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ABSTRACT

Low depth of field (DOF) is an important technique to em-
phasize the object of interest (OOI) within an image. When
viewing a low depth of field image, the viewer implicitly seg-
ments the image into region of interest and non regions of
interest which has major impact on the perception of the im-
age. Thus, robust algorithms for the detection of the OOI in
low DOF images provide valuable information for subsequent
image processing and image retrieval. In this paper we pro-
pose a robust and parameterless algorithm for the fully auto-
matic segmentation of low depth of field images. We compare
our method with three similar methods and show the superior
robustness even though our algorithm does not require any pa-
rameters to be set by hand. The experiments are conducted on
a real world data set with high and low depth of field images.

Index Terms— Image Segmentation, Low Depth of
Field, Object of Interest

1. INTRODUCTION

In photography low depth of field (DOF) is an important tech-
nique to emphasize the object of interest (OOI) within an im-
age. Low DOF images are well known from portrait, sports
or macro photography where only a part of the image should
attract most of the users’ attention. The OOI is thereby dis-
played sharp while other areas like the background appears
blurred, so that the viewer automatically focuses on the sharp
areas of the image. When viewing a low depth of field im-
age, the viewer implicitly segments the image into region of
interest and regions of less interest (usually background). As
the implicit segmentation has major impact on the perception
of the image, this information is valuable feature for the sub-
sequent image processing chain like an adaptive image com-
pression [1] or image retrieval aspects as the similarity of im-
ages can be considerably influenced by the image’s DOF.

In this paper we propose a novel robust and parameterless
algorithm for the fully automatic segmentation of low depth
of field images. The segmentation of low DOF images has
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gained some interest in the research community in past years.
In [2, 3] first approaches to segment low DOF images were
presented. In [4, 5] high frequency wavelets are used to de-
termine the segmentation which have the drawback of being
not too robust. In [6], localized blind deconvolution is used to
determine the OOI, yet the authors do not propose a pure im-
age segmentation algorithm. The works proposed in [7, 8, 9]
are consecutive works for segmentation of image sequences
which address a similar topic. However, the method is not
fully applicable to single image segmentation.

We compare our algorithm with the works of [10] which
inspired our algorithm, with [11] where single frames of
videos are segmented and to [12], where a fuzzy segmenta-
tion approach was proposed. The test image dataset consists
of a set of various photos and comprises several categories
from high to low depth of field images.

2. ALGORITHM

The proposed algorithm consists of five stages which will be
discussed in the following sections.

2.1. Deviation Scoring

First, sharp pixels are identified. Let I be the set of pix-
els I = {p(x, y)|1 ≤ x ≤ width, 1 ≤ y ≤ height} of the
image. For each pixel p (x, y) the mean color from its
r-neighbourhood ηrI(x,y) = {p (x′, y′) | |x′ − x| ≤ r ∧
|y′ − y| ≤ r} is calculated. As p(x, y) is represented in the
L∗a∗b∗ color space, the mean neighbourhood color of p(x, y)
in the L∗-band is determined by
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For each p (x, y), the neighbour difference is defined by
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with ∆Emax being the maximum possible distance in the
L∗a∗b∗ space and ∆E∗ (u, v) being the euclidean distance
of the color values u, v in the L∗a∗b∗ space. To compute
the score µ ∈ [0, 255] of p(x, y) we first convolve I with a
gaussian kernel with radius σ and denote the result by Iσ .
The score µ(x, y) for p (x, y) is calculated by µ (x, y) =(

∆ηrI(x,y) −∆ηrIσ(x,y)

)2

and identifies pixels having a high
probability of belonging to the focused region, which is the
case, if µ exceeds the threshold Θscore ∈ [0, 255]. For each
pixel p(x, y) ∈ I , Iscore(x, y) is defined as follows:

Iscore (x, y) =

{
0 µ (x, y) < Θscore

µ (x, y) else
(3)

Finally I is scaled by half to improve the processing speed
of the subsequent steps without major impact to accuracy.

2.2. Score Clustering

In this stage, clusters are generated from all p ∈ Iscore by ap-
plying DBSCAN [13], which is based on the two parameters
ε and minPts. To provide highest flexibility with respect to
the different occurrences of the focused area, we do not ap-
ply absolute values, but compute them relatively to the size of
the image and its score distribution. Thus, ε is calculated by
ε =

√
|I| ·Θε, with |I| denoting the total amount of pixels in

I and Θε ∈ [0, 1]. minPts is defined as in Equation 4.

minPts =
⌊
|{(x, y) | Iscore (x, y) > 0}|

|I|
(ε+ 1)2

⌋
(4)

The weight wp for a point p is then defined as wp =

min
{
Iscore(x,y)

Θdbscan
, 1
}

, with the threshold Θdbscan ∈ [0, 255] .
The result of the clustering is a cluster set C = {c1, . . . , cn},
with each ci ∈ C representing a subset of pixels p(x, y) ∈
I . Due to our assumption that small isolated sharp areas
are treated as noise, we define the relevant score cluster
set Ĉ =

{
c ∈ C | |ci| ≥ maxC

2

}
⊆ C with maxC =

max {|c1| , . . . , |cn|} being the amount of pixels of the largest
cluster.

2.3. Mask Approximation

The relevant cluster set Ĉ, is a good reference point of the
OOI’s location and distribution. In general however, there
exists no contiguous area, but individual regions of inter-
est. This stage of the algorithm connects all clusters c ∈ Ĉ
to a contiguous area which represents an approximate bi-
nary mask of the OOI. Therefore, we first generate the con-
vex hull for all points in the ε-neighbourhood NEps (p) of

each core point p of the cluster set. Let K = {k1, . . . , kj}
be the set of all core points from the score clusters in Ĉ
and let convex(P ) be the convex hull from a point set
P . Then we can define the set of convex hull polygons
by H = {convex(Neps (k1)), . . . , convex(Neps (kj))}
which is used to generate a contiguous area. Therefore
each p (u, v) ∈ I is checked, if it is located within one of
the convex hull polygons of H . If that is the case, we mark
this pixel with 1, otherwise with 0. The binary approximation
mask Iapp is then given by

Iapp (x, y) =

{
1 if ∃Hi : p(x, y) ∈ Hi

0 otherwise
.

Afterwards we apply the morphological filter operations
closing and dilation by reconstruction to Iapp for smoothing
and closing small holes. The filters are based on the oper-
ations dilation δH (I) and erosion εH (I), where H (i, j) ∈
{0, 1} denotes the structuring element. εH (I) can be ex-
tended to a basic geodesic erosion ε1 (I, I ′) of size 1, so
that ε1 (I, I ′) (u, v) = max {εH (I) (u, v) , I ′ (u, v)}. The
geodesic erosion of infinite size ε∞, called reconstruction
by erosion ϕrec is defined as ϕrec (I, I ′) = ε∞ (I, I ′) =
ε1 ◦ ε1 ◦ . . . ◦ ε1 (I, I ′). Note that that ϕrec (·, ·) converges
and achieves stability after a certian number of iterations.

In our approach, we primarily apply a morphological
closing operation ϕH (Iapp) = εH (δH (Iapp)) to the ap-
proximate mask. The dimension of the structuring ele-
ment H therefore is discussed later. Afterwards we use
ϕrec (Iapp, δH′ (Iapp)) to close holes in the approximate
mask Iapp. The dimension of the structuring element H ′ is
h× h, where h is calculated relatively to the total pixel count
|I| of image I , so that h =

√
|I| · Θrec, with Θrec ∈ [0, 1].

After this morphological processing, the approximate mask
Iapp covers the OOI quite well. In gerneral however, it in-
cludes boundary regions that exceed the borders of the OOI
and tend to surround it with a thick border. The following two
stages of our algorithm refine the mask by erasing all these
surrounding border regions.

2.4. Color Segmentation

In this stage, the pixels from the approximate mask Iapp
are divided into groups, so that each group contains pixels
that correspond to similar colors in I . Therefore we process
each p (u, v) ∈ Iapp and iteratively include all its neighbours

n ∈
{

(s, t) ∈ η1
Iapp(u,v) | Iapp (s, t) = Iapp (u, v) = 1

}
with

similar color to p, so that ∆E∗ (p, n) < Θdist. The threshold
Θdist ∈ [0, 100] is an internal parameter, which specifies
the maximum distance between two color values u, v in the
L∗a∗b∗ color space.

Therefore a method expand(x, y,R) is called for each
p (x, y) ∈ {(x, y) ∈ Iapp | Iapp (x, y) = 1}, which
is not marked as visited. R = {(x, y)} thereby defines



a new color region formed by the point p1 (x, y). The
method expand(x, y,R) then proceeds as follows: For all
p2 (u, v) ∈ {(s, t) ∈ η1

Iapp(x,y) | Iapp (s, t) = 1} with
∆E∗(p1, p2) < Θdist we add p2 to R and mark p (u, v) as
visited. Then expand (u, v,R) is called recursively. The
resulting set of regions is called Rcolor.

2.5. Region Scoring

In this step, a relevance value µ is calculated for each region
r ∈ Rcolor. Low relevant regions are removed afterwards
which causes an update of µ in the neighbouring regions and
thus possibly trigger another deletion if the relevance of an
updated region is not high enough after the according update.

The mask boundary overlap BORr of a region r is a mea-
sure for the adjacence of r to the approximate mask Iapp and
is defined byBORr = |{(u, v) ∈ Br | ∃r′ ∈ R : (u, v) ∈ r′}|,
where Br is the difference of r to its dilation. The mask
boundary overlap MBOr of r is then defined as MBOr =
BO

Rcolor
r

|Br| . MBOr specifies the ratio of the number of outline
points located in other regions to the number of all outline

points of r. The score boundary overlap SBOr = BOĈr
|Br|

of r is a measure for the adjacence of r to the correspond-
ing score values µ. A large SBOr indicates, that r has
a neighbourhood with large corresponding score values µ.
The mask relevance for a given region r can then finally
be defined as MRr = SBOr · MBOr. Afterwards, we
eliminate all regions r with a mask relevancy value which
is too low. The calculation of MRr is executed iteratively:
Let MRir and MBOir denote the values MRr and MBOr
of a region r during the i-th iteration. One iteration cy-
cle computes the corresponding µ for each region r and
deletes r from the approximate mask Iapp if the condition
MBOir ≤ λMBO

i ∧MRir ≤ λMR
i ∧ |r| ≤ λMS holds, where

λMBO
i and λMR

i are both calculated relatively to the iteration
i, so that an increase of i results in an increase of both values.
λMS defines the maximum size of a region that can be deleted
if its relevancy is low. The condition |r| ≤ λMS ensures that
large regions are unaffected by the refinement because they
already cover a huge area of the OOI. The precise assignment
of the threshold values is discussed later. Once a region r
satisfies the condition Xi

r at iteration i, it will be erased from
Iapp, so that ∀ (x, y) ∈ r : Iapp (x, y) = 0. The calculation
of MRir continues for i = 1, . . .m and terminates as soon as
there are no more regions to delete. This is the case, as soon
as MRir = MRi−1

r so that ∃m ≥ 1 | ∀r ∈ Rcolor : MRir =
MRi−1

r .

3. EXPERIMENTAL RESULTS

A major contribution of this algorithm is that none of the pa-
rameters introduced in the previous section needs to be hand
tuned for an image as all parameters are either independent

Θscore 10 Θrec
1
3

Θε 0.025 Θdist 20
Θdbscan 128 λMBO

i 0.85− 1
3 i

σ 1.25 λMR
i λMR

i

H 25 λMS 0.2 Σ
c∈Ĉ
|c|

Table 1: Parameters used in the algorithm.

of the image or determined fully automatically. An overview
of the implicit parameters can be seen in Table 1. To deter-
mine the quality of a segmentation mask I we use the spatial
distortion d (I, Ir) as proposed in [10]:

d (I, Ir) =
(∑

I (x, y)⊗ Ir (x, y)
)
/
∑

Ir (x, y) ,

where ⊗ is the binary XOR operation and Ir being the manu-
ally generated reference mask.

All experiments were conducted on a diverse dataset of 65
images mostly downloaded from Flickr. The images are from
different categories with strong variations in the amount of
depth of field, same as the fuzziness of the background. Also
the selection of the images does not focus on certain scener-
ies, topics or coloring schemes in order to avoid overfitting
to certain types of images. In our experiments, we compare
the spatial distortion of the proposed algorithm with reimple-
mentations of the works presented in [10], [11] and [12]. The
parameters for all algorithms were optimized to achieve the
best average spatial distortion over the complete test set.

Fig. 1 compares the performance of the reference algo-
rithms with our proposed method. In case that an algorithm
performed rather poor and produced a segmentation with
d (I, Ir)> 2, we defined this image to be an outlier and also
present the error values in brackets where the outliers were
removed. It can be seen that even though the computation
time of the proposed algorithm is greater than two of the
three reference algorithms, it outperforms the reference al-
gorithms in terms of spatial distortion in all cases. Also, our
algorithm has a maximum spatial distortion of 1.58 over the
complete test set which means that it managed to produce a
reasonable segmentation in all cases whereas the reference
algorithms performed rather poor in 2, 7 and 20 cases. It
should also be noted that in contrast to the reference algo-
rithms, the proposed algorithm can take advantage of larger
images whereas the competitors loose accuracy with growing
size of the image.

4. CONCLUSION

In this paper a new robust algorithm for the segmentation of
low depth of field images is proposed which does not need to
set any parameters by hand as all necesssary parameters are
determined fully automatically. Experiments are conducted
on set of real world low depth of field images from various



(a) Original image. (b) Proposed algorithm. (c) Result of fuzzy segmenta-
tion [12]

(d) Result of morphological
segmentation [10]

(e) Result of video segmenta-
tion [11]

Fig. 1: Comparing the results of the different algorithms.

proposed [10] [12] [11]
min 0.01 0.03 0.02 0.07
max 1.58 >43 (2) >8 (2) >20 (2)
median 0.10 0.33 0.98 1.36
average 0.22 1.4 (0.5) 1.2 (1.0) 2.2 (1.3)
std.dev. 0.26 6.0 (0.4) 1.2 (0.5) 3.1 (0.7)
time 35s 9s 54.2s 2.7s
# images 65 65 (63) 65 (58) 65 (45)

Table 2: Spatial distortion and run time of the proposed algo-
rithm compared to the reference algorithms. The numbers in
brackets denote values with removed outliers (d (I, Ir) > 2).

categories and the algorithm is compared to three refernce al-
gorithms. The experiments show that the algorithm is more
robust than the reference algorithms on all tested images and
it performs well even if the depth of field is growing larger so
that the background begins to show considerable contours. In
Future work, we plan to improve processing speed and accu-
racy of the algorithm. A demo of the algorithm can be tested
online1.
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