational effort during
query evaluation. The proposed framework is general enough
to be applied for cases where an arbitrary number of obser-
vations exist for uncertain moving objects and for different
spatio-temporal query variants as we demonstrate in Sections
VI and VII, respectively. As we show experimentally (Section
VIII), we achieve a speed up of multiple orders of magnitude
compared to a straightforward solution, which relies on Monte-
Carlo simulation over the space of possible trajectories that
the objects may follow. Our approach is easily implementable
because the tools provided by Matlab libraries are available for
all common programming languages (e.g., C/C++, Java, etc.)
and, as a result, they can be easily integrated into existing
uncertain DBMSs.

II. RELATED WORK

The problem of querying spatio-temporal data has been
studied extensively. There exist numerous publications on ef-
ficient query evaluation for the case where the attribute values
at each time t are known for certain (for a comprehensive
coverage, see [10]). From this body of work, our approach is
mostly related to spatio-temporal data indexing for predictive
querying, for example indexes like [11], [12] and approaches
like [13]. Still, these papers neither consider probabilistic
query evaluation nor model the data with stochastic processes.

However, in scenarios where data are inherently uncertain,
such as sensor databases, answering traditional queries using
expected values is inadequate, since the results could be
incorrect [14]. In such cases, probabilistic queries that take the
full information of the underlying uncertainty into account and
that yield results with probabilistic guarantees are required.

One of the first works that deal with uncertainty in tra-
jectories is [15]. This work considers routes that are captured
by GPS and assumes that the recorded locations are uncertain.
Indexing such data for range queries is considered; the authors
use a simple model that sums up the probabilities that the
trajectory points are included in the range queries to derive the

probabilities of the results. Trajcevski et al. [16], [17] follow a
similar approach for the same problem settings. At each point
in time the position of an object is modeled as an ellipse. Each
trajectory is thus represented by a 3D cylindrical body. Since
no assumptions are made about the probability distribution
inside the ellipses only binary answers to queries are possible.
For example the model can answer if an object is certainly
within a query region or could be inside a query region during
a time interval but not give a probability to those events.

The work of [9] is based on the same model as [16],
[17]; the authors assume a database of (historical) uncertain
trajectories, each having a 3D cylindrical body. The objective
is to identify the nearest neighbors of an uncertain query
trajectory, throughout its lifetime; i.e., to partition the lifetime
into intervals, each containing a stable most probable nearest
trajectory from the database. Each interval is then partitioned
recursively according to the second most probable neighbor,
etc. Again, this work falls into the category of papers that
do not consider location dependencies between consecutive
timestamps and do not rely on stochastic models.

Cheng et al. [18] consider possible world semantics on
static data with multidimensional or interval PDFs. A wide
range of queries is studied. In [8], the model is extended to
support search in databases with uncertain trajectories. Similar
to [16], recorded trajectories (e.g., from GPS data) are spatially
extended to capture all possible locations that the object may
have passed through. Then, indexing is used to prune regions
in space and time (together with the corresponding trajectory
data) that do not satisfy the queries and possible worlds
semantics are used to refine the overlapped areas in order
to determine the probabilistic query results. Again, this work
ignores inference based on stochastic models.

Approaches like [19] and [20] consider uncertain time series
and data streams, respectively. Similar to other work, they
also disregard correlations between points in time; that is, the
position of an object at time t is assumed to be independent
of its previous position at time t− 1.

Mokhtar and Su [21] describe a model where the uncertainty
region of each object is described by a time dependent
stochastic process. Objects are given by MBRs which change
their location and extent over time following the stochastic
process. The paper shows how to answer certain types of
window queries based on this model. However, describing the
parameters of the uncertainty regions and not the trajectories



of the objects through a stochastic process yields wrong
results regarding to possible worlds semantics. The reason is
that location dependency between consecutive timestamps is
ignored by this model.

The work described in [22] focuses on the prediction of
uncertain trajectories in street networks. The authors propose
the use of time-dependent inhomogeneous Markov processes
for each crossing. This so called Trajectory Continuous Time
Bayesian Network is constructed by analysing training data.
Afterwards, it is used to predict the next movement of an
object when arriving at a crossing. The proposed algorithm
shows very high accuracy rates of around 80% predicting
routes of objects. However the system does not consider data
management and efficiency in query evaluation, but only tries
to predict the routes of single objects.

To illustrate the problem of previous approaches disregard-
ing temporal dependencies, consider Figure 1(a), where an
uncertain object trajectory is modeled. Here, it is assumed
that the object moves with an uncertain speed upwards. The
speed of o may change over time, but will not drop below
some minimal speed greater than zero and will not exceed
some maximum speed. Therefore, given the position of an
object o at time t0, the future position of an object can be
modeled using the expected speed of o (the dashed line in
Figure 1(a)), and lower and upper bounds, or alternatively
a variance, depicted by the intervals at each point of time.
Since at each point of time, the positions of o are modelled
as independent random variables, a trajectory such as depicted
in Figure 1(b) has a probability greater than zero. However,
this trajectory is actually not possible, since o makes a large
leap backwards between times t5 and t6, which is not possible
given knowledge about the movement of o, which this model
should incorporate. A possible trajectory is shown in Figure
1(c). Here, the object moves within its speed limits at each
points of time.

The flaw of modelling trajectories which are not actually
possible becomes a problem when processing spatio-temporal
queries based on this model. For example, consider a spatio-
temporal window query, which is to return for an object o,
the probability that o intersects the query window q, depicted
in Figures 1(b) and 1(c). For any model that ignores the
dependency between locations at subsequent points of time,
the probability that o is always outside the window is the
product of many probabilities and gets very small. Thus, for
a large number of points of time inside the query region,
the probability that o intersects the query window converges
to one. However, if the dependency between locations at
subsequent points of time is considered, then the probability
that o is outside the window at time t6 depends on the
probability at time t5. If o is not in the window q at t5,
then it cannot be in q at t6 either, since the object cannot
move backwards. Thus, the probability that o intersects the
query window q at any time, is equal to the probability that
o intersects the query window at time t5. This is intuitive
because the object cannot move back into the window. One of
our aims in this work is to properly model such dependencies,

instead of simply treating time as an additional dimension in
space.

An initial approach to address the problem of temporal
dependencies has been made by [23]. Similar to our approach,
they assume a discrete state space and the Markov property
to allow transition between successive points of time. Their
query language Lahar allows to formulate queries by stating
regular expressions on an alphabet of states, and returns the
probability of observing a sequence of state satisfying this
regular expression. However, this syntax cannot handle time
context as required by many common queries. For example,
no regular expression can express the language that contains at
least one character x at a given position interval. Such query
corresponds to a window query as used above, and formally
defined in Section III.

To summarize, all works so far on querying uncertain spatio-
temporal data assume that the location probabilities of an
object at two different times are independent. However, time-
dependence is the main characteristic of temporal data, which
cannot simply be ignored and this is the focus of this work.

III. PROBLEM DEFINITION

In this paper, we assume discrete space and time domain S
and T , where space is defined by coordinates and time denotes
points in time. Formally, let S = {s1, ...s|S|} ⊆ Rd be a finite
set of possible locations in space which we call states and let
T = N+

0 be the time-space. Consequently, a (certain) object o
that moves in space is represented by a trajectory given by a
function o : T → S that defines the location o(t) ∈ S of o at
a certain point of time t ∈ T .

We assume uncertain spatio-temporal objects, i.e. objects
o ∈ D that are associated with uncertain object trajectories.
We have to cope with uncertain trajectories when taking future
motions of objects (e.g., by extrapolation) into account or if we
want to infer locations between subsequent object observations
(i.e., by interpolation). In some applications, like the iceberg
tracking example in the introduction, observations are rare and
we have to infer the object locations at most timestamps in the
domain T . An observation at a specific time may be precise
or uncertain.

To model uncertain object trajectories, we suppose that
the locations of an uncertain spatio-temporal object o ∈ D
at time t are realizations of a random variable o(t). An
uncertain object trajectory of object o ∈ D comprises a set
of trajectories, each assigned with a probability indicating its
likelihood to be the true trajectory of o. This consideration
suggests modeling uncertain object trajectories as a realization
of a stochastic process [24], formally:

Definition 1 (Uncertain Object Trajectory): Given the spa-
tial domain S and the time domain T , an uncertain object
trajectory o(t) ∈ Sof an object o ∈ D is a stochastic process
{o(t) ∈ S, t ∈ T }.

An example of an uncertain object trajectory of an object
o ∈ D is illustrated in Figure 2. The raster models all possible
locations (i.e., states) in S, shown for the time sequence
〈t0, . . . , t3〉. Here we assume that the last observed location
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of object o was at time t0; all locations of o that follow
are uncertain. Consequently, the uncertain trajectory of o
comprises all possible trajectories starting at o(t0).

Our goal is to efficiently evaluate probabilistic spatio-
temporal queries on uncertain spatio-temporal objects; i.e.,
queries about objects that are probably located in a given
spatial region during a given range in time. Within the scope
of this paper, we assume a set of uncertain spatio-temporal
objects D, i.e. objects associated with uncertain object trajec-
tories o(t), and focus on spatio-temporal queries specified by
the following parameters: (i) a spatial region S� ⊆ S, i.e. a set
of (not necessarily connected) locations in space, and (ii) a set
T� ⊆ T of (not necessarily subsequent) points in time. In the
remainder, we use Q� = S�×T� to denote the query ranges
in the space and time domain. The most intuitive definition of
a probabilistic spatio-temporal query is given below:

Definition 2: [Probabilistic Spatio-Temporal (Exists)
Query] Given a query region S� in space and a query region
T� in time, a probabilistic spatio-temporal exists query
(PST∃Q), retrieves for each object o ∈ D the probability
P (o(t) = s) ∈ [0, 1] that o is located in S� at some time
t ∈ T�.

This query type has been studied before (e.g. in [16], [17]),
albeit over data models that disregard dependencies between
locations at consecutive timestamps, as we have discussed in
Section II. For our motivating application described in the
introduction, an exemplary query could be: find all icebergs
that have non-zero probability to be inside the movement range
of a particular ship during the ship’s movement in the North
Atlantic. Another query could be to predict the number of cars
that will be in a congested road segment after 10-15 minutes.

In addition, we study the following two interesting prob-
abilistic query variants. Note that the second variant has not
been considered in the past:

Definition 3: [Probabilistic Spatio-Temporal For-All
Query] A probabilistic spatio-temporal for-all query
(PST∀Q) retrieves for each object o ∈ D the probability
P (o(t) = s) ∈ [0, 1] that o remains in S� for all times
t ∈ T�.

Definition 4: [Probabilistic Spatio-Temporal k-Times
Query] A probabilistic spatio-temporal k-times query
(PSTkQ) retrieves for each object o ∈ D and each parameter
1 ≤ k ≤ |T�| the probability that o is located in S� at

exactly k times t ∈ T�.
PST∀Q and PSTkQ are important complements to the

PS∃TQ. For example, these queries can progressively deter-
mine candidates that remain in a certain region for a while.
For example, for a given region somewhere in the north
Atlantic we want to retrieve all icebergs that have non-zero
probability remaining in this region for a specified period
of time, e.g. to be able to make some measurements over a
certain time period. Further examples where such queries are
useful are for location-based-service (LBS) applications, e.g. a
service provider could be interested in customers that remain
at a certain region for a while, such that they can receive
advertisements relevant to the location.

Note that, although the spatial (temporal) parameters of
the queries define contiguous regions (intervals) in the space
(time) domain, our query processing approaches are also
applicable for any arbitrary subset of the space (time) domain.

IV. MODELING UNCERTAIN SPATIO-TEMPORAL DATA

In accordance to the previous section, the constituent parts
of an uncertain spatio-temporal object are specifications of
probability distributions over the space and time domain.
Naive models typically restrict the regions that the object
can be at each timestamp. All uncertain trajectories are
combinations of locations in these regions, giving all these
trajectories equal probabilities ([9], [16], [17], [19], [20],
[21]). However, as already mentioned, these models disregard
any time dependencies between locations, possibly yielding
incorrect results.

According to Definition 1, the uncertain motion of an object
is defined as a stochastic process. In particular, the (first-order)
Markov-Chain model in a discrete time- and state-space is
assumed. The state space of the model is the spatial domain
S. State transitions are defined over the time domain T . In
addition, the Markov-Chain model is based on the assumption
that the position o(t+1) of an uncertain object o at time t+1
only depends on the position o(t) of o at time t. Formally:

Definition 5: A stochastic process o(t), t ∈ T is called a
Markov-Chain if and only if

∀t ∈ N0∀sj , si, st−1, ...s0 ∈ S :

P (o(t+ 1) = sj |o(t) = si, o(t− 1) = st−1, ..., o(0) = s0) =

P (ot+1 = sj |ot = si)
The conditional probability

Pi,j(t) := P (o(t+ 1) = sj |o(t) = si)

is the (single-step) transition probability of state si to state sj
at time t.

Note that in this work we assume that the transition proba-
bilities Pi,j(t) are given, e.g. derived from expert knowledge
or derived from historical data. For example, the current of the
water in the Atlantic ocean can be used to infer the transitions
of icebergs. For traffic data, the transition probabilities at
each road intersection are usually estimated by historic traffic
records.



Fig. 3. Some possible worlds of one uncertain object

Definition 6: A Markov Chain is homogeneous if and
only if the transition probabilities are independent of t, i.e.
Pi,j(t) = Pi,j .

The (single-step) transition matrix M = Pi,j ∈ RS2

is a
stochastic matrix, i.e. the following properties hold:

∀i, j ∈ S : Pi,j ≥ 0

∀i ∈ S,
∑
j∈S

Pi,j = 1

Let P (o, t) be the distribution vector of an object o at time
t, such that (P (o, t) = s1), . . . , P (o, t) = s|S|), pi ∈ P (o, t)
corresponds to the probability that o is located at state si at
time t. The distribution vector of o at time t+1 can be inferred
from P (o, t) as follows:

Corollary 1:

P (o, t+ 1) = P (o, t) ·M
The m-step transition probability P t

i,j is the probability that
an uncertain object o that is located at state si at time t, will
be located at state sj at time t + m and can be computed
exploiting the Equations of Chapman-Kolmogorov ([25]) as
follows:

(Pm
i,j) =Mm

Given the probability distribution P (o, t) of an uncertain
object o at time t, the probability distribution P (o, t+m) of
o at time t+m can be computed by

Corollary 2:

P (o, t+m) = P (o, t) ·Mm

In the following, we will model any uncertain object o ∈ D
by a homogeneous Markov-Chain with an initial probabilistic
density function. An instantiation of the object at each point
of time is called a possible world. Figure 3 depicts a small
subset of all possible worlds of an uncertain object for a given
Markov-Chain model.

The main challenge in answering probabilistic spatio-
temporal queries is to correctly consider the possible world
semantics in the model. In other words, the issue at hand is to
return the fraction of possible worlds of an object o, for which

it holds that at any time t ∈ T� it holds that o(t) ∈ S�. An
example is given in Figure 3, where a small subset of the
possible worlds of an object o is depicted. Any world, for
which the corresponding path intersects the spatio-temporal
query window, satisfies the query predicate.

Still, the number of possible worlds is in O(|S|T ); i.e.,
exhaustively examining all of them requires exponential time,
even for finite time and space domains. Clearly, any naive
approach that enumerates all possible worlds, is not feasible.

V. PROBABILISTIC SPATIO-TEMPORAL QUERY
PROCESSING USING THE MARKOV-CHAIN MODEL

In this section, we show how the queries that we presented
in Section III can be evaluated efficiently. For the ease of
presentation, we first assume that for each object, there is
a single observation at time t = 0 and that we want to
predict the result of a probabilistic spatio-temporal exists query
(Definition 2) in the future. We generalize our results for the
case of multiple observations and other queries in Sections VI
and VII, respectively.

We propose two approaches towards efficient query pro-
cessing. The object-based approach (Section V-A) directly
computes P ∃(o, S�, T�) in an efficient way, while the query-
based approach (V-B) follows a reverse methodology: compu-
tation starts at the query window and the transposed Markov-
Chain matrix is used to compute, for each state s ∈ S the
probability that an object starting at s satisfies the query
predicate.

Figure 4 shows a high-level example of query evaluation
using these two approaches. Consider a spatio-temporal query
with query time interval [t�start, t

�
end] illustrated by the shaded

rectangle on the right of each subfigure. We would like to
predict the result of the query, based on observations about the
locations of the objects at time (t = 0) and a given model that
captures their state transition probabilities (states correspond
to spatial locations illustrated by the y-axis in the example).
Exemplary objects are shown in oval shapes.

The object-based approach, illustrated in Figure 4(a), ex-
amines for each object the possible trajectories (i.e., possible
worlds) that the object will follow in the future and finds the
probabilities of trajectories that intersect the query window.
For instance, the top-most object has a non-zero probability
to be a result of the query, the middle object has a higher prob-
ability and the object at the bottom has a zero probability. To
compute the probabilities of all possible worlds that intersect
the window, for each object, we use matrix multiplications.
We show how pruning techniques can be incorporated into
the matrix multiplications for efficiency. Still, this approach
iteratively examines all objects in the database exhaustively.
The query-based approach (Figure 4(b)), on the other hand,
reverses the computation: given that an object intersects the
query window, we compute the probability that this object
corresponds to any of the objects in the database; this way,
examining objects that are irrelevant to the query is avoided,
while at the same time the query results are computed in batch.
We now describe these two approaches in detail.
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Fig. 4. Schematic illustration of object-based (OB) and query-based (QB)
query processing.

A. Object-Based Query Processing

Given an object o, in order to find the probability that
o is part of a query result, we could use the following
straightforward approach: compute, for each point of time t ∈
T� the probability that o is located in S� and aggregate these
probabilities. Clearly, this approach yields incorrect results (for
example, if |T�| = 3 and for each t ∈ T�,P (o, t) = 0.5.
The problem of this approach is that a specific possible world
(i.e., trajectory) may be considered more than once, if it
overlaps with the query at multiple timestamps. Therefore,
to correctly process queries, possible worlds which satisfy
the query predicate should only be considered once in the
computation of the result.

As an example of proper query evaluation, consider the
Markov-Chain:  0 0 1

0.6 0 0.4
0 0.8 0.2

 ,

for which all possible worlds are depicted in Figure 5(a) for
the first four points of time.1 Additionally, assume a window
query defined by S� = s1, s2} and T� = {2, 3} and assume
an object o which has been observed at s2 at time t = 0, i.e.
P (o, 0) = (0, 1, 0). To compute the probability P ∃(o, S�, T�)
that o intersects the query window, we first compute the
probability distribution P (o, 2) at time t = 2, using Corollary
2. The resulting probability vector P (o, 2) = (0, 0.32, 0.68)
gives us a lower bound of 32% for P o,∃(S�, T�), since any
world in which o is located at state s2 at time t = 2 satisfies the
query window. Thus, these worlds can already be considered
as true hits and must be ignored at future points of time. Thus,
we obtain a new probability distribution P (o, 2)′ = (0, 0, 0.68)
which will be used for the next state transition using Corollary
1. The resulting vector P (o, 3) = (0, 0.544, 0.136) means that
out of the remaining 68% of worlds which have not already
been reported as true hits, another 54.4% can now be returned
as true hits, since in these worlds o is located at s2 at time
t = 3. Since t = 3 is the last point of time belonging to the
query window, the fraction of 0.136 worlds can be reported

1Probabilities are omitted for readability, but can be found in the Markov-
Chain.

as true drops, since in these worlds, o has not intersected the
query window at any t ∈ T�. Thus, the result of this query
is 0.32 + 0.544 = 0.864.

The above example gives an intuition on how to answer
queries correctly by identifying worlds that satisfy the query
and excluding them from further processing. We incorporate
this technique directly in the Markov-Chain, to facilitate
efficient on-the-fly pruning when matrix multiplication is
performed between a state vector and the Markov-Chain. To
achieve this goal, we introduce a new state which is denoted by
“X”, denoting true hits, i.e. for any world in which an object
o reaches X, we know that o satisfies the query predicate.
This X state satisfies the absorbing property, i.e. any world
reaching this state cannot leave it. Instead of directly using the
Markov-Chain M , we build the following two new matrices

M− =

(
M zero(|S|)

zero(|S|)T 1

)
and

M+ =

(
M ′ sum(S�)

zero(|S|) 1

)
,

where zero(|S|) is a vector of size S containing all zeroes,
zero(|S|)T is its transposed, M ′ is derived from M by
replacing all columns that correspond to states in S� by zero
vectors, and sum(S�) is a column vector containing for each
line in M the sum of values removed this way.

The initial object distribution vector of an object o is now
extended by an additional value of zero, corresponding to the
fact that initially (at time t = 0) we cannot identify any worlds
which satisfy the query predicate.2 At each state transition,
where the target state does not belong to T�, we can now use
M− instead of M , which has the same effect as M , while
preserving the probability of state X. If the target state belongs
to S�, then M+ is used instead. This way, worlds leading into
states in S� are now redirected to state X instead.

Example 1: For the matrix

 0 0 1
0.6 0 0.4
0 0.8 0.2

 of our run-

ning example, the corresponding new matrices are M− =
0 0 1 0
0.6 0 0.4 0
0 0.8 0.2 0
0 0 0 1

 and M+ =


0 0 1 0
0 0 0.4 0.6
0 0 0.2 0.8
0 0 0 1


The corresponding visualization is depicted in Figure 5(b).
Here M− is used for the first transition from t = 0 to
t = 1, while for the transitions from t = 1 to t = 2 and
from t = 2 to t = 3, M+ is utilized as transition matrix.
Thus, for an object that has been observed at state s2 at time
t = 0, we obtain the initial probability distribution vector
P (o, 0) = (0, 1, 0, 0), where the fourth value denotes the
initial probability of being a true hit, which is zero since
t = 0 does not belong to T�. The transition to t = 1 yields
P (o, 1) = P (o, 0) ·M− = (0.6, 0, 0.4, 0). Clearly, the fourth
value corresponding to state X is zero, since no state t ∈ T�

2In the special case where t = 0 belongs to T�, we adjust the initial vector
by moving all probabilities of states in S� to state X.
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Fig. 5. Procedure of object-based (OB) and query-based (QB) query processing.

has been visited so far. Transition to t = 2 yields P (o, 2) =
P (o, 1) ·M+ = (0, 0, 0.64, 0.36) and the final transition yields
P (o, 3) = P (o, 2) · M+ = (0, 0, 0.136, 0.864). Therefore,
the resulting probability that o intersects the query window
is 0.864.

B. Query-Based Query Processing
The object-based approach applies for each object o the

methodology described in Section V-A to compute the prob-
ability that o is part of the query result. The query-based
approach assumes that an object intersects the query. Based
on this assumption, this approach starts at the last point of
time in the query window, and goes backward in time using
the transposed Markov-Chain. This way, we can compute, at
any time t, the probability vector P (t) containing for each
state s, the probability that an object starting at state s at time
t will satisfy the query predicate.

Therefore, we start at time t�end := max(T�). Clearly, at
t�end, a path satisfies the query predicate if and only if it is in
state X: If it is not in state X at time t�end, then it will never
reach state X, since at any time after t�end, the matrix M−

will be used which does not allow to enter state X. Thus, the
vector P (t�end) has the form (0, ..., 0, 1). Intuitively, this vector
corresponds to the assumption, that a path satisfies the query.
Now we go back in time using this assumption by using the
transposed matrices (M−)T and (M+)T : If the current state
belongs to S�, we use (M+)T , otherwise, we use (M−)T .
This procedure is repeated until t = 0, the last point of time at
which an object o has been observed, is reached. The resulting
vector v yields, for each state s ∈ S , the probability that
an object starting at s (with a probability of one) satisfies
the query. Vector multiplication of the probability distribution
P (o, 0) with v yields the result probability P ∃(o, S�, T�).

Example 2: Again, consider the example depicted in Figure
5(c), where we want to compute the probability that an object
o intersects the query S� = {s1, s2}, T� = {2, 3}. By
transposing M− and M+, we obtain:

(M−)T=


0 0.6 0 0
0 0 0.8 0
1 0.4 0.2 0
0 0 0 1

and(M+)T=


0 0 0 0
0 0 0.0 0
1 0.4 0.2 0
0 0.6 0.8 1

.

The query-based approach starts by assuming the probabil-
ity distribution P (t = 3) = (0, 0, 0, 1). Since t = 3 ∈ T�, we
compute

P (t = 2) = P (t = 3) · (M+)T = (0, 0.6, 0.8, 1).

Since t = 2 ∈ T� as well, we repeat this computation:

P (t = 1) = P (t = 2) · (M+)T = (0.8, 0.92, 0.96, 1).

Finally, since t = 1 /∈ T�, we get

P (t = 0) = P (t = 1) · (M−)T = (0.96, 0.864, 0.928, 1)

This vector contains, for each state, the probability that an
object started at this position will intersect the query. Let us
again, assume that initially, the object is located at s2, i.e.
P (o, 0) = (0, 1, 0, 0) we finally obtain:

P ∃(o, S�, T�) = P (o, 0) · P (t = 0)T = 0.864.

This result equals the result that we derived using the object-
based approach.

C. Discussion

The advantage of the query-based approach is that we
only have to compute P (t = 0) once, and then compute,
for each object o the P ∃(o, S�, T�) by one single vector
multiplication, which can be performed in O(|P (o, 0)|), where
|P (o, 0)| is the number of non-zero elements in P (o, 0), i.e.
the number of possible positions of o at t = 0. In particular,
if we assume that the number of possible states observed
at t = 0 is small (which is realistic even for inaccurate
observation types),we approach a total CPU cost of O(1) per
object. The initial computation of P (t = 0) has to perform
time-transitions using the transposed Markov-Chain. Thus, a
vector-matrix multiplication is required for each transition
from t�end to t = 0. Thus, the total runtime of the query-
based approach is O(|D| + |Sreach|2 · δt), where |D| is the
number of database objects, |Sreach| is the number of states
that have to be explored, and δt is the number of transitions
between t = 0 and t�end.

In contrast, the object-based approach has to perform time-
transitions using the Markov-Chain for each object. Although
it is possible in some cases to stop these transitions early using
the inherent true-hit detection (computation can be stopped as
soon as the probability of state X becomes sufficiently large),
in the worst case, all transitions from t = 0 to t�end have
to be performed, and for each such transition, a vector-matrix
multiplication has to be performed in O(|Sreach|2) time, where
|Sreach| is the total number of states reachable by o in the
time interval [0, t�end]. The total runtime of the object-based
approach is thus O(|D| · |S|2 · δt).
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Nevertheless, the query-based approach makes the assump-
tion that all objects follow the same model, i.e. all have the
same Markov-Chain. In many applications, this assumption
is reasonable: The movements of all icebergs are subject to
the same currents - the form and shape of an iceberg can be
assumed to have negligible impact on the icebergs movement.
In road networks, objects may indeed follow different models.
In the worst case, we may have to perform the query-based
approach once for each object, to compute P (t = 0) for it. If
the objects can be partitioned to classes (e.g. buses, trucks and
cars), the query-based approach can naturally be applied once
for each class. In general, if objects follow different Markov-
Chains, a technique to speed up the query-based approach is to
cluster objects with similar Markov-Chains, and represent each
cluster by one approximated Markov-Chain, where each entry
is a probability interval instead of a singular probability. This
approximated Markov-Chain can be used to perform pruning
by detecting clusters of objects which must have (or cannot
possibly have) a sufficiently high probability to satisfy the
query predicate. Only clusters which cannot be decided as a
whole need their objects to be considered individually.

VI. MULTIPLE OBSERVATIONS

So far, we have assumed that there is only one observation
per object and that this observation happened at a time that
(temporally) proceeded the query time. In this section, we first
show how to compute P ∃(o, S�, T�) given two observations,
one before query time and one after query time. Abstractly,
this approach can be seen as a time-interpolation, whereas
so far we have only considered time-extrapolation. The aim
is to incorporate knowledge of both observations, in order
to exclude all worlds which are not possible, given both
observations, and properly re-weight the probabilities of the
remaining worlds. Our proposed technique is applicable for
both the object-based as well as the query-based approach.
Later, we will give an intuition why considering additional
observations, which are further apart from the query window
than a considered observation, may still provide additional
information. Finally, we outline how these techniques can be
easily adapted to incorporate information from an arbitrary
number of observations.

Given multiple observations, we have to distinguish between
three classes of worlds:

A Worlds that become impossible due to the given obser-
vations,

B possible worlds that satisfy the query predicate and
C possible worlds that do not satisfy the query predicate.

The example in Fig. 6 shows 4 possible worlds (trajectories)
of an object o observed at a point of time tx. In addition,
two further observations of o exists at time ty and tz . The
possible locations of o at each time of the observations are
illustrated by the ellipses. Due to the observation made at tz ,
worlds w3 and w4 become impossible because they include
impossible states at time tz , i.e. both worlds belong to class
A. In contrast, w2 belongs to class B, since this world has
a non-zero probability since it includes only possible states
at all three observations and satisfies the query predicate of
intersecting the query window. Finally, w1 belong to class C,
since, albeit possible, it does not intersect the window.

Intuitively and according to the possible worlds seman-
tics, the probability Ptotal that an object satisfies the query
predicate, given some observations, is the fraction of possible
worlds that satisfy the query predicate, i.e. the fraction

Ptotal =
P (B)

P (B) + P (C)
. (1)

In the following, we show how the object-based approach
can be adapted to consider multiple observations OBSo =
{obso1, . . . , obson} of the same object o. Each observation obsox
is given by a time tobsox ∈ T and a probability distribution
Pobsox

representing the observation. Then, the derived matrices
M− and M+ can be used for the query-based approach. The
approach of Section V-A cannot be applied directly, because
now, worlds which have reached the query window are no
longer equivalent, and can no longer be unified in a single
state X. The reason is that the current state of such a world
now effects the probability of reaching the state observed at
time t = 3. Therefore, we need to maintain, for each world
that has intersected the query, information about its current
state at each time. Therefore, we replace the state X by a
set of states s1X,...,s3X. Each state siX corresponds to the
probability, that o has intersected the query window and is
currently located in state si. The transition matrices M− and
M+ need to be adjusted accordingly. The shape of M− is
clear: For a transition from t to t+ 1, where t+ 1 /∈ T� (the
case where M− is used), states are simply transitioned, and
worlds which have (not) intersected the query at t must (not)
have done so at t+ 1. We obtain:

M− =

(
M 0
0 M

)
In the case where M+ is used, that is the case where t+1 ∈
T�, we have to ensure that any transition to a state s ∈ S�

leads to the corresponding state sX. This yields the matrix

M+ =

(
M −M ′ M ′

0 M

)
,

where M ′ is derived from M by setting all columns to zero,
where the corresponding state s /∈ S�, and M−M ′ is derived
by setting all columns to zero for which s ∈ S�.

We start by using the probability distribution Pobso1
of

an object o observed at tobso1 . As in the previous sections,
we iteratively apply the modified matrices M− and M+



until we reach tobso2 . At this point, we have two probability
distributions: One distribution derived using the observation
obso1, which has been transitioned to tobso2 , as well as the prob-
ability distribution Pobso2

. These observations can be unified by
exploiting independence between observations.

Lemma 1: Let X(t) := {Pobso1
(t), . . . , Pobson

(t)} be a set
of pdfs of an object o at time t, derived from independent
observations. The joint probability distribution P (o, t) of o at
time t is given by:

P (o, t) = N(
∏
x∈X

x1, ...,
∏
x∈X

x|S|),

where N(·) is the vector normalization function, i.e. N(x) =
( x1∑

x , ...,
x|S|∑

x )

Proof: For each i ∈ 1, ..., |S|, P (o, t)i is, by definition of
a probability density function, the probability of the random
event that object o is located in state si. Without loss of
generality, let a = (a1, ..., a|S|) ∈ X be the first observa-
tion. Given this observation only, then clearly P (o, t) = a
holds. Given further observations, the probability of this event
becomes conditioned to

P (o, t)i = P (ai|X \ {a}).

Since all observations are mutually independent, we get

P (o, t)i = ai ·
∏
x∈X

xi,

which is the fraction of all worlds, including worlds which are
no longer possible given the observations X , in which o is
located in state si at time t. Due to possible worlds semantics
(c.f. Equation 1), we are only interested in the fraction of
possible worlds in which o is located in state si at time t.
Since v contains all possible worlds, the normalization N(v)
yields the correct result.

As an example, consider Figure 7, where we again use our
running example Markov-Chain

M =

 0 0 1
0.5 0 0.5
0 0.8 0.2


and assume that an object O has been observed at state s1
at time t1 and at state s3 at time t4. We obtain the transition
matrices

M− =

(
M 0
0 M

)
=


0 0 1 0 0 0
0.5 0 0.5 0 0 0
0 0.8 0.2 0 0 0
0 0 0 0 0 1
0 0 0 0.5 0 0.5
0 0 0 0 0.8 0.2


and

M+ =

(
M −M ′ M ′

0 M

)
=


0 0 1 0 0 0
0 0 0.5 0.5 0 0
0 0 0.2 0 0.8 0
0 0 0 0 0 1
0 0 0 0.5 0 0.5
0 0 0 0 0.8 0.2


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Fig. 7. Two observations of an object

Since at time t = 0, o has been observed in state s1,
and since o cannot have reached the window yet, the initial
distribution of o is Pobso1

= P (o, 0) = (1, 0, 0, 0, 0, 0).
Transition to t = 1 using M+ (since t = 1 ∈ T�) yields
P (o, 1) = (0, 0, 1, 0, 0, 0). The next transition using M+

yields P (o, 2) = (0, 0, 0.2, 0, 0.8, 0). The intuition of this
vector is that, at time t = 2, object o is located in state s3 while
having reached the query window with a probability of 20%,
and otherwise is located in state s2 having reached the query
window. The next transition uses M− (since t = 3 /∈ T�) and
yields P (o, 3) = (0, 0.16, 0.04, 0.4, 0, 0.4). Now, at time t =
3, the second observation was made. We assume that this ob-
servation only has information about the state at t = 3, but no
information whether o has intersected the query window. Thus,
the observation vector has the form obso2 = (0, 0.5, 0, 0, 0.5, 0).
Due to Lemma 1, and since we assume that obso1 (from which
P (o, 3) was derived) and obso2 are independent observations,
we can directly multiply the entries of P (o, 3) and obso2,
yielding P (o, t)′ = (0, 0.08, 0, 0, 0, 0). Normalization yields
P (o, t) = N(P (o, t)′) = (0, 1, 0, 0, 0, 0), which means that at
t = 3, given both observations, o must be in state s2 and must
not have intersected the query window. This is intuitive, since
the only path between s1 at t = 0 and s2 at t = 3 does not
intersect the query window.

VII. ADDITIONAL SPATIO-TEMPORAL QUERIES

Based on the proposed concepts for answering spatio-
temporal ∃-queries, we will now show how different query
predicates can be answered efficiently.

PST∀Q:: In some applications, it may be interesting to
compute the probability that o is in the query window at all
times t ∈ TBox. Clearly, the probability that o is located in
S� at all times in T� complements the probability that o is
outside S� at any time in T�, i.e.

P ∀(o, S�, T�) = 1− P ∃(o,S \ S�, T�).

Although, in general, S >> S�, the time required to compute
P ∃(o,S \ S�, T�) is generally not larger than the time
required to compute P ∀(o, S�, T�). The only difference be-
tween these two computations is the content of the matrix M+,
since different sets of columns of matrix M are merged. In
most cases, the computation of P ∃(o,S \S�, T�) is actually
faster, since more columns of M+ are zero.

PSTkQ:: So far, an object o satisfies the query predicate in
any world where it intersects the query window, regardless for
how long o remains in the query window. In the following,
we will show how the probability distribution of the number



of times that o is located in the query window (c.f. Definition
4) is computed.

To answer this query, we can extend the idea of adding
new virtual states, to capture the number of times an object
has visited the query window; we use the set of states S ′ =
S × {0, ..., |T�|}. Intuitively, an object in state s′ = (s ∈
S, k ∈ {0, ..., |T�|}) ∈ S ′ is currently located in state s and
has been in the query window at k points of time. At any point
of time t ∈ T�, all possible worlds located at a state s ∈ S�

are transitioned in order to increase their k value by one. The
resulting matrices are

M− =


M 0 ... 0
0 M ... 0
... ... ... ...
0 0 ... M



M+ =


M −M ′ M ′ 0 ... 0

0 M −M ′ M ′ ... 0
... ... ... ... ...
0 0 ... M −M ′ M ′


Since initially, an object o visited the query window zero
times3, the initial distribution of an object is concatenated with
k · |S| zeroes. If we perform time transitions until we reach
t�end, we obtain for each s′ = (s ∈ S, k ∈ {0, ..., |T�|}) ∈ S ′
the probability that o will visit the query window exactly k
times and will finally be in state s. Grouping this result by
k, we obtain for each k ∈ {0, ..., |T�|}, the probability that o
visits the query window exactly k times.

Obviously the above approach is not very memory efficient,
since M− and M+ each blow up the memory requirement
of the original transition matrix M by a factor of |T�|.
Thus, we suggest a more memory efficient algorithm for
this problem. Due to space limitations we will give a brief
description here. For processing an object o ∈ D, an additional
(|T�|+1)×|S|-Matrix C(t) is necessary. Each entry ci,j(t) ∈
C(t) corresponds to the probability that o is currently located
in state sj and has been located in S� at exactly i points of
time t′ ≤ t ∈ T�. We begin by setting the first row of C(0) to
P (o, 0) and all other entries to zero, since at t = 0, o cannot
possibly have entered the query region. At each state transition
from t to t+1, a transition using M is performed for each row.
This is simply achieved by computing C ′(t+1) = C(t)·M . If
t is not in T�, then we set C(t+1) = C ′(t+1). Otherwise, if
t ∈ T�, then we additionally shift each column corresponding
to a state si ∈ S down by one, and fill the top entry of this
line with zero. That is

ci,j =


c′i,j , if j /∈ S�

0, if j ∈ S� ∧ i = 0
c′i−1,j otherwise.

When t�end is reached, the probability for o to be in
the query exactly k-times can be obtained by summing up
all probabilities in row k of C(t�end). Thus the probability

3The special case where t = 0 belongs to T � is omitted. In that case, the
initial distribution of an object simply starts at k = 1, i.e. is shifted by |S|.

parameter value range default
|D| 1,000 - 100,000 10,000
|S| 2,000 - 100,000 100,000
object spread 5 5
state spread 1 - 20 5
max step 10 - 100 40

TABLE I
PARAMETERS FOR THE SYNTHETIC DATASETS

P k−times(o, S�, T�) that o has visited the query window
exactly k times is given by

P k−times(o, S�, T�) =
∑
j

ck,j(t
�
end)

Considering our running example we start with the matrix
C(0) and transition as along as t /∈ T�:

C(0) =

0 1 0
0 0 0
0 0 0

 ·M2

−−→ C(2) =

0 0.32 0.68
0 0 0
0 0 0


Now we shift down the probabilities of the states in S�

by one row: C(2) =

0 0 0.68
0 0.32 0
0 0 0

 ·M−−→ C(3) = 0 0.544 0.136
0.192 0 0.128
0 0 0


After performing the last shift we obtain

C(3) =

 0 0 0.136
0 0.544 0.128

0.192 0 0

 rowsum−−−−−→

0.136
0.672
0.192

. The

resulting vector reflects the probability of o to be in the query
exactly 0 (0.136), 1 (0.672) and 2 (0.192) times.

VIII. EVALUATION

A. Experimental Setup

For our experimental evaluation we used synthetic as well
as real datasets. In order to observe the influence of data
characteristics we used several parameters for the construction
of the synthetic datasets. Each experiment is performed using a
database of |D| objects. The location of each object at time t0
is given by a PDF over a certain number of states. This value is
controlled by the parameter object spread and characterizes
the amount of uncertainty in the database. The total number
of states of the system is characterized by |S|. To control
the density of the transition matrix (which corresponds to the
number of possible transitions in the modeled system) we used
the parameter state spread. From each state it is possible to
transition into state spread states. To model locality of the
transitions within the system we also introduced a parameter
which bounds the possible states which can be reached by
one transition. An object in state si can only transition into
states sj ∈ [si−max step/2; si+max step/2]. All parameters for
the synthetic datasets are summarized in Table I.

As real datasets we used two road network datasets. The
first is the road network of North America which consists of
175,813 nodes and 179,102 edges. As this is a rather sparse
graph we also extracted the road network from Munich which
has 73,120 nodes and 93,925 edges. The transition matrix is



1

10

100
MC OB QB

e 
(s
)

0,001

0,01

0,1

2000 6000 10000 14000 18000

ru
nt
im

e

states

(a) Small state space.

10
OBs)

1 QBm
e 
(

ru
nt
i

0,1

r

0,01

10000 30000 50000 70000 90000
states

(b) Large state space.

Fig. 8. Query processing runtime w.r.t. the number of states.

equivalent to the adjacency matrix of the corresponding graph.
This means each node is treated as a state and each edge
corresponds to two non-zero entries in the transition matrix.
The value of the non-zero entries of one line in the matrix are
set randomly and sum up to one. In this way they reflect the
transition probabilites from one node in the road network to
its directly connected neighbors.

In our experiments we evaluate object-based (OB) and
query-based (QB) query processing using several query pred-
icates (∃,∀ and k-count). Additionally we compare these
approaches to a Monte-Carlo based method (MC). The MC
approach samples paths of each object and outputs the fraction
of the sampled paths which fulfill the query predicate. Sam-
pling the path of an object requires first drawing a start state
from the objects distribution. Afterwards for each timestep a
state from the successor states of the current state is chosen
according to the probability distribution given by the transition
matrix. Note that MC only returns approximate results, where
the accuracy can be improved if more paths are sampled. Since
the sampling of paths is equivalent to a Bernoulli sequence,
the standard deviation between the sampled probability (p̂) and

the true probability (p) is given by σp̂ =
√

p·(1−p)
n . For 100

samples, the standard deviation between p and p̂ is thus at
least 5% and gets worse for small and large values of p.

All experiments were run on a single 64-Bit machine with
an Intel Xeon 5160 processor with 3.0 GHz and 32GB of
RAM. The computations where performed using MATLAB
R2011a. Unless mentioned otherwise, we generated 10,000
objects randomly distributed across the state space and the
query window is defined by the states [100, 120] and time
interval [20, 25]. For the Monte-Carlo based approach the
number of drawn samples was set to 100.

B. Experiments

In the first experiment, we vary the size of the state space
|S| and measure the cost of query evaluation for a PST∃Q.
In Figure 8(a), we used a relatively small synthetic dataset
(|D| = 1, 000, |S| = [1, 000; 10, 000]). The MC approach is
computationally very demanding in comparison to the other
two algorithms. The reason is, that even for such a small
setting the Monte-Carlo based approach has to draw a very
high amount of samples. Note that already for a small number
of sampled paths (we used 100 in this setting) this approach
becomes expensive, because the sampling of one path already
requires to draw as many samples as the considered stamps in
the query. This corresponds to 2,500 samples for one object

1000

100

10 OB

e 
(s
)

1

QB

nt
im

e

1

ru
n

0,1

5 10 15 20 25 30 35 40 45 505 10 15 20 25 30 35 40 45 50
query start time

(a) Synthetic data

100

OB)

10
OB

QBm
e 
(s
)

1
Q

un
ti
m

0,1ru

0,01

5 10 15 20 25 30 35 40 45 50
query start time

(b) Munich dataset
100

10) 10
OB

m
e 
(s
)

1
QB

un
ti
m

ru

0,1

5 10 15 20 25 30 35 40 45 505 10 15 20 25 30 35 40 45 50
query start time

(c) NA dataset

0,08

0,1

0,12

0,14
with temporal correlation

without temporal correlation

ob
ab

ili
ty

0

0,02

0,04

0,06

1 2 3 4 5 6 7 8 9 10

av
er
ag
e 
pr
o

query window timeslot

(d) accuracy experiment

Fig. 9. Query processing runtime w.r.t. the size of the query time frame
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Fig. 10. Performance evaluation of query predicates.

in the database. Due to these high costs we excluded the MC
algorithm from the remaining experiments. As expected the
QB approach is much faster than the OB approach. Figure
8(b) shows how these two methods scale at larger datasets
(|D| = 100, 000, |S| = 10, 000).

The experiments shown in Figures 9(a) and 9(b) show the
dependency of the PST∃Q algorithms on the timeslot we want
to query on synthetic and real data sets. The runtime of OB is
increasing much faster than the runtime of QB. As expected
the runtimes of both algorithms suffer from a longer glance
in the future as the vectors to be multiplied become less
sparse with each time stamp. Besides this, QB should not be
influenced by the number of timestamps whereas the runtime
of the OB approach scales linearly to that parameter. To justify
the used model, we also performed an experiment which
compared our model to a model where temporal correlations
are ignored (cf. Figure 9(d)) w.r.t. accuracy. In this experiment
we posed PST∃ queries with an increasing query time window
and measured the average probability of objects having a non-
zero probability to fulfill the query predicate. It is clearly
visible that ignoring the temporal dependency returns a biased
result and the error compared to the correct result even
increases for larger query windows.

In Figure 10(a) we compare the three proposed query types
PST∃Q, PST∀Q and PSTkQ query using the object-based
approach. Obviously for the PSTkQ we have to maintain not
only one but multiple vectors (as many as the number of times
in T�) per object, which leads to an increased runtime. The
PST∃Q and PST∀Q had equal runtime in all experimental
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Fig. 11. Comparison of QB and OB behavior with scaling parameters

settings. Using the QB approach all queries run in a fraction
of a second and the runtime of PSTkQ seems to scale rather
linearly with k (cf. Figure 10(b)) .

In the next set of experiments, the runtime behavior of the
two approaches w.r.t. different locality parameters is tested.
Figure 11(a) shows the runtime for increasing the max step
parameter whereas Figure 11(b) shows results for increasing
state spread parameter (Note that the algorithm runtimes
are marked at different axes). Both algorithms scale at most
linearly with those parameters.

IX. CONCLUSION

In this paper, we studied the problem of probabilistic query
evaluation over uncertain spatio-temporal data. We consider
uncertain trajectories, for which some points are sampled via
observations, while the remaining points are instantiated by a
stochastic process. To our knowledge, this is the first paper that
studies such queries over uncertain moving object data, which
are modeled by stochastic processes, specifically Markov-
Chains. This approach has three major advantages over previ-
ous work. First it allows answering queries in accordance with
the possible worlds model. Second, dependencies between
object locations at consecutive points in time are taken into
account. And third, it allows us to infer the probability an
object reaches a certain location (state) by matrix multiplica-
tions that can be processed extremely efficient. Based on this
method we propose a framework for processing queries over
such data, which injects pruning techniques into the Markov
Chain matrices. An object-based and a query-based approach
are proposed; the latter is always more efficient, typically by
orders of magnitude. In our experiments we show that we
are able to answer queries on settings with 100,000 location
states and 10,000 objects in a fraction of a second on a
single machine in contrast to state-of-the-art solutions that
are multiple orders of magnitude slower, e.g. the Monte-Carlo
approach requires several hours for the same query. We show
how the framework can be applied for the cases where there
exist one or multiple observations per object and for various
probabilistic spatio-temporal query variants.

We believe that many more interesting queries and applica-
tions can be set on top of this model. To support this we release
the MATLAB framework which was developed during the
process of this paper online4. In the future, we plan to apply
our framework for data analysis tasks over spatio-temporal

4The project page can be found at
http://www.dbs.ifi.lmu.de/cms/Publications/UncertainSpatioTemporal

data (e.g. find areas that are expected to become congested
together with the time periods of this expectation).
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