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Abstract

We propose two statistical tests to determine if two samgale$rom different dis-
tributions. Our test statistic is in both cases the distdrate/een the means of the
two samples mapped into a reproducing kernel Hilbert spR&HS). The first
test is based on a large deviation bound for the test statigtiile the second is
based on the asymptotic distribution of this statistic. Tds statistic can be com-
puted inO(m?) time. We apply our approach to a variety of problems, inaigdi
attribute matching for databases using the Hungarian agerinethod, where our
test performs strongly. We also demonstrate excellenopadnce when compar-
ing distributions over graphs, for which no alternativeagesirrently exist.

1 Introduction

We address the problem of comparing samples from two prbtyadbistributions, by proposing a
statistical test of the hypothesis that these distribstiare different (this is called the two-sample
or homogeneity problem). This test has application in aetarof areas. In bioinformatics, it is
of interest to compare microarray data from different tsgrpes, either to determine whether two
subtypes of cancer may be treated as statistically indistaable from a diagnosis perspective,
or to detect differences in healthy and cancerous tissudatabase attribute matching, it is desir-
able to merge databases containing multiple fields, whéasenitt known in advance which fields
correspond: the fields are matched by maximising the siityilarthe distributions of their entries.

In this study, we propose to test whether distributipradq are different on the basis of samples
drawn from each of them, by finding a smooth function whickaigé on the points drawn from
and small (as negative as possible) on the points ffoe use as our test statistic the difference
between the mean function values on the two samples; wheristérge, the samples are likely
from different distributions. We call this statistic the Maum Mean Discrepancy (MMD).

Clearly the quality of MMD as a statistic depends heavily loa tlassF of smooth functions that
define it. On one hand; must be “rich enough” so that the population MMD vanishesid anly

if p = ¢. On the other hand, for the test to be consist@mgeeds to be “restrictive” enough for the
empirical estimate of MMD to converge quickly to its expeicta as the sample size increases. We
shall use the unit balls in universal reproducing kernebgtit spaces [22] as our function class, since
these will be shown to satisfy both of the foregoing propsttiOn a more practical note, MMD is
cheap to compute: given points sampled fromp andn from ¢, the cost isO(m + n)? time.

We define two non-parametric statistical tests based on MMi&:. first, which uses distribution-
independent uniform convergence bounds, provides finigpaguarantees of test performance,
at the expense of being conservative in detecting differemetween andq. The second test is
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based on the asymptotic distribution of MMD, and is in preetmore sensitive to differences in
distribution at small sample sizes. These results buildumnearlier work in [6] on MMD for the
two sample problem, which addresses only the second kirestfin addition, the present approach
employs a more accurate approximation to the asymptotiglaliion of the test statistic.

We begin our presentation in Section 2 with a formal definitod the MMD, and a proof that the
population MMD is zero if and only ip = ¢ when3 is the unit ball of a universal RKHS. We also
give an overview of hypothesis testing as it applies to thee $ample problem, and review previous
approaches. In Section 3, we provide a bound on the devibgittreen the population and empirical
MMD, as a function of the Rademacher average$ wifith respect tg andg. This leads to a first
hypothesis test. We take a different approach in Sectiorhérewe use the asymptotic distribution
of an unbiased estimate of the squak&BID as the basis for a second test. Finally, in Section 5, we
demonstrate the performance of our method on problems freumoscience, bioinformatics, and
attribute matching using the Hungarian marriage appro&ulr. approach performs well on high
dimensional data with low sample size; in addition, we are & successfully apply our test to
graph data, for which no alternative tests exist. Proofsfaritier details are provided in [13].

2 The Two-Sample-Problem
Our goal is to formulate a statistical test that answersdheving question:

Problem 1 Let p and ¢ be distributions defined on a domaff. Given observations{ :=
{z1,...,zn}andY := {uy1, ..., y,}, drawn independently and identically distributed (i.j.ttom
p andq respectively, i® # ¢?

To start with, we wish to determine a criterion that, in th@plation setting, takes on a unique and
distinctive value only whep = ¢. It will be defined based on [10, Lemma 9.3.2].

Lemmal Let (X, d) be a separable metric space, and tety be two Borel probability measures
defined ori(. Thenp = g ifand only ifE, (f(z)) = E,(f(x)) forall f € C(X), whereC(X) is the
space of continuous bounded functionsXan

AlthoughC'(X) in principle allows us to identify = ¢ uniquely, it is not practical to work with such
a rich function class in the finite sample setting. We thusn@edi more general class of statistic, for
as yet unspecified function class&sto measure the discrepancy betweesndg, as proposed in
[11].

Definition 2 LetJ be a class of functiong : X — R and letp, ¢, X, Y be defined as above. Then
we define the maximum mean discrepancy (MMD) and its empé@#tanate as

MMD [T, p, q] := sup (Eonplf ()] = EynglF®)]) 1)
MMD [F, X, Y] : ?22( Zf ; ——Zf(yi)). )

We must now identify a function class that is rich enough tmuely establish whethear = ¢, yet
restrictive enough to provide useful finite sample estimdtiee latter property will be established
in subsequent sections). To this end, we sefett be the unit ball in a universal RKHE [22];
we will henceforth usé& only to denote this function class. With the additionalrieibn thatX be
compact, a universal RKHS is dense(itiX) with respect to thd., norm. It is shown in [22] that
Gaussian and Laplace kernels are universal.

Theorem 3 Let F be a unit ball in a universal RKH3(, defined on the compact metric spdfge
with associated kernéi(-, -). ThenMMD [, p, ¢q] = 0 if and only ifp = q.

This theorem is proved in [13]. We next express the MMD in aereasily computable form. This
is simplified by the fact that in an RKHS, function evaluaSaran be writterf (z) = (¢(x), f),
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whereg(x) = k(z,.). Denote byu[p] := E,p ) [¢(7)] the expectation op(z) (assuming that it
exists)! SinceE, [f(x)] = (u[p], f), we may rewrite

MMDITF, p,q] = ” sup {ulp] — ulgl, f) = llplp] — wlg]llg - 3)

Usingu[X] := = 57 ¢(x;) andk(z, 2') = (¢(z), ¢(2')), an empirical estimate of MMD is

2

1 m 2 m,n 1 n
MMD [F, X, Y] = | — > k(i) - — > k(wi,y;) + — S kyiy)| - 4

i,5=1 i,j=1 i,j=1

Eq. (4) provides us with a test statistic fpr# ¢g. We shall see in Section 3 that this estimate is
biased, although it is straightforward to upper bound thae pive give an unbiased estimate, and an
associated test, in Section 4). Intuitively we expeldID[F, X, Y] to be small ifp = ¢, and the
quantity to be large if the distributions are far apart. Nb& it costsO((m + n)?) time to compute
the statistic.

Overview of Statistical Hypothesis Testing, and of Previos Approaches Having defined our
test statistic, we briefly describe the framework of statidthypothesis testing as it applies in the
present context, following [9, Chapter 8]. Given i.i.d. gaes X ~ p of sizem andY ~ ¢ of
sizen, the statistical testJ(X,Y) : X™ x X" — {0, 1} is used to distinguish between the null
hypothesisH, : p = ¢ and the alternative hypothesi§, : p # ¢. This is achieved by comparing
the test statistid MD[F, X, Y] with a particular threshold: if the threshold is exceedeéntthe
test rejects the null hypothesis (bearing in mind that a pepulation MMD indicate® = ¢). The
acceptance region of the test is thus defined as any real mirelogv the threshold. Since the test is
based on finite samples, it is possible that an incorrectanaill be returned: we define the Type |
error as the probability of rejecting= ¢ based on the observed sample, despite the null hypothesis
being true. Conversely, the Type Il error is the probabditacceptingy = ¢ despite the underlying
distributions being different. The level of a test is an upper bound on the Type | error: this is a
design parameter of the test, and is used to set the threghaldich we compare the test statistic
(finding the test threshold for a givenis the topic of Sections 3 and 4). A consistent test achieves
a levela, and a Type Il error of zero, in the large sample limit. We wgle that both of the tests
proposed in this paper are consistent.

We next give a brief overview of previous approaches to the sample problem for multivariate
data. Since our later experimental comparison is with retsjeecertain of these methods, we give
abbreviated algorithm names in italics where approprittese should be used as a key to the
tables in Section 5. We provide further details in [13]. A gmilisation of the Wald-Wolfowitz
runs test to the multivariate domain was proposed and agdliys[12, 17] {Volf), which involves
counting the number of edges in the minimum spanning treetbeeaggregated data that connect
points in X to points inY. The computational cost of this method using Kruskal’s athm is
O((m + n)?log(m + n)), although more modern methods improve onlthgm + n) term. Two
possible generalisations of the Kolmogorov-Smirnov teshe multivariate case were studied in
[4, 12]. The approach of Friedman and Rafs&yn(r) in this case again requires a minimal spanning
tree, and has a similar cost to their multivariate runs testmore recent multivariate test was
proposed in [20], which is based on the minimum distancelvipartite matching over the aggregate
data, at cosO((m + n)?). Another recent test was proposed in [1BR({l): for each point from

p, it requires computing the closest points in the aggregdiéta, and counting how many of these
are fromg (the procedure is repeated for each point frpmith respect to points from). The test
statistic is costly to compute; [15] consider only tens ahp®in their experiments.

Yet another approach is to use some distance (&;gor L,) between Parzen window estimates
of the densities as a test statistic [1, 3], based on the asyimplistribution of this distance given

p = q. When theL, norm is used, the test statistic is related to those we présea, although it

is arrived at from a different perspective (see [13]: thezPamwindow interpretation is problematic,
since the resulting two-sample test is not consistent whekernel size is decreased fast enough to
ensure a consistent Parzen window estimate).Ijhepproach of [3] Biau) requires the space to be
partitioned into a grid of bins, which becomes difficult ordassible for high dimensional problems.
Hence we use this test only for low-dimensional problemsaiinexperiments.

A sufficient condition for this ig|u[p]||3; < oo, which is rearranged &8, [k(z, z')] < oo, Wherex and
z’ are independent random variables drawn according to
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3 A Test based on Uniform Convergence Bounds

In this section, we establish two properties of the MMD. £inge show that regardless of whether or
notp = ¢, the empirical MMD converges in probability at rat@,/m + n to its population value.
This establishes the consistency of statistical testsdbaseMMD. Second, we give probabilistic
bounds for large deviations of the empirical MMD in the case ¢q. These bounds lead directly to
a threshold for our first hypothesis test.

We begin our discussion of the convergenc®ID[F, X, Y] to MMDIF, p, ¢].

Theorem 4 Letp, ¢, X, Y be defined as in Problem 1, and assuiiagr, y)| < K. Then
Pr {|MMD[3’, X,Y] — MMDI[Z, p, ]| > 2 ((K/m)1/2 + (K/n)l/Q) + e} < 2exp (—szn)) .

Our next goal is to refine this result in a way that allows usefirg: a test threshold under the null
hypothesi® = ¢. Under this circumstance, the constants in the exponestigtely improved.

Theorem 5 Under the conditions of Theorem 4 where additiongll ¢ andm = n,

MMD[T, X, Y] > m7%¢2Ep (k(z, @) — k(z,2")] + e > 2(K/m)"/? + ¢,
N————

B1(F,p) Ba2(F.p)

2

both with probability less thaaxp (f 64}(”) (see [13] for the proof).

In this theorem, we illustrate two possible bouii§F, p) and B2 (F, p) on the bias in the empirical
estimate (4). The first inequality is interesting inasmught provides a link between the bias bound
B (&, p) and kernel size (for instance, if we were to use a Gaussiarekeith larges, thenk(z, )
andk(z, ") would likely be close, and the bias small). In the contexesting, however, we would
need to provide an additional bound to show convergence efrgirical estimate oB; (F, p) to its
population equivalent. Thus, in the following test joe= ¢ based on Theorem 5, we uSg(F, p)

to bound the bias.

Lemma 6 A hypothesis test of levelfor the null hypothesis = ¢ (equivalentyMMD[F, p, q] =
0) has the acceptance regiddMDI[F, X, Y] < 24/K/m (1 + +/log a—l) .

We emphasise that Theorem 4 guarantees the consistencg tdgh and that the Type Il error
probability decreases to zero at rdté,/m (assumingn = n). To put this convergence rate in
perspective, consider a test of whether two normal didinbs have equal means, given they have
unknown but equal variance [9, Exercise 8.41]. In this cHeetest statistic has a Studerdistri-
bution withn + m — 2 degrees of freedom, and its error probability convergeseasame rate as
our test.

4 An Unbiased Test Based on the Asymptotic Distribution of tle U-Statistic

We now propose a second test, which is based on the asymghigitibution of an unbiased estimate
of MMD?. We begin by defining this test statistic.

Lemma 7 Givenz andz’ independent random variables with distributiprandy andy’ indepen-
dent random variables with distributiay) the populatioMMD? is

MMD? [F,p,q] = Esznp [k(, wl)] —2E;py~q (k(z,y)] + Eyy~q [k (y, yl)] (5)
(see [13] for details). LeZ := (z1, ..., zm) bemi.id. random variables, wherg := (z;, y;) (i.e.
we assumen = n). Anunbiased empirical estimate BIMD? is
1 m
MMD? [F,X,Y] = ————— 2
u[gf? ? ] (m)(m_ 1) ;h(zﬂzj)’ (6)

which is a one-sample U-statistic withz;, z;) := k(x;, z;) + k(vi, y;) — k(xi, y;) — k(xj, v5)-
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The empirical statistic is an unbiased estimatd®fD?, although it does not have minimum vari-
ance (the minimum variance estimate is almost identica:[2&, Section 5.1.4]). We remark that
these quantities can easily be linked with a simple kerngbé&en probability measures: (5) is a
special case of the Hilbertian metric [16, Eq. (4)] with tisseciated kernek(p, ¢) = E,, (k(z,y)

[16, Theorem 4]. The asymptotic distribution of this testtistic undetH; is given by [21, Section
5.5.1], and the distribution undéf,, is computed based on [21, Section 5.5.2] and [1, Appendix];
see [13] for details.

Theorem 8 We assum& (hz) < oo. Under(;, MMD? converges in distribution (defined e.g. in
[14, Section 7.2]) to a Gaussian according to

m? (MMD?2 — MMD? [, p, q]) 2 N (0,02),

whereo? = 4 (EZ [(E. h(z,2))%] — [Em,(h(z,z’))]Q), uniformly at ratel/,/m [21, Theorem

B, p. 193]. Undet,, the U-statistic is degenerate, meaniBig h(z, z’) = 0. In this caseMMD?
converges in distribution according to

mMMD?2 2 3"\ [22 - 2], )
=1

wherez; ~ N(0,2) i.i.d., \; are the solutions to the eigenvalue equation
/xlzz(x,x’)z/}i(ac)dp(m) = N (2'),
andk(z;, ;) := k(x;, x;) — Bpk(zi, 2) — Exk(x, 2;) + By o k(x, ') is the centred RKHS kernel.

Our goal is to determine whether the empirical test statigfMD? is so large as to be outside the
1 — « quantile of the null distribution in (7) (consistency of thesulting test is guaranteed by the
form of the distribution undet(;). One way to estimate this quantile is using the bootstrppri2he

aggregated data. Alternatively, we may approximate thedistribution by fitting Pearson curves
to its first four moments [18, Section 18.8]. Taking advartafjithe degeneracy of the U-statistic,

we obtain (see [13])
E ([MMD2]”) = ﬁE [h2(z, 2")]

and

8(m — 2)

E ([I\IMDi]3) = 1P

E.. [h(z,2)Eor (W(z, 2")W(Z', 2"))] + O(m™).  (8)

The fourth momentE ([MMDi]4) is not computed, since it is both very smalD((n—*))

and expensive to calculaté)(m?)). Instead, we replace the kurtosis with its lower bound
kurt (MMD2) > (skew (MMD?2))” + 1.

5 Experiments

We conducted distribution comparisons using our MMD-ba®sts on datasets from three real-
world domains: database applications, bioinformatics] aaurobiology. We investigated the
uniform convergence approachI}ID), the asymptotic approach with bootstraNID? B),
and the asymptotic approach with moment matching to Pearsores MMD? M). We also
compared against several alternatives from the literafwieere applicable): the multivariate t-
test, the Friedman-Rafsky Kolmogorov-Smirnov generdbsgSmir), the Friedman-Rafsky Wald-
Wolfowitz generalisation\Wolf), the Biau-Gyorfi testBiau), and the Hall-Tajvidi testHall). Note
that we do not apply the Biau-Gyorfi test to high-dimenslgmablems (see end of Section 2), and
that MMD is the only method applicable to structured datdhsaggraphs.

An important issue in the practical application of the MMBskd tests is the selection of the kernel
parameters. We illustrate this with a Gaussian RBF kerne¢rarzwe must choose the kernel width
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o (we use this kernel for univariate and multivariate datanod for graphs). The empirical MMD is
zero both for kernel sizeé = 0 (where the aggregate Gram matrix oveandY” is a unit matrix), and
also approaches zero as— oo (where the aggregate Gram matrix becomes uniformly cotstan
We sets to be the median distance between points in the aggregapdesaan a compromise between
these two extremes: this remains a heuristic, however,tendptimum choice of kernel size is an
ongoing area of research.

Data integration As a first application of MMD, we performed distribution tesf for data inte-
gration: the objective is to aggregate two datasets intoglesisample, with the understanding that
both original samples are generated from the same digtihuClearly, it is important to check
this last condition before proceeding, or an analysis cdatéct patterns in the new dataset that are
caused by combining the two different source distributj@msl not by real-world phenomena. We
chose several real-world settings to perform this task: @ragared microarray data from normal
and tumor tissues (Health status), microarray data frofergifiit subtypes of cancer (Subtype), and
local field potential (LFP) electrode recordings from thedslgue primary visual cortex (V1) with
and without spike events (Neural Data | and Il). In all catiestwo data sets have different statistical
properties, but the detection of these differences is méfieuit by the high data dimensionality.

We applied our tests to these datasets in the following fesiGiven two datasets A and B, we either
chose one sample from A and the other fromaBr{butes = differen); or both samples from either
A or B (attributes = samg We then repeated this process up to 1200 times. Resultepoeted

in Table 1. Our asymptotic tests perform better than all cetitqrs beside®Volf. in the latter case,
we have greater Type Il error for one neural dataset, lowpeTyerror on the Health Status data
(which has very high dimension and low sample size), andtic&r(error-free) performance on the
remaining examples. We note that the Type | error of the agtsest on the Subtype dataset is far
from its design value 06.05, indicating that the Pearson curves provide a better toidsstimate
for these low sample sizes. For the remaining datasetsythel®rrors of the Pearson and Bootstrap
approximations are close. Thus, for larger datasets, théstrap is to be preferred, since it costs
O(m?), compared with a cost @ (m?) for Pearson (due to the cost of computing (8)). Finally, the
uniform convergence-based test is too conservative, findifierences in distribution only for the
data with largest sample size.

| Dataset | Attr. | MMD | MMD; B [ MMD; M [ ttest| Wolf | Smir | Hall ]
Neural Datal | Same 100.0 96.5 96.5| 100.0| 97.0| 95.0| 96.0
Different 50.0 0.0 00| 420 0.0 10.0[ 49.0

Neural Data ll| Same 100.0 94.6 95.2 | 100.0] 95.0] 94.5] 96.0
Different | 100.0 3.3 3.4 | 100.0 0.8] 31.8| 5.9

Health status | Same 100.0 95.5 94.4| 100.0| 94.7| 96.1| 95.6
Different | 100.0 1.0 0.8 | 100.0 28| 44.0| 35.7

Subtype Same 100.0 90.1 96.4 | 100.0| 94.6 | 97.3] 96.5
Different | 100.0 0.0 0.0 | 100.0 00| 284] 0.2

Table 1: Distribution testing for data integration on mudtiate data. Numbers indicate the per-
centage of repetitions for which the null hypothesis (p=gswccepted, givem = 0.05. Sample
size (dimension; repetitions of experiment): Neural |1 408®; 100) ; Neural Il 1000 (100; 1200);
Health Status 25 (12,600; 1000); Subtype 25 (2,118; 1000).

Attribute matching Our second series of experiments addresses automatlutgtrnatching.
Given two databases, we want to detect correspondinguttshn the schemas of these databases,
based on their data-content (as a simple example, two dagalmight have respective fields Wage
and Salary, which are assumed to be observed via a subsgrophrparticular population, and we
wish to automatically determine that both Wage and Salanptéeto the same underlying attribute).
We use a two-sample test on pairs of attributes from two @datedbto find corresponding pafr3his
procedure is also calledble matchingor tables from different databases. We performed atteibut
matching as follows: first, the dataset D was split into twtvés A and B. Each of the attributes

2Note that corresponding attributes may have differentitistions in real-world databases. Hence, schema
matching cannot solely rely on distribution testing. Adved approaches to schema matching using MMD as
one key statistical test are a topic of current research.
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in A (and B, resp.) was then represented by its instances iregp( B). We then tested all pairs
of attributes from A and from B against each other, to find tptnsal assignment of attributes
Ay, ..., A, from A to attributesBy, .. ., B, from B. We assumed that A and B contain the same
number of attributes.

As a naive approach, one could assume that any possible fatiributes might correspond, and
thus that every attribute od needs to be tested against all the attribute®db find the optimal
match. We report results for this naive approach, aggrdgater all pairs of possible attribute
matches, in Table 2. We used three datasets: the censusdrtaiaset from the UCI KDD archive
(CNUM), the protein homology dataset from the 2004 KDD Cupd[B|[8], and the forest dataset
from the UCI ML archive [5]. For the final dataset, we perfodnumivariate matching of attributes
(FOREST) and multivariate matching of tables (FOREST10b)ftwo different databases, where
each table represents one type of forest. Both our asyropttiD?-based tests perform as well as
or better than the alternatives, notably for CNUM, whereatieantage oMMD? is large. Unlike

in Table 1, the next best alternatives are not consistehdysame across all data: e.g. in BIO they
areWolf or Hall, whereas in FOREST they agmir, Biau, or the t-test. ThusMMD? appears to
perform more consistently across the multiple datasete Frledman-Rafsky tests do not always
return a Type | error close to the design parameter: for m&aVolf has a Type | error of 9.7% on
the BIO dataset (on these daMMD? has the joint best Type Il error without compromising the
designed Type | performance). Finally, our uniform conesrce approach performs much better
than in Table 1, although surprisingly it fails to detecfeliénces in FOREST10D.

A more principled approach to attribute matching is alsosfis. Assume thaty(4) =
(01(A1), d2(A2), ..., dn(Ay)): In other words, the kernel decomposes into kernels on theidual
attributes of A (and also decomposes this way on the at@bot B). In this casel/ M D? can be
written 37 ||1i(A;) — pi(B;)]|?, where we sum over the MMD terms on each of the attributes.
Our goal of optimally assigning attributes frafhto attributes ofd via MMD is equivalent to find-
ing the optimal permutation of attributes of3 that minimizesy ™", ||ui(A;) — s (Br(i))||*- If we
defineC;; = | i(A:) — pi(B;)||?, then this is the same as minimizing the sum aVey ;). This is

the linear assignment problem, which casts:*) time using the Hungarian method [19].

| Dataset | Attr. | MMD | MMD; B | MMD; M [ ttest| Wolf | Smir | Hall | Biau |
BIO Same 100.0 93.8 94.8| 952] 90.3| 95.8| 95.3| 99.3
Different 20.0 17.2 176| 36.2| 17.2| 186 | 17.9| 421

FOREST Same 100.0 96.4 96.0| 97.4| 946 | 99.8| 95.5| 100.0
Different 4.9 0.0 0.0 0.2 38| 0.0] 501 0.0

CNUM Same 100.0 94.5 93.8| 94.0| 984 | 975| 91.2| 985
Different 15.2 2.7 25| 19.17| 225| 116| 79.1| 50.5

FOREST10D| Same 100.0 94.0 94.0| 100.0| 93.5| 96.5| 97.0 | 100.0
Different | 100.0 0.0 0.0 0.0| 0.0 1.0 | 72.0| 100.0

Table 2: Naive attribute matching on univariate (BIO, FORESGNUM) and multivariate data
(FOREST10D). Numbers indicate the percentage of acceptidhypothesis (p=q) pooled over
attributes.«« = 0.05. Sample size (dimension; attributes; repetitions of expent): BIO 377 (1, 6;
100); FOREST 538 (1; 10; 100); CNUM 386 (1; 13; 100); FORESI 1000 (10; 2; 100).

We tested this 'Hungarian approach’ to attribute matchiagWMD? B on three univariate datasets
(BIO, CNUM, FOREST) and for table matching on a fourth (FOREGD). To studyMMDi B

on structured data, we obtained two datasets of proteirhgrépROTEINS and ENZYMES) and
used the graph kernel for proteins from [7] for table matghiia the Hungarian method (the other
tests were not applicable to this graph data). The challémege is to match tables representing
one functional class of proteins (or enzymes) from datagettAe corresponding tables (functional
classes) in B. Results are shown in Table 3. Besides on thelBi&etMMD? B made no errors.

6 Summary and Discussion

We have established two simple multivariate tests for campawo distributiong andq. The test
statistics are based on the maximum deviation of the exfi@ctaf a function evaluated on each
of the random variables, taken over a sufficiently rich fiorticlass. We do not require density
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| Dataset | Datatype | No. attributes| Sample size] No. repetitions| % correct matche$
BIO univariate 6 377 100 90.0
CNUM univariate 13 386 100 99.8
FOREST univariate 10 538 100 100.0
FOREST10D| multivariate 2 1000 100 100.0
ENZYME structured 6 50 50 100.0
PROTEINS | structured 2 200 50 100.0

Table 3: Hungarian Method for attribute matching ¥Ma1D? B on univariate (BIO, CNUM, FOR-
EST), multivariate (FOREST10D), and structured data (ENIBES, PROTEINS) & = 0.05; '%
correct matches’ is the percentage of the correct attrimatiehes detected over all repetitions).

estimates as an intermediate step. Our method either dotpercompeting methods, or is close to
the best performing alternative. Finally, our test was sasfully used to compare distributions on
graphs, for which it is currently the only option.
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