ROBUST SEGMENTATION OF RELEVANT REGIONS IN LOW DEPTH OF FIELD IMAGES

F. Graf, H.-P. Kriegel, M. Weiler
Ludwig-Maximilians-Universität München

Automatically segment the region of interest in Low Depth Of Field photos
Low depth of field (DOF) is an important technique for photographers to emphasize the object of interest within an image. When viewing a low depth of field image, the viewer implicitly segments the image into regions of interest and non regions of interest which has major impact on the perception of the image.

AIM / REQUIREMENTS:
Given an image with Low DOF, create a segmentation for the sharply displayed region = the Object of Interest.
- Stability w.r.t. internal parameters
- Robustness w.r.t. different image domains
- Not required to set external parameters explicitly by the user
- Applicable on still images (not movies) without additional information like meta data, etc.

ALGORITHM:
1. Deviation Scoring / Edge Detection
For each pixel p:
 a) calculate mean color of neighborhood in L*a*b* space
 b) calculate L2 distance to pixel p in L*a*b*
 c) Edge pixel = pixel with distance(p, mean color) > \Theta_i
→ Robust edge detection

2. Score Clustering
a) DBSCAN clustering on edge image (Clustering parameters are computed w.r.t. image size and score clustering values automatically).
 b) Select clusters with a cluster size of > 0.5x the size of the largest clusters for further processing.
→ Identification of relevant clusters & removal of noise sets

3. Mask Approximation
 a) Compute convex hull for each cluster from step 2
 b) Create binary approximation mask by filling all convex hulls
 c) Apply geodesic erosion and dilation until convergence
→ Candidate mask for later segmentation

4. Color Segmentation
For each pixel covered by the mask:
 a) Compute similarity to neighboring pixel in color space
 b) Expand region while similarity between region and neighboring pixel > \Theta_j, otherwise begin new region
→ Set of color regions within the candidate mask (step 3)

5. Region Scoring
For each color region from step 4:
 a) Compute Mask Boundary Overlap (MBO) (w.r.t color regions from #4) and
 b) Compute Score Boundary Overlap (SBO) (w.r.t #2)
 c) Compute relevancy MR = MBO x SBO
 d) Remove regions with low relevancy
→ the Final Result

EVALUATION:
65 flickr images with different DOF, manually annotated.
Compared to algorithms of [10], [11], [12] using spatial distortion
\[d(I, I_{\text{ref}}) = \sum_{x,y} w(x,y) \sum_{x',y'} w(x',y') \]

Result
- Speed
 ▶ most robust method on a diverse image data set with varying DOF
 ▶ no parameters needed to hand tune, parameters calculated dynamically
 ▶ also works on images with textured background
 ▶ best method according to spatial distortion!

<table>
<thead>
<tr>
<th>Distortion</th>
<th>this</th>
<th>[10]</th>
<th>[12]</th>
<th>[11]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>0.01</td>
<td>0.03</td>
<td>0.02</td>
<td>0.07</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.58</td>
<td>> 43 (2)</td>
<td>> 8 (2)</td>
<td>> 20 (2)</td>
</tr>
<tr>
<td>Mean</td>
<td>0.22</td>
<td>1.4 (0.5)</td>
<td>1.2 (1.0)</td>
<td>2.2 (1.3)</td>
</tr>
<tr>
<td>Std.dev</td>
<td>0.26</td>
<td>6 (0.4)</td>
<td>1.2 (0.5)</td>
<td>3.1 (0.7)</td>
</tr>
<tr>
<td>Time</td>
<td>35s</td>
<td>9s</td>
<td>54s</td>
<td>2.7s</td>
</tr>
<tr>
<td>Images (<2)</td>
<td>65</td>
<td>65 (63)</td>
<td>65 (58)</td>
<td>65 (45)</td>
</tr>
</tbody>
</table>

Supported by the THESEUS project, funded by the German Federal Ministry of Economics and Technology, grant number 01MQ07020.

Online Demo, Source Code, Data Set & Annotations available at http://www.dbs.lmu.de/research/ICIP-ImageSegmentation/