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3 

 A spatio-temporal database 
stores triples (oid, time, loc) 

 In the best case, this allows 
to look up the location of 
an object at any time 

 Allows to answer queries 
such as Return objects that 
intersects some spatial 
window within some time 
interval. 
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 In most applications, this 
data is not complete 

 Delays between GPS signals 

 RFID sensors located only in 
certain locations 

 Wireless sensors nodes 
sending infrequently to 
preserve power 

 Geo-application check-ins 
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What is uncertain Spatio-Temporal Data? 

6 

 Existing works 

 Bound the set of possible 
(location,time) pairs of an 
object between observations 

 e.g. by modeling knowledge 
about maximum speed 

 Allows to make statements 
like „its possible that o 
intersects some query 
window Q“ 

 But how likely is this event? 
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 The position of an object o a some time t 
is a random variable 

 

 The trajectory of o follows a stochastic 
process, i.e. a family of random variables 
o(t) 

 

 

 

 

 

 

 



Modeling  Spatio-Temporal Uncertainty 

8 

 The position of an object o a some time t 
is a random variable 

 

 The trajectory of o follows a stochastic 
process, i.e. a family of random variables 
o(t) 

 

 Given a predicate ᵠ, the event that o 

satisfies ᵠ is a random event. 

 

 

 

 

 

 

 



Markov-Chain Model 
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 Assumes discrete state space S and 
discrete time space T 

 Given the position of an object o at time 
t=i, the position at t=i+1 is 
conditionally independent of t=i-1 

 Transition probabilities stored in a 
(sparse) |State|x|State| matrix M(o,t), 
called transition matrix 

 M(o,t)[i,j] is the probability that object o 
will transition to state j at time t+1, 
given o is located at state i at time t 

 Use sparse matrix operations for 
efficient implementation 



State of the art 
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 Monte-Carlo 

 Given a single observation, use 
the model to sample possible 
worlds. 

 The fraction of such worlds 
satisfying the query predicate is 
an unbiased estimator of the 
true probability. 
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 Monte-Carlo 

 Problem: 

 Cannot handle multiple 
observations 

 Most samples will miss further 
observations 

 Expected number of samples to 
aquire a „good“ sample grows 
exponentially 

 

 



Paradigm for Query Processing in probabilistic 
databases 

12 

 Given a probabilistic database representing a exponential 
number of possible worlds. 

 Given some query predicate φ, identify a polynomial set of 
disjunctive classes of possible worlds that are equivalent with 
respect to φ. 

 Perform query processing using these classes. 

 In the following, this paradigm will be used to answer 
probabilistic window queries such as Return for each object 
𝑜 ∈ 𝐷𝐵 the probability               that o intersecets a given 
spatial query window at any time within a given query time 
interval. 

 

 

𝑃 𝑜, ∎   



Apply this Paradigm to Markov-Chains 
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 For window queries, we only need to consider the follow 
classes: 

 The class of worlds that intersect the window – regardless of their 
state.  

 For the remaining worlds, one class si for each spatial state 
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 We need to track where true hit worlds are located 

 2*|S| classes of equivalent worlds 

 One class Si- corresponding to worlds where o is located in state 
Si, and o has not intersected the window 

 One class Si+ corresponding to worlds where o is located in state 
Si, and o has not intersected the window 
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Experimental Evaluation 
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 In many applications, uncertainty of data is inherent 

 

 Ignoring uncertainty may yield wrong results 

 

 Use stochastic processes to model the movement of objects 
between observations 

 

 Augment the processes with efficient probabilistic query 
processing techniques 

 

 Use Bayesian inference to incorporate new observations 
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 Indexing of uncertain spatio-temporal data 

 

 Different query predicates (e.g. Eps-range, kNN, ...) 

 

 Different stochastic processes (e.g. Markov-processes for 
continuous time) 

 

 Perform real-data experiments, using GPS data to build the 
Markov-Chain model.  
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