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Abstract—In this paper, we formalize the novel concept of
incremental reverse nearest neighbor ranking and suggest an
original solution for this problem. We propose an efficient
approach for reporting the results incrementally without the
need to restart the search from scratch. Our approach can
be applied to a multi-dimensional feature database which is
hierarchically organized by any R-tree like index structure.
Our solution does not assume any preprocessing steps which
makes it applicable for dynamic environments where updates of
the database frequently occur. Our experiments show that our
approach reports the ranking results with much less page accesses
than existing approaches designed for traditional reverse nearest
neighbor search applied to the ranking problem.

I. INTRODUCTION

While the reverse nearest neighbor (RNN) search problem,
i.e. finding all objects in a database that have a given query
q among their corresponding k-nearest neighbors, has been
studied extensively in the past years, considerably less work
has been done so far to support a RNN ranking of objects of a
database. An RNN ranking sorts the objects o of the database
according to the number of other objects in the database that
are more similar to o than q. Thus, if an object o has a ranking
score of i w.r.t. a query q, object o would also be a reverse k-
nearest neighbor of q for all k ≥ i but not a reverse k-nearest
neighbor of q for all k < i.
Initially, the RNN ranking query reports those objects

having the smallest ranking scores in a non-deterministic way
since several objects may have the same minimal ranking
score. Thereby, the results are reported on demand whenever
a function called getNext() is invoked. In other words, each
consecutive call of getNext() reports one object with minimal
ranking score until there is no unreported object in the database
anymore.
The major challenge for algorithms that support rankings in

general and RNN rankings in particular is that the result of
each getNext()-call should be computed incrementally rather
than from scratch, i.e. the current state after each getNext()-
call needs to be stored and serves as a starting point to
compute the results of the next call. The advantage of an
incremental ranking method in general is that no parameter k

has to be specified for the query in advance and the first (most
relevant) results are reported immediatly without the overhead
of simultaneously computing less relevant results. In addition,
if the initial results are not sufficient due to any application
specific reasons, further results can be requested on demand
by calling the getNext() function.

Existing work mainly focused on nearest neighbor ranking
[1]. To the best of our knowledge, the task of incremental
reverse nearest neighbor ranking has not been considered so
far. In this paper, we will formalize this novel ranking problem
and provide an efficient solution for it.
The reminder of this paper is organized as follows. In

Section II we formally define the RNN ranking problem
we want to solve here and discuss related work. Section III
explores our novel solution to this problem. In Section IV we
present an experimental evaluation. Last but not least, Section
V concludes the paper.

II. SURVEY
A. Problem Formalization
In the following, we assume thatD is a database of n feature

vectors and dist is the Euclidean distance1 on the points in
D. In addition, we assume that the points are indexed by
any traditional aggregate point access method like the aR-Tree
family [2], [3]. The set of k-nearest neighbors of a point q is
the smallest set NN k(q) ⊆ D that contains at least k points
from D such that

∀o ∈ NN k(q), ∀ô ∈ D −NN k(q) : dist(q, o) < dist(q, ô).

The point p ∈ NN k(q) with the highest distance to q is called
the k-nearest neighbor (kNN) of q. The distance dist(q, p) is
called kNN distance of q.
The set of reverse k-nearest neighbors (RkNN) of a point

q is then defined as

RNN k(q) = {p ∈ D | q ∈ NN k(p)}.

Here, we will be interested in computing a ranking of reverse
nearest neighbors (RNNs) w.r.t. a query object q rather than
in computing the RkNN of q for a fixed value of k. Let the
function R : D → N return for an object o ∈ D the number of
objects which are closer to o than the query q, i.e. formally,

R(o) = |{p ∈ D : dist(p, o) < dist(q, o)}|.

Obviously, it holds that o ∈ RNN k(q) iff R(o) < k.
The problem of a reverse nearest neighbor ranking is to

return incrementally all objects o ∈ D in increasing order
of the values of R(o) by calling the method getNext(). In
case of ties, getNext() may report any qualifying object, i.e.
we will allow for non-determinism. Let us note that the i-th
call of getNext() not necessarily returns an object that is an

1The concepts described here can also be extended to any Lp-norm.
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RiNN of q, because for a fixed value of k the set RNN k(q)−
RNN k−1(q) generally may contain an (even empty) set of
points. In other words, the i-th call of getNext() may report
an object o with R(o) �= i. As a consequence, as additional
information, the result of each of the ranking steps should
include not only the actual object o but also its ranking count
(ranking score) R(o).

B. Related Work
The problem of supporting reverse k-nearest neighbor

(RkNN) queries efficiently, i.e. computing for a given query q

and a number k the RkNNs of q, has been studied extensively
in the past years. Existing approaches for Euclidean RkNN
search can be classified as self-pruning approaches or mutual-
pruning approaches. Self-pruning approaches like the RNN-
Tree [4] and the RdNN-Tree [5] are usually designed on top
of a hierarchically organized tree-like index structure. They
try to estimate the kNN distance of each index entry e. If
the kNN distance of e is smaller than the distance of e to
the query q, then e can be pruned. Thereby, self-pruning
approaches do not usually consider other entries (database
points or index nodes) in order to estimate the kNN distance of
an entry e, but simply precompute kNN distances of database
points and propagate these distances to higher level index
nodes. Since the kNN distances need to be materialized, both
approaches are limited to a fixed value of k and cannot be
generalized to answer RkNN-queries with arbitrary values of
k. In addition, approaches based on precomputed distances can
generally not be used when the database is updated frequently.
Mutual-pruning approaches such as [6], [7], [8] use other
points to prune a given index entry e. The most general and
efficient approach called TPL is presented in [8]. It uses any
hierarchical tree-based index structure such as an R-Tree to
compute a nearest neighbor ranking of the query point q.
The key idea is to iteratively construct Voronoi hyper-planes
around q w.r.t. to the points from the ranking. Points and index
entries that are beyond k Voronoi hyper-planes w.r.t. q can be
pruned and need not to be considered for Voronoi construction
anymore. The idea of this pruning is illustrated in Figure 1 for
k = 1. Entry e can be pruned, because it is beyond the Voronoi
hyper-plane between q and candidate o, denoted by ⊥(q, o).
For the general case, e can be pruned if e is beyond k hyper-
planes w.r.t. all current candidates. If e cannot be pruned, it
is refined, or, if e is already a database object, e is a new
candidate and the hyperplane ⊥(q, e) will be considered for
pruning in the following. If the ranking queue is empty, the
remaining candidate points must be refined, i.e. for each of
these candidates, a kNN query must be launched.
Recently, a method for ranked RkNN search has been

proposed in [9]. In fact, the authors provide a method for
computing the results of an RkNN query with fixed k that are
ranked according to k, i.e. the RiNNs are ranked higher than
the RjNNs if i < j ≤ k. This problem is obviously different to
the problem of computing an incremental RNN ranking which
will be adressed here.
Beside solutions for Euclidean data, solutions for general

Fig. 1. TPL pruning (k = 1).

metric spaces (e.g. [10], [11], [12]) usually implement a self-
pruning approach. Typically, metric approaches are less effi-
cient than the approaches tailored for Euclidean data because
they cannot make use of the Euclidean geometry.

III. INCREMENTAL RNN RANKING
Our approach is based on an index structure I for point

data which is based on the concept of minimal-bounding-
rectangles, e.g. the R-tree family like [13], [14], [15]. In
particular, we use multi-resolution aggregate versions of these
indexes as described in [2], [3] that e.g. aggregate for each
index entry e the number of objects that are stored in the
subtree with root e. The set of objects managed in the subtree
of an index entry e ∈ I is denoted by subtree(e). Note that
the entry e can be an intermediate node in I or a point, i.e.
an object in D. In the latter case, subtree(e) = {e}.
The general idea of our solution is based on the TPL-like [8]

pruning of entries that are beyond a given number of Voronoi
hyperplanes. However, instead of pruning an index entry e, we
need to estimate the ranking count value R(o) for all points
o ∈ subtree(e). The key observation is that if an index entry
e is beyond a Voronoi hyperplane w.r.t. q, then we know that
for all o ∈ subtree(e), the value of R(o) can be increased by
one. For example, in Figure 1, entry e is beyond the Voronoi
hyperplane between q and x, denoted by ⊥(q, x). Thus, x will
have a smaller distance to all objects o ∈ subtree(e) than q, i.e.
all objects o ∈ subtree(e) will have a ranking count R(o) of at
least 1. Simply speaking, the ranking count R(o) of any object
o ∈ D equals the number of Voronoi hyperplanes (including
⊥(q, o)) that divide the data space such that o and q are in
different half spaces.
In the following, we will extend this idea in several im-

portant aspects. First, we will extend the concept of Voronoi
hyperplanes presented in [8] to higher levels of the index.
Originally, the TPL approach considers only Voronoi hyper-
planes between the query q and another database object, i.e.
at least one leaf entry of the index needs to be fully refined
before any Voronoi hyperplane is constructed for pruning.
Analogously, this would mean that we can only estimate the
ranking count values of objects by means of other objects.
This will obviously result in a large overhead of unnecessary
page accesses. Rather, we will extend the idea of Voronoi-
based pruning/ranking to intermediate entries of the index,



Fig. 2. Conservative approximation ⊥(q, e) of the hyperplanes associated
with all objects of an index entry e.

i.e. we will also consider Voronoi hyperplanes between the
query and intermediate index entries. Second, we will also
integrate the idea of self-pruning in order to estimate the
ranking count of objects within a given subtree. This will
enable us to give better estimations of the ranking counts
which will be important for the ranking algorithm. Last but
not least, we will present a ranking algorithm based on the two
previously mentioned ideas to estimate the ranking count that
incrementally computes the next object of an RNN ranking on
demand without recomputing the entire ranking from scratch.

A. Ranking Count Estimation
Now we explore strategies for estimating the ranking count

based on the hyperplane concept. The basic idea of our ap-
proach is to apply the ranking count strategy mentioned above
during the traversal of the index, i.e. to identify candidates with
high ranking counts as early as possible in order to reduce
the I/O costs by saving unnecessary page accesses for the
computation of the first results. The ability to push candidates
to higher ranking positions already at the directory level of
the index implies that a directory entry is used to push itself
or other entries.
First, we want to consider the case that a directory entry

is used to push other entries back to higher ranking positions
by increasing its ranking count. This is similar to the mutual-
pruning idea used for RkNN query processing. Generally, the
ranking count of an index entry e ∈ I can be increased by k

according to another entry e′ ∈ I if there are at least k objects
in subtree(e′) such that e is behind the Voronoi hyperplane
between q and e′, denoted by ⊥ (q, e′). In the following a
hyperplane associated with an entry/object e is denoted by
⊥(q, e).
The key idea of the directory-level-wise ranking count

estimation is to identify a hyperplane ⊥(q, e) which can be
associated with an index entry e and which conservatively
approximates the hyperplanes associated with all objects oi in
the subtree of e, i.e. oi ∈ subtree(e). Figure 2 illustrates the
idea of this concept. We say that the hyperplane associated

with an index entry e is related to the set of objects in the
subtree of e. Since we assume that the number of objects stored
in the subtree of an index entry e is known, if we exploit the
indexing concept as proposed in [2], we also know for the
hyperplane associated with that index entry e, ⊥(q, e), how
many objects this hyperplane relates to. This means that if an
entry/object e′ is behind a hyperplane ⊥(q, e) associated with
an index entry e, the entry e′ is also behind all hyperplanes
⊥(q, o) associated with the objects o ∈ subtree(e). We can
use this information in order to increase the ranking count of
entries according to e without accessing the child entries of e.
Consequently, the ranking count of an entry/object e′ which is
behind a hyperplane ⊥(q, e) can be increased by |subtree(e)|.
In Figure 2, the ranking count of entry e′ can be increased by
5 because subtree(e) contains five points, i.e. |subtree(e)| = 5.
In addition, we can use these considerations also for in-

creasing the ranking count of an intermediate index entry e

by itself. This is similar to the self-pruning idea used for
RkNN query processing. If an entry e ∈ I is behind its own
hyperplane, then the ranking count of e can be increased by
|subtree(e)| − 1, because each object o ∈ subtree(e) would
be behind the hyperplanes associated with all other objects in
subtree(e).

B. Ranking Count Updates w.r.t. Intermediate Index Entry
Hyperplanes

We are now left with the task to detect when an entry e′ ∈ I
is behind a hyperplane ⊥(q, e) associated with an entry e ∈
I. An important observation is that a hyperplane associated
with an object o represents all points p which have the same
distance to the query point q and to o, formally:

⊥(q, o) = {p ∈ R
d : dist(p, q) = dist(p, o)}.

In addition, we know that all objects stored in the subtree of
an index entry e are located inside the minimum bounding
hyper-rectangle e.mbr that defines the page region of e. Thus,
we can determine a conservative hyperplane representation of
all points stored in the subtree of entry e if we replace the
distances between the hyperplane points p ∈⊥(q, e) and o ∈
subtree(e) by the maximum distance between p and the mbr-
region of e. Consequently, the hyperplanes of all objects o ∈
subtree(e) are conservatively approximated by a hyperplane
representation consisting of all points in the vector space that
fulfill the following condition:

⊥(q, e) = {p ∈ R
d : dist(p, q) = MaxDist(p, e.mbr)},

where MaxDist(p, e.mbr) denotes the maximal distance be-
tween the point p and the objects in e.mbr, i.e. the distance
between p and the most distant corner of e.mbr.
In general, a hyperplane representation H is called conser-

vative approximation of a set of hyperplanes H ′, if all objects
behind H are definitely behind each hyperplane h′ ∈ H ′,
formally:

(o behind H)⇒ (∀h′ ∈ H ′ : o behind h′)



Fig. 3. Computation of conservative hyperplane approximations.

We can assign such a hyperplane representation to each
intermediate entry of our index.
In consideration of the above equations, an index entry e′ ∈

I is defined to be behind a hyperplane ⊥(q, e) if the following
condition holds:

∀p ∈ e′.mbr : dist(p, q) > MaxDist(p, e.mbr).

Figure 2 illustrates the conservative approximation ⊥(q, e) of
all hyperplanes ⊥(q, o) for all objects o ∈ subtree(e).
In the following we briefly discuss how this conservative

approximation ⊥(q, e) can be associated with an index entry
e. An important observation is that a hyperplane associated
with an object o represents all points p which have the same
distance to the query point q and to o. In addition, we know
that all objects stored in the subtree of an index entry e are
located inside the minimum bounding hyper-rectangle (mbr)
that defines the page region of e. Thus, we can determine a
conservative hyperplane representation of all points stored in
subtree(e) if we replace the distances between the hyperplane
points p ∈⊥ (q, e) and o ∈ subtree(e) by the maximum
distance between p and the mbr-region of e. Figure 3 illustrates
the computation of such a conservative approximation for a
given index entry e in a 2D feature space. First, we have
to specify the maximum distance between the mbr-region
of the index entry e and any point in the vector space. It
suffices to find for each point p in the vector space the point
o ∈ subtree(e) which is within the mbr-region of e having
the maximum distance to p. This can be done by considering
partitions of the vector space which are generated as follows:
in each dimension the space is split paraxially at the center of
the mbr-region. As illustrated for the 2D example in Figure 3,
we obtain partitions denoted by NW , NE, SE and SW . In
each of these partitions P , the vertex point of the mbr-region
which lies within the diagonal-opposite partition is the mbr-
region point which has the maximum distance to all points
in P . In our example, for any point p in SW the maximum
distance of p to e is the distance between p and point o1

in partition NE. Consequently, the hyperplane ⊥(q, o1) is a
conservative approximation of all hyperplanes between points
within the mbr-region of e and the points within the partition

SW . In our example, the hyperplane associated with e is
composed by the three hyperplanes ⊥ (q, o2), ⊥ (q, o1) and
⊥(q, o3).

C. Best-First Search Based Incremental RNN Ranking Algo-
rithm

In this section, we show how we explore the index such that
the first results can be reported early without causing unnec-
essary page accesses. We start with an informal description
of our solution before we present implementation details and
pseudo code.
Similar to the TPL approach for RkNN queries our approach

is based on a best-first search method exploiting a priority
queue organizing the index entries to be explored. In contrast
to the TPL approach, we propose to give the priorities to the
index entries according to the estimated ranking count, i.e.
entries with low ranking counts are ranked higher than entries
with high ranking count. This means that entries containing
objects with a low expected ranking position are explored
before entries containing objects with a high expected ranking
position. The rational for this strategy is that in this way we try
to explore those entries first which contain potential candidates
to be reported next from the ranking query.
For the organization of the index entries during the traversal

of the index we maintain a priority queue Q storing entries
with the corresponding estimated ranking count which are
sorted in ascending order according to their estimated ranking
count. Thereby we assume that the ranking count of each entry
in this queue was generated by taking all current entries in
the queue into account using the aforementioned strategies for
increasing the ranking count.
The top element of the queue is the entry which has to

be explored next. Whenever an entry e is explored, i.e. e

is loaded from disk and is refined, we have to perform the
following two steps: first, we have to update the ranking counts
of all elements in the queue according to the children of e and,
second, the ranking counts of e’s child elements have to be
computed before we insert them into Q.
For the first step, we have to determine those entries in

Q which could be affected by the refinement of e, i.e. for
which the ranking count might be increased after refining
e. Obviously, those entries which are completely behind the
hyperplane representation of e, ⊥(q, e), must also be behind
the hyperplane representations of each child of e and, thus,
their ranking count is not affected by the refinement of e.
In the example shown in Figure 4, entry e3 is not affected
by the refinement of entry e due to the above considerations.
Furthermore, we can ignore those entries e′ which cannot be
behind a hyperplane of any object within subtree(e), e.g. entry
e1 in the example in Figure 4, i.e. those entries e′ for which
the following statement holds:

∃p ∈ e′.mbr : dist(p, q) < MinDist(p, e.mbr),

where MinDist(p, e.mbr) denotes the minimal distance be-
tween p and the rectangle e.mbr. Intuitively, those entries are



Fig. 4. Illustration of entries that are/are not affected by the refinement of
an entry e.

not behind the “progressive approximation” of all hyperplanes
⊥(q, ec) of child entries ec of entry e (cf. Figure 4).
Entries which are affected by the refinement of e are the

remaining entries, i.e. those entries e′ that fulfill both of the
following two conditions:

∃p ∈ e′.mbr : dist(p, q) ≤ MaxDist(p, e.mbr)

and
∀p ∈ e′.mbr : dist(p, q) ≥ MinDist(p, e).

Each entry e′ fulfilling the above two conditions, e.g. entry
e2 in our example in Figure 4, has to be checked against the
hyperplane representation of each child of e. If the entry e′

is behind the hyperplane representation of a child ec of e, its
ranking counter will be increased by |subtree(ec)|.
For the second step, we have to determine the ranking

counts of the children of e. For that purpose, we simply have
to check all existing entries in Q and all other children of e

whether the current child ec of e is behind the corresponding
hyperplanes. If yes, the ranking count of ec is increased by the
number of objects included in the subtree of the corresponding
entry.
Finally, if the top entry e in the queue Q is a point, i.e.

e ∈ D, the point can be output as a result only if e is not
beyond any progressive approximation of hyperplanes of child
nodes of all e′ that are currently in the queue, i.e. formally

∀e′ ∈ Q : dist(e, q) < MinDist(e, e′.mbr).

Otherwise, we need to refine any of those entries e′ ∈ Q, for
which this condition does not hold. As a consequence, e might
get a higher ranking count and might be shifted towards the
end of Q or it may also maintain the top spot of Q.
The pseudocode of the algorithm for the incremental RNN

ranking is illustrated in Figure 5 providing the implementation
details of the previously discussed steps. First, we initialize
an empty result list “result” and the priority queue Q which
stores index entries sorted in ascending order of their ranking
count. Ties occuring in the priority queue are resolved by,

first, prefering leaf index entries to directory index entries and,
second, by sorting the entries in increasing distance to q.
The priority queue is initialized with the root of the index.

For each call of the getNextmethod, we dequeue the first entry
e of Q. If e is a directory node, then it will be refined calling
the refine routine depicted in Figure 6. During refinement, we
first have to find all entries in Q that are candidates for having
their ranking count increased due to the refinement of e (see
first step above). An entry e′ is such a candidate, if there exists
a point in the mbr of e′ that is closer to q than any point in
e (see the predicate in line 3 of the refinement procedure in
Figure 6) and if e′ has not already been re-ranked by e (see
the predicate in line 4 of the refinement procedure in Figure
6). These candidates are stored in a list updateI.
Additionally, we need all entries that are candidates for

increasing the ranking count of one of the child entries of e

(see the second step above). An entry e′′ is such a candidate, if
it has not re-ranked e already (first comparison in line 6 of the
refinement procedure in Figure 6) and its mbr contains a point
that is closer to q than a point in e (second comparison in line
6 of the refinement procedure in Figure 6). These candidates
are stored in a list updateII.
Lines 8-12 check for each child node ec of e and element

e′ ∈updateI, if e re-ranks e′ and increases the ranking count of
e′ if necessary. Analogously, lines 13-17 increase the ranking
count of ec, if an element e′′ ∈updateII re-ranks ec.
Then, we increase the ranking count for each child entry e′

c

of e that is able to re-rank ec. Note that ec and e′c may be
identical, i.e. ec re-ranks itself. Finally ec is inserted into Q.
If the entry e is a leaf entry, i.e. e is an object, then e

obviously cannot be refined. However, we may not yet return
e as a result without further checking, because it may be re-
ranked due to an entry that has not yet been refined. In that
case, we need to scan the queue Q for an object that is a
candidate for re-ranking e by calling the refinementRound
algorithm which is depicted in Figure 7 and refining (c.f.
Figure 6) this object. If no such object exists, e can be returned
as the result of the current getNext()-call.

IV. EXPERIMENTAL EVALUATION

A. Test Bed

We compared our novel approach for computing an RkNN
ranking, with two adaptions of the TPL [8] approach which is
the current state-of-the-art algorithm for RkNN query process-
ing. In fact, we applied two versions of the TPL approach for
computing a ranking. The problem of the TPL approach is that
we cannot predict the number of getNext()-calls beforehand.
Thus, we do not know a suitable value of k to answer all
getNext()-calls.
The first variant, called TPL-Lazy, implements a lazy strat-

egy assuming that we have a low number of getNext()-calls.
It manages a result list which is initially empty and a counter
kc which stores the current value of k and is initialized with
kc = 1. The entries in the result list are ordered by increasing
ranking scores. For each call of the getNext() method, this



ALGORITHM initializeRanking(root, q)

input: root = root of index storing D
input: q = query object
Q = empty priority queue sorted by RankingCount
result = ∅
insert root into Q

METHOD getNext()

WHILE Q is not empty DO
e = dequeued entry from Q
IF e is a directory entry THEN
refine(e, q, Q, result)

END-IF
ELSE // e is a LeafEntry
e’ = refinementRound(e, q, Q)
IF e’ = NULL THEN RETURN e
ELSE refine(e’, q, Q, result)

END-ELSE
END-WHILE

Fig. 5. Pseudocode of the incremental RNN ranking algorithm.

METHOD refine(e, q,Q,result)

input: e = current directory entry
input: q = query object
input: Q priority queue
input: result = result list
updateI= {e′ ∈ Q|

∀p ∈ e′ : MinDist(p, e) ≤ MinDist(p, q)∧
∃p ∈ e′ : MinDist(p, q) < MaxDist(p, e)}

updateII= {e′′ ∈ (queue ∪ result)|∃p ∈ e :
MinDist(p, e′′) ≤ MinDist(p, q) < MaxDist(p, e′′)}

FOR EACH ec ∈ e DO
FOR EACH e′ ∈ updateI DO
IF (∀p ∈ e′ : MinDist(p, q) ≥ MaxDist(p, ec))DO
increaseRankingCount(e′, ec.weight);

END-IF
END-FOR
FOR EACH e′′ ∈ updateII DO
IF (∀p ∈ ec : MinDist(p, q) ≥ MaxDist(p, e′′))DO
increaseRankingCount(ec, e′′.weight);

END-IF
END-FOR
FOR EACH e′

c
∈ e DO

IF (∀p ∈ ec : MinDist(p, q) ≥ MaxDist(p, e′
c
))DO

increaseRankingCount(ec, ec’.weight);
END-IF

END-FOR
queue.insert(ec)

END-FOR

Fig. 6. Pseudocode of our refine algorithm.

variant checks the result list. If the result list is empty, TPL-
Lazy computes a RkNN query with k = kc using the original
TPL approach, adds the result of this query to the result
list with a ranking score of kc, and increments kc. These
three steps are processed iteratively until the result list is no
longer empty. Last but not least, the TPL-Lazy method returns
the next entry in the result list. Obviously, this variant only
issues a new RkNN query if necessary beginning with k = 1
and successively incrementing the value of k. The costs for
answering l getNext()-calls are the sum of the costs of all
queries for k = 1, . . . necessary to answer the l calls.
The second variant, called TPL-Eager, implements an eager

policy assuming a higher but possible fixed maximum num-

METHOD refinementRound(e,q,Q)

input: e = current leaf entry
input: q = query object
input: Q priority queue
FOR EACH entry e′ ∈ Q DO
IF(MinDist(e, e′) ≤ Dist(e, q) < MaxDist(e, e′)) THEN
RETURN e’

END-IF
END-FOR
RETURN NULL

Fig. 7. Pseudocode of the refinement round.

ber of getNext()-calls. It simply assumes that the maximum
number of getNext()-calls will be less than the number of
result objects of a RkNN query with a special value of kmax,
e.g. kmax = 100. Then, we only need to issue one RkmaxNN
query using the original TPL approach beforehand and sort the
results according to their ranking score. Whenever a getNext()-
call is issued (and as long as the assumptions stated above
regarding the size of the result and the number of getNext()-
calls hold), we can simply return the next object from the
result list. The costs for answering l getNext()-calls equal to
the costs of answering the RkmaxNN query (again, as long as
the result contains at least l points).
Let us note that there is no direct relationship between the

number of getNext()-calls l and the value kmax. This makes
it even harder for the TPL-Eager approach to guess a proper
kmax value. In fact, to obtain a fair comparison, we computed
the most optimistic scenario for the TPL-Eager variant: we
first issued l getNext()-calls with our new ranking method and
obtained the ranking count of the resulting point of the last
call. This count is the optimal kmax value for the TPL-Eager
approach and we used this value in all our experiments. Thus,
in realistic scenarios, the results of a TPL-Eager approach
would be worse than presented here.
All experiments are based on an aR*-Tree (aggregate ver-

sion of R*-Tree) with a page size of 1K. Since all approaches
are I/O bound we compared the number of disc pages ac-
cessed during the execution of 500 sample RkNN queries and
averaged the results.

B. Synthetic Data
We used two synthetic datasets to compare the performance

of our ranking algorithm with the two variants of TPL. The
first dataset contains 10,000 uniformly distributed 2D points.
Figure 8 displays the performance of the competitors w.r.t.
the number of getNext()-calls. As expected, the performance
of the TPL-Eager approach (c.f. Figure 8(a))is constant as
long as the number of getNext()-calls is smaller than the
number of results of the RkmaxNN query issued beforehand
(which is the case in our scenario – see above). Nevertheless,
our ranking algorithm clearly outperforms this TPL variant
in terms of query execution times. In fact, the costs of our
approach increase only slightly with successive getNext()-
calls. In addition, it should be noted that TPL-Eager would
need to issue a new RkNN query with a considerably higher
value of k if we have more than 35 getNext()-calls because



(a) Comparison with TPL-Eager. (b) Comparison with TPL-Lazy.

Fig. 8. Comparison of the novel RkNN ranking with different extensions of TPL on the uniform 2D synthetic dataset.

(a) Comparison with TPL-Eager. (b) Comparison with TPL-Lazy.

Fig. 9. Comparison of the novel RkNN ranking with different extensions of TPL on the clustered 2D synthetic dataset.

TPL-Eager was optimized for 35 results. Thus, in that case, we
would have a jump for the TPL-Eager approach at the 36th
getNext()-call while the costs of our ranking algorithm will
most likely evolve like in the range of the first 35 getNext()-
calls. On the other hand, the costs for the TPL-Lazy variant
(cf. Figure 8(b)) increase much faster than the costs of our new
ranking algorithm. Again our approach clearly outperforms the
competitor in terms of query execution times. Note that the
performance of our ranking algorithm is of course the same
in both Figures 8(a) and 8(b).
A similar observation can be obtained from Figure 9 which

displays the performance of the competitors on a 2D syn-
thetic dataset that contains 10,000 points clustered into four
different clusters. The only obvious difference is that here,
the TPL-Eager approach performs much better than on the
uniform dataset. As illustrated in Figure 9(a), our ranking
algorithm outperforms the TPL-Eager variant only for the
first 27 getNext()-calls. In this setting, the TPL-Eager slightly
outperforms our ranking algorithm for 30 to 35 getNext()-
calls. However, please note that, first, the TPL-Eager approach
was implemented with the most optimistic assumptions and
can be expected to perform considerably worse in a more
realistic scenario where the perfect kmax value can usually
not be determined beforehand. Second, as explained above,
TPL-Eager was optimized for 35 results. If we had more than
35 getNext()-calls, then TPL-Eager would be required again

to compute a new RkNN query with a considerably higher
value of k which would cause significantly higher costs from
the 36th getNext()-call on until the next jump limit is reached.
On the other hand, in comparison to the TPL-Lazy variant

(cf. Figure 9(b)) our ranking algorithm again performs much
better and significantly outperforms the competitor in terms of
query execution times. Again, the performance of our ranking
algorithm is of course the same in both Figures 9(a) and 9(b).

C. Real-world Data

We also tested our novel ranking algorithm on real-world
data. In Figure 10 the performance of our ranking algorithm
is compared with the performances of the TPL-Eager variant
(cf. 10(a)) and the TPL-Lazy variant (cf. 10(b)) on a dataset
that features the expression level of approx. 6,000 genes under
5 conditions. The result on this 5D dataset is similar to the
results on the synthetic datasets reported above. Again, our
ranking algorithm clearly outperforms the TPL-Lazy approach.
Analogously, the difference to the TPL-Eager approach is less
significant but still considerable. It should again be noted that
the TPL-Eager variant assumes the most optimistic scenario
for its application which is most likely not a realistic setting,
and, thus, it can be expected that TPL-Eager performs less
accurate in most applications.



(a) Comparison with TPL-Eager. (b) Comparison with TPL-Lazy.

Fig. 10. Comparison of the novel RkNN ranking with different extensions of TPL on the 5D gene expression dataset.

D. Summary
To summarize the results of our experimental evaluation,

our novel ranking algorithm outperforms both adaptions of
the existing TPL algorithm to the ranking problem, TPL-
Eager and TPL-Lazy, significantly in terms of query execution
times. While TPL-Eager seems to be competitive (if at all)
only for a higher number of getNext()-calls, TPL-Lazy seems
to be competitive (if at all) only for a very low number of
getNext()-calls. This result is quite intuitive because TPL-
Eager tries to estimate the worst-case by precomputing the
maximum number of required results for a maximum number
of getNext()-calls by computing one RkmaxNN query. Thus,
the more the number of getNext()-calls reaches the number
of resulting objects of the RkmaxNN query, the more the
costs for the RkmaxNN query pay off. Otherwise, TPL-Eager
caused a large portion of unnecessary costs to compute a large
number of results that are not needed. On the other hand,
TPL-Lazy assumes the best case of very few getNext()-calls
and, thus, computes results only if necessary by consecutively
issuing a RkNN query with increasing k. Obviously, as long
as the number of consecutive RkNN queries, with increasing
k necessary to report results, is small, i.e. the number of
getNext()-calls is low, this strategy pays off. Otherwise, TPL-
Lazy constantly recomputes RkNN queries with the next
higher value for k which produces a lot of redundant results
w.r.t. the previously computed queries.
Our ranking algorithm obviously performs best because it

does not assume worst- or best-cases but focuses on computing
the ranking incrementally. Since in a ranking query scenario,
it is not known beforehand, how often the method getNext() is
called, this is the most efficient solution in the general case but
also – as our experiments illustrate – in the borderline cases
where either TPL-Eager or TPL-Lazy perform best.

V. CONCLUSIONS
In this paper, we formalize a novel ranking problem, the

reverse nearest neighbor (RNN) ranking and propose an orig-
inal solution for it. Our solution extends existing methods for
RNN query processing in the following important aspects.
First, the mutual-pruning strategy of existing approaches is

generalized and adapted so that it can be applied already on
higher levels of the index and it can be applied to estimate
the ranks of an index entry rather than for pruning. Second,
we also incorporated the idea of self-pruning and explored
how this concept can be applied to estimate the ranking of
index entries. Last but not least, we proposed an incremental
algorithm for the RNN ranking problem that is based on both
introduced ranking estimations. Our experimental evaluation
confirms that our new solution outperforms existing methods
adapted for the new problem significantly in terms of query
execution times.
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