Querying Uncertain Spatio-Temporal Data

Tobias Emrich, Hans-Peter Kriegel, Matthias Renz, Andreas Züfle (LMU) Nikos Mamoulis (HKU)

What is（certain）Spatio－Temporal Data？

－A spatio－temporal database stores triples（oid，time，loc）
－In the best case，this allows to look up the location of an object at any time

What is (certain) Spatio-Temporal Data?

- A spatio-temporal database stores triples (oid, time, loc)
- In the best case, this allows to look up the location of an object at any time
- Allows to answer queries such as Return objects that intersects some spatial window within some time interval.

What is uncertain Spatio－Temporal Data？

－In most applications，this data is not complete
－Delays between GPS signals
－RFID sensors located only in certain locations
－Wireless sensors nodes sending infrequently to preserve power
－Geo－application check－ins

What is uncertain Spatio－Temporal Data？

－Existing works
－Bound the set of possible （location，time）pairs of an object between observations
－e．g．by modeling knowledge about maximum speed

What is uncertain Spatio－Temporal Data？

－Existing works
－Bound the set of possible （location，time）pairs of an object between observations
－e．g．by modeling knowledge about maximum speed
－Allows to make statements like „its possible that o intersects some query window Q＂
－But how likely is this event？

Modeling Spatio－Temporal Uncertainty

－The position of an object o a some time t is a random variable
－The trajectory of o follows a stochastic process，i．e．a family of random variables o （t）

香 港 大 學
THE UNIVERSITY OF HONG KONG

Modeling Spatio－Temporal Uncertainty

－The position of an object o a some time t is a random variable
－The trajectory of o follows a stochastic process，i．e．a family of random variables $o(t)$
－Given a predicate φ ，the event that o satisfies φ is a random event．
香 港 大 學
THE UNIVERSITY OF HONG KONG

Markov－Chain Model

－Assumes discrete state space S and discrete time space T
－Given the position of an object o at time $\mathrm{t}=\mathrm{i}$ ，the position at $\mathrm{t}=\mathrm{i}+1$ is conditionally independent of $t=i-1$
－Transition probabilities stored in a （sparse）｜State $|x|$ State \mid matrix $M(o, t)$ ， called transition matrix
－ $\mathrm{M}(\mathrm{o}, \mathrm{t})[\mathrm{i}, \mathrm{j}]$ is the probability that object o will transition to state j at time $t+1$ ， given o is located at state i at time t
－Use sparse matrix operations for efficient implementation

香 港 大 學

THE UNIVERSITY OF HONG KONG

State of the art

－Monte－Carlo
－Given a single observation，use the model to sample possible worlds．
－The fraction of such worlds satisfying the query predicate is ${ }^{\text {合 }}$ an unbiased estimator of the true probability．

香 港 大 學
THE UNIVERSITY OF HONG KONG

State of the art

－Monte－Carlo
－Problem：
－Cannot handle multiple observations
－Most samples will miss further observations
－Expected number of samples to aquire a „good＂sample grows exponentially

Paradigm for Query Processing in probabilistic databases

－Given a probabilistic database representing a exponential number of possible worlds．
－Given some query predicate φ ，identify a polynomial set of disjunctive classes of possible worlds that are equivalent with respect to φ ．
－Perform query processing using these classes．
－In the following，this paradigm will be used to answer probabilistic window queries such as Return for each object $o \in D B$ the probability $P(o, \square)$ that o intersecets a given spatial query window at any time within a given query time interval．

Apply this Paradigm to Markov-Chains

- For window queries, we only need to consider the follow classes:
- The class of worlds that intersect the window - regardless of their state.
- For the remaining worlds, one class s_{i} for each spatial state

mo

Example

$$
M(o, t)=M=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0.6 & 0 & 0.4 \\
0 & 0.8 & 0.2
\end{array}\right)
$$

mo

Example

$$
M(o, t)=M=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0.6 & 0 & 0.4 \\
0 & 0.8 & 0.2
\end{array}\right)
$$

mo

香 港 大 學
THE UNIVERSITY OF HONG KONG

Example

$$
M(o, t)=M=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0.6 & 0 & 0.4 \\
0 & 0.8 & 0.2
\end{array}\right)
$$

mo

Example

$$
M(o, t)=M=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0.6 & 0 & 0.4 \\
0 & 0.8 & 0.2
\end{array}\right)
$$

mo

Example

$$
M(o, t)=M=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0.6 & 0 & 0.4 \\
0 & 0.8 & 0.2
\end{array}\right)
$$

LMU

Example

$$
M=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0.6 & 0 & 0.4 \\
0 & 0.8 & 0.2
\end{array}\right)
$$

香 港 大 學
THE UNIVERSITY OF HONG KONG

$$
M^{-}=\quad M^{+}=
$$

$$
\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0.6 & 0 & 0.4 & 0 \\
0 & 0.8 & 0.2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0.4 & 0.6 \\
0 & 0 & 0.2 & 0.8 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$

LMU

Example

$$
M=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0.6 & 0 & 0.4 \\
0 & 0.8 & 0.2
\end{array}\right)
$$

$$
M^{-}=\quad M^{+}=
$$

$$
\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0.6 & 0 & 0.4 & 0 \\
0 & 0.8 & 0.2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0.4 & 0.6 \\
0 & 0 & 0.2 & 0.2 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right) \quad\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$
nuv

Example

$$
M=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0.6 & 0 & 0.4 \\
0 & 0.8 & 0.2
\end{array}\right)
$$

$$
M^{-}=\quad M^{+}=
$$

$$
\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0.6 & 0 & 0.4 & 0 \\
0 & 0.8 & 0.2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0.4 & 0.6 \\
0 & 0 & 0.2 & 0.2 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right) \quad\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right) \quad\left(\begin{array}{c}0 \\ 0 \\ 0.2 \\ 0.8\end{array}\right)$
nuv

Example

$$
M=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0.6 & 0 & 0.4 \\
0 & 0.8 & 0.2
\end{array}\right)
$$

$$
\begin{aligned}
& M^{-}=\quad M^{+}= \\
& \left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0.6 & 0 & 0.4 & 0 \\
0 & 0.8 & 0.2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0.4 & 0.6 \\
0 & 0 & 0.2 & 0.2 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \quad\left(\begin{array}{c}
0 \\
0 \\
0.2 \\
0.8
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
0.04 \\
0.96
\end{array}\right) \\
& P(\boldsymbol{\square})=0.96
\end{aligned}
$$

Multi－Observation－Case：Example

香 港 大 學
THE UNIVERSITY OF HONG KONG

Multi－Observation－Case：Example

－We need to track where true hit worlds are located
－2＊｜S｜classes of equivalent worlds
－One class S_{i}－corresponding to worlds where o is located in state S_{i} ，and o has not intersected the window
－One class $S_{i}+$ corresponding to worlds where o is located in state S_{i} ，and o has not intersected the window

Multi－Observation－Case：Example

Multi-Observation-Case: Example

香 港 大 學
THE UNIVERSITY OF HONG KONG

Multi－Observation－Case：Example

香 港 大 學
THE UNIVERSITY OF HONG KONG

Multi－Observation－Case：Example

Add knowledge to the model：Bayesian Approach

$$
P(\mathbf{\square} \mid) \stackrel{?}{=}
$$

Add knowledge to the model：Bayesian Approach

$$
P(\boldsymbol{\square} \mid \sigma)=\frac{P(\% \mid \boldsymbol{*}) * P(\boldsymbol{\square})}{P(*)}
$$

Add knowledge to the model：Bayesian Approach

$$
\begin{aligned}
& P(\boldsymbol{\square} \mid \sigma)=\frac{P(\% \mid \boldsymbol{*}) * P(\boldsymbol{\square})}{P(\%)} \\
& =\frac{P(\boldsymbol{\wedge})}{P(\%)}
\end{aligned}
$$

Add knowledge to the model：Bayesian Approach

$$
\begin{aligned}
& P(\mathbf{| c})=\frac{P(\boldsymbol{|} \mid \boldsymbol{\square}) * P(\mathbf{\square})}{P(*)} \\
& =\frac{P(■ \wedge \text { ^ })}{P(\%)} \\
& =\frac{P(\mathbf{\wedge})}{P(\curvearrowright \wedge \mathbf{~})+P(\wedge \neg \square)}
\end{aligned}
$$

THE UNIVERSITY OF HONG KONG

Add knowledge to the model：Bayesian Approach

$$
\begin{aligned}
& P(\mathbf{\square} \mid \text {) })=\frac{P(\text { | } \mid \mathbf{\square}) * P(\mathbf{\square})}{P(*)} \\
& =\frac{P(■ \wedge)}{P(\text { 人 })}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{0}{0+0.16}=0
\end{aligned}
$$

香 港 大 學
THE UNIVERSITY OF HONG KONG

Multi－Observation－Case：Example

香 港 大 學
THE UNIVERSITY OF HONG KONG

Multi－Observation－Case：Example

Experimental Evaluation

Experimental Evaluation

Experimental Evaluation

Summary

－In many applications，uncertainty of data is inherent
－Ignoring uncertainty may yield wrong results
－Use stochastic processes to model the movement of objects between observations
－Augment the processes with efficient probabilistic query processing techniques
－Use Bayesian inference to incorporate new observations

Future Work

- Indexing of uncertain spatio-temporal data
- Different query predicates (e.g. Eps-range, kNN, ...)
- Different stochastic processes (e.g. Markov-processes for continuous time)
- Perform real-data experiments, using GPS data to build the Markov-Chain model.

Thank you for listening！

