
Efficient Query Processing in Large Traffic
Networks

Hans-Peter Kriegel, Peer Kröger, Peter Kunath, Matthias Renz, Tim Schmidt

Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538 Munich, Germany
Email: {kriegel,kroegerp,kunath,renz,schmidtti}@dbs.ifi.lmu.de

Abstract— We present an original graph embedding to speed-
up distance-range and k-nearest neighbor queries on static and/or
dynamic objects located on a (weighted) graph. Our method is
used to compute a lower and upper bounding filter distance
which approximates the true shortest path distance significantly
better than traditional filters. In addition, we discuss how the
computation of the exact shortest path distance in the refinement
step can be boosted by using the embedded graph.

I. INTRODUCTION

Efficient support of proximity queries in large traffic net-
works are required in applications such as location-based ser-
vices, traffic network monitoring, traffic information systems,
etc. Typically, traffic networks such as road networks are mod-
eled by graphs. Nodes of the graph represent crossings such
as road intersections or junctions, whereas edges represent
connections such as roads or railways between nodes. The
distance between objects located on the network is usually
measured by means of the shortest path distance which is
commonly computed by the Dijkstra algorithm.

In this paper, we propose a novel multi-step query pro-
cessor for large graph networks based on a very simple
but effective network graph embedding method. A two-step
query approach is envisioned, applying a cheaper filter step
in order to efficiently partition the data objects into a set
of true hits and/or true drops, and a set of candidates, that
need to be further analyzed by computing the true network
distance. In order to decide about true hits, we need an upper
bounding distance approximation, whereas a lower bounding
distance approximation is needed to decide about true drops.
Furthermore, we show how the lower bounding distance can
be used as a very effective heuristic to guide an informed A*-
search for the refinement step.

Let D be a database of objects that are located in a traffic
network, e.g. cars or pedestrians in a network of streets. The
traffic network is represented by an undirected weighted graph
G = (N, E, W) called network graph, where N denotes the
set of nodes, E ⊆ N × N denotes the set of edges and
the function W : E → R+ associates a weight w(ni, nj)
to each edge (ni, nj) ∈ E. The network distance between two
nodes ni, nj ∈ N , denoted by dnet(ni, nj), equals w(ni, nj)
if ni, nj are adjacent, i.e. (ni, nj) ∈ E, else it equals the
length of the shortest path from ni to nj . The length of a path
is defined as the sum of the weights of all participating edges.

If an object o is located on an edge (ni, nj) ∈ E, di(o) and
dj(o) denote the distance of o to the adjacent nodes ni and

nj , respectively. The network distance between two objects
oi, oj ∈ D, dnet(oi, oj), is the length of the shortest path
between oi and oj . Thereby, we assume that oi and oj are
additional “virtual” nodes of the graph. In the example network
graph shown in Figure 1, the shortest path between the objects
o1 and o3 is 〈o1, n2, n5, n6, o3〉 and has a length of 19 units,
i.e. dnet(o1, o3) = 19.

Based on the network distance, proximity queries are given
as follows:

1) distance range query (DRQ): Given a query object q
located on G and a distance threshold ε ∈ R+, a distance
range query (DRQ) returns the set DRQ(q, ε) = {o ∈
D | dnet(q, o) ≤ ε}.

2) k-nearest neighbor query (kNNQ): Given a query object
q located on G and a number k ∈ N+, a k-nearest neighbor
query (kNNQ) returns the set NNQ(q, k) containing k objects
such that ∀o ∈ NNQ(q, k), ô ∈ D\NNQ(q, k) : dnet(q, o) ≤
dnet(q, ô).

II. RELATED WORK

Proximity queries in traffic networks are based on network
distances defined by the shortest path between two objects,
e.g. computed by the Dijkstra algorithm [1] and its variants
[2]. These algorithms expand the path from the starting node
towards the target node using a priority queue of visited nodes
sorted by ascending distance from the starting node. The A*
algorithm [3] applies heuristics to prune the search space and
direct the graph expansion. Materialization techniques [4], [5]
suffer from increasing storage costs. In [6] the authors divide
the graph into regions and gather information whether an edge
is on a shortest path leading to a specific region. All these
approaches provide only a speed-up for the exact distance
computation but cannot be used as a filter step.

In [7] the Euclidean distance between graph nodes/objects is
used as a lower bounding filter in order to guide an incremental
network expansion for the refinement step. In [8] one of the
graph embedding technique from [9] is applied in order to
estimate the network distance between two nodes. As severe
drawback of the approach is that the embedded space involves
40 to 256 dimensions. In addition, it does not offer any
solution for the computation of the exact distances of the
candidates in the refinement step. In [10] distance signatures
are computed and managed for each data object o in the
network graph containing a vector of distance approximations
between o and all other data objects in the network graph.

In Proc. 24th International Conference on Data Engineering (ICDE'08), Cancun, Mexico, 2008.

The drawback of this proposal is that proximity queries on
moving objects that frequently change their positions are not
well supported. In [11] a Voronoi diagram on the network
space is computed and each Voronoi cell that represents the
region of the nearest neighbor in the network is represented
by a 2D polygon. These Voronoi-cell polygons are indexed to
support kNN queries. In case of dense network graphs, the
computation of the kNN would have a poor performance due
to the resulting large size of the cells.

III. NETWORK GRAPH EMBEDDING

The basic idea of our approach is to transform the nodes of
any network graph and the objects located on that graph into
a k-dimensional vector space adapting a Lipschitz embedding
using singleton reference sets called reference nodes.

Let G = (N, E, W) be a network graph and
N ′ = 〈nr1 , . . . , nrk

〉 ⊆ N be a subsequence of k ≥ 1
reference nodes. The embedding, or transformation, of the
native space (N, dnet) into a k-dimensional vector space
(Rk, D) is a mapping FN ′

: N ∪D → Rk, where |N ′| = k is
the dimensionality of the vector space and D is the L∞-norm
in Rk, i.e. D(x, y) = maxi=1..k |xi − yi|, where x, y ∈ Rk

are two points of the vector space (Rk, D). A reference node
embedding of G based on N ′ ⊂ N defines the function FN ′

as follows.

For each n ∈ N , FN ′
(n) = (FN ′

1 (n), . . . , FN ′
k (n))T, where

FN ′
i (n) = dnet(n, nri

) for 1 ≤ i ≤ k.

For each o ∈ D located on a node n, FN ′
(o) = FN ′

(n).

For each o ∈ D located on an edge (n1, n2) ∈ E,
FN ′

(o) = (F̂N ′
1 (o), . . . , F̂N ′

k (o))T, where F̂N ′
i (o) =

min{d1(o) + FN ′
i (n1), d2(o) + FN ′

i (n2)}.

An example demonstrating the embedding of the objects
located on a network graph using reference nodes N ′ =
〈n8, n7〉 is depicted in Figure 1.

For the embedding of a network graph we have to compute
for each node and each object the shortest paths to all reference
nodes. This computation can be done by starting at each
reference node the Dijkstra shortest path algorithm and storing
the shortest distance at each visited node. This operation has
to be performed only once in a preprocessing step.

Dynamic objects can be handled as follows. The computa-
tion of the components of the embedding vector FN ′

(o) of
an object o ∈ D located on an edge (n1, n2) ∈ E is given
by the functions F̂N ′

i (o). These values can be very efficiently
computed assuming that FN ′

(n1) and FN ′
(n2) is given. For

this reason, our embedding is also very suitable for dynamic
objects.

The reference node embedding can be used to compute
upper and lower bounds for the network distance.

Lemma 1 (lower bounding property):
Let G = (N, E, W) and FN ′

be the reference node embed-
ding of G w.r.t. N ′ ⊂ N . For any two nodes ni, nj ∈ N ∪D,
D(FN ′

(ni), FN ′
(nj)) ≤ dnet(ni, nj).

o1

o2

o4

o5

o3

n1

n2

n3

n4

n6

n5

n7

n10

n9

n12

n8

n11

n13

2
5

3

5
7

7

4

6

3
4

4

3

3

4

1

7

1

44

2

8

N‘=<n8,n7>

FN‘ (o1) = (23,10)T

FN‘ (o2) = (20, 2)T

FN‘ (o3) = (4,19)T

FN‘ (o4) = (10, 8)T

FN‘ (o5) = (8,10)T

vector space:network graph (native space):

FN‘ (o1)

FN‘ (o2)

FN‘(o3)

FN‘ (o4)

FN‘ (o5)

F1

F2
vector space

Fig. 1. Network graph embedding.

Proof: Let N ′ = 〈nr1 , .., nrk
〉. Since the net-

work distance is transitive, the following statements hold:
D(FN ′

(ni), FN ′
(nj)) = max

l=1,...,k
|FN ′

l (ni) − FN ′
l (nj)| =

max
l=1,...,k

|dnet(ni, nrl
)) − dnet(nj , nrl

))| ≤ dnet(ni, nj)

The embedded space can also be used to define a progressive
approximation of the network distance. The distance function
D∗(x, y) = mini=1...k(xi + yi) is an upper bound of dnet,
formally

Lemma 2 (upper bounding property):
Let G = (N, E, W) and FN ′

be the reference node embed-
ding of G w.r.t. N ′ ⊂ N . For any two nodes ni, nj ∈ N ∪D,
D∗(FN ′

(ni), FN ′
(nj)) ≥ dnet(ni, nj).

Proof: Let N ′ = 〈nr1 , .., nrk
〉. Due to the transitiv-

ity of the network distance, the following statements hold:
D∗(FN ′

(ni), FN ′
(nj)) = min

l=1,...,k
(FN ′

l (ni) + FN ′
l (nj)) =

min
l=1,...,k

(dnet(ni, nrl
)) + dnet(nj , nrl

))) ≥ dnet(ni, nj)

In summary, the reference node embedding allows the
definition of an upper bound D∗ and a lower bound D of the
true network distance that can be used in a filter/refinement
query processing architecture (cf. Section V).

IV. EFFICIENT SHORTEST-PATH COMPUTATION

In this section, we show how the available information of
our reference node embedding can be successfully applied as
heuristics for the A*-search algorithm to compute the true
network distance.

The A*-search method is a special case of a best-first search
algorithm using forward oriented search heuristics. Here, we
propose to use the lower bounding distance estimation function
D for the search heuristics. In addition, we can use the upper
bounding distance estimation D∗ in order to identify the
branches of the search tree that does not need to be further
expanded. The modified A*-search algorithm using our novel
distance approximations based on reference node embedding
is depicted in Figure 2. The function C(ns, ni) denotes the
length of the currently determined shortest-path from node ns

to node ni.

V. MULTI-STEP QUERY PROCESSING

The upper and lower bounding distance estimations intro-
duced above can be used in a filter step as well as for speeding-
up the refinement step using the algorithm ShortestPath (cf.

ShortestPath(ns,nd,G)
dmax = ∞;
nodeSet := {ns});
for each n ∈ N do

C(ns, n) = ∞; C(n, n) = 0; path(ns, n) := ∅;
while |nodeSet| > 0 do

choose n from nodeSet
with minimum C(ns, n) + D(F N′

(n), F N′
(nd));

if dmax > C(ns, n) + D∗(F N′
(n), F N′

(nd)) then
dmax = C(ns, n) + D∗(F N′

(n), F N′
(nd));

if n = nd then
report path(ns, n),C(ns, n) and terminate;

else
for each ni ∈ n.adjacencyList do

if C(ns, ni) > C(ns, n) + W (〈n, ni〉) then
C(ns, ni) := C(ns, n) + W (〈n, ni〉)
path(ns, ni) := path(ns, n) + 〈n, ni〉;
if C(ns, ni) + D(F N′

(ni), F
N′

(nd)) < dmax

and ni /∈ nodeSet then
push ni to nodeSet;

Fig. 2. Shortest-path algorithm.

DRQ(q,ε,G)

candidateSet := ∅;
resultSet := ∅;

for each o ∈ D do /* FILTER STEP */
if D(F N′

(q), F N′
(o)) ≤ ε then

if D∗(F N′
(q), F N′

(o)) ≤ ε then
add o to resultSet;

else add o candidateSet;

for each o ∈ candidateSet do /* REFINEMENT STEP */
dnet(q, o) := ShortestPath(q,o,G);
if dnet(q, o) ≤ ε then

add o to resultSet;
return resultSet;

Fig. 3. DRQ algorithm.

Figure 2). In the following, we present the multi-step distance
range query (DRQ) and multi-step k-nearest neighbor query
(kNNQ) using our embedding function FN ′

implementing a
reference node embedding.

The DRQ over the embedded objects and nodes can directly
prune all objects for which the distance approximation D is
greater than ε as true drops without refining them. All objects
are added to the result list if the distance estimation D∗ is
lower or equal to ε. Only the remaining candidates need to be
refined. The pseudocode for a DRQ is given in Figure 3.

For the kNNQ we use the algorithm proposed in [12] which
is shown to be optimal w.r.t. the number of candidates that are
refined. The algorithm is depicted in Figure 4. It uses a ranking
of the objects in ascending order of their lower bounding filter
distance D and performs an iterative refinement as long as the
lower bound of the next object in the ranking is smaller or
equal to the current k-th nearest neighbor distance.

REFERENCES

[1] E. W. Dijkstra, ““A Note on Two Problems in Connection with Graphs”,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[2] T. H. Corman, C. E. Leiserson, and R. L. Riverst, “Introduction to
Algorithms”. MIT Press, 1990.

kNNQ(q,k,G)

SortedList results,candidates;
initialize ranking := RQ(q,D);
candidates←first k objects from ranking;
dmin = kth smallest D(F N′

(q), F N′
(o)) of o ∈candidates;

dmax = kth smallest D∗(F N′
(q), F N′

(o)) of o ∈candidates;
df next = D(F N′

(q), F N′
(o)) of o=ranking.top element;

do {
update dmin, dmax, and df next;

if dmin ≥ df next then
candidates.add(ranking.top element);
update dmin, dmax, and df next;

for all c ∈ candidates do
if D∗(F N′

(q), F N′
(c)) < dmin then add c to result ;

if D(F N′
(q), F N′

(c)) > dmax then prune c;

if |results|+|candidates| > k ∨ df next ≤ dmax then
for all c ∈ candidates with D(F N′

(q), F N′
(c)) ≤ dmin

∧ dmax ≤ D∗(F N′
(q), F N′

(c)) do
if dnet(q, c) ≤ dk−nn(q, result) then add c to result ;

else add all remaining c ∈ candidates to result ;

} while (df next ≤ dmax ∨ |candidates| > 0)

return result ;

Fig. 4. kNNQ algorithm.

[3] R. Kung, E. Hanson, Y. Ioannidis, T. Sellis, L. Shapiro, and M. Stone-
braker, ““Heuristic Search in Data Base Systems”,” Expert Database
Systems, 1986.

[4] R. Agrawal, S. Dar, and H. Jagadish, ““Direct Transitive Closure
Algorithms: Design and Performance Evaluation”,” TODS, vol. 15, no. 3,
1990.

[5] S. Jung and S. Pramanik, ““HiTi Graph Model of Topographical
Roadmaps in Navigation Systems”,” in Proc. Int. Conf. on Data En-
gineering (ICDE’96), 1996.

[6] E. Köhler, R. H. Möhring, and H. Schilling, “”Acceleration of Shortest
Path and Constrained Shortest Path Computation”,” in Proc. Int. WS
Efficient and Experimental Algorithms (WEA’05), 2005.

[7] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “”Query Processing
in Spatial Network Databases”,” in Proc. Int. Conf. on Very Large
Databases (VLDB’03), 2003.

[8] C. Shahabi, M. Kolahdouzan, and M. Sharifzadeh, ““A Road Network
Embedding Technique for k-Nearest Neighbor Search in Moving Object
Databases”,” Geoinformatica, vol. 7, no. 3, pp. 255–273, 2003.

[9] N. Linial, E. London, and Y. Rabinovich, “”The geometry of graphs and
some of its algorithmic applications”,” in Proc. IEEE Symp. Foundations
of Computer Science, 1994.

[10] H. Hu, D. L. Lee, and V. C. S. Lee, ““Distance Indexing on Road
Networks”,” in Proc. Int. Conf. on Very Large Databases (VLDB’06),
2006.

[11] M. Kolahdouzan and C. Shahabi, “Voronoi-Based K Nearest Neighbor
Search for Spatial Network Databases”,” in Proc. Int. Conf. on Very
Large Databases (VLDB’04), 2004.

[12] H.-P. Kriegel, P. Kröger, P. Kunath, and M. Renz, “”Generalizing the
Optimality of Multi-Step k-Nearest Neighbor Query Processing”,” in
Proc. 10th Int. Symp. on Spatial and Temporal Databases (SSTD’07),
Boston, MA, 2007.

