
The Gauss-Tree:
Efficient Object Identification in Databases of Probabilistic Feature Vectors

Christian B̈ohm Alexey Pryakhin Matthias Schubert
Institute for Informatics
University of Munich

D-80538 Munich, Germany
{boehm,pryakhin,schubert}@dbs.ifi.lmu.de

Abstract

In applications of biometric databases the typical task
is to identify individuals according to features which are
not exactly known. Reasons for this inexactness are vary-
ing measuring techniques or environmental circumstances.
Since these circumstances are not necessarily the same
when determining the features for different individuals, the
exactness might strongly vary between the individuals as
well as between the features. To identify individuals, simi-
larity search on feature vectors is applicable, but even the
use of adaptable distance measures is not capable to han-
dle objects having an individual level of exactness. There-
fore, we develop a comprehensive probabilistic theory in
which uncertain observations are modeled by probabilistic
feature vectors (pfv), i.e. feature vectors where the conven-
tional feature values are replaced by Gaussian probability
distribution functions. Each feature value of each object
is complemented by a variance value indicating its uncer-
tainty. We define two types of identification queries, k-most-
likely identification and threshold identification. For effi-
cient query processing, we propose a novel index structure,
the Gauss-tree. Our experimental evaluation demonstrates
that pfv stored in a Gauss-tree significantly improve the re-
sult quality compared to traditional feature vectors. Addi-
tionally, we show that the Gauss-tree significantly speeds
up query times compared to competitive methods.

1 Introduction

In many applications like face recognition [14, 4], fin-
gerprint analysis [12], or voice recognition [3], data objects
are represented by feature vectors with a varying degree of
exactness or uncertainty. Therefore, the observed feature
values cannot be considered to be known exactly and two
feature vectors describing the same object can be signifi-

cantly different from each other. The degree of similarity
between observed and exact values can vary from feature
to feature because some features cannot be determined as
exactly as others. For example, it is easier to determine the
proportions of a face than the breadth of a nose. Addition-
ally, to varying uncertainties between the features, we have
to consider individual uncertainties for the objects as well
because the circumstances in which a given data object is
transformed into a feature vector may strongly vary. For
example, most data collections consisting of facial images
do not just contain images that were taken under the same
illumination and having exactly the same distance between
camera and face.

Due to these uncertainties, we are facing new problems.
An object that is observed more than once under different
circumstances will most likely generate a different feature
vector for each of these observations. Thus, object identi-
fication, i.e. determining if two feature vectors belong to
the same object, becomes much more complicated. For ex-
ample, we might have a database of facial features. When
observing one of the persons that are stored in this database,
we cannot simple search for the observed feature vector in
the database.

To solve identification problems, the simplest solution is
to employ feature based similarity search. By defining a dis-
tance function like the Euclidian distance to feature vectors,
we can assume that the distance between the feature vectors
corresponds to the dissimilarity of objects. Thus, to iden-
tify an object, we could retrieve the nearest neighbor in the
database. To speed up query processing for large databases,
a variety of index structures for feature spaces of medium
to high dimensionality has been proposed, e.g. the TV-tree
[10] and the X-tree [1].

However, this solution does not consider the varying un-
certainties between features and between objects. Thus, the
nearest neighbor might be dominated by some very uncer-
tain feature values and the retrieved object is not the correct

1

22nd Int. Conf. on Data Engineering (ICDE'06), Atlanta, GA, 2006

one. To consider varying uncertainties among each feature,
the Euclidean queries could be replaced by weighted Eu-
clidean queries or general ellipsoid queries [13]. Though,
these distance measures weight the importance of each fea-
tures when comparing the objects, they assume the same
level of uncertainty for all database object.

To handle the uncertainty of features and objects, we pro-
pose a new model to handle inexact data in databases. This
model is based on the observation that the error of mea-
surement for a feature value is assumed to follow a normal
or Gaussian distribution for most applications. Thus, we
call our model the Gaussian uncertainty model. The idea of
this model is to extend a feature valueµi,j for data object
i by an uncertainty parameterσi,j which is corresponding
to the standard deviation describing the exactness of feature
j. The complete probabilistic feature vectorvi is then as-
sociated to a multivariate Gaussian distributionNµi,σi . Let
us note that recently the concept of uncertainty was intro-
duced in spatial temporal databases [5, 6]. However, the in-
troduced concepts are not applicable to identification prob-
lems. We will discuss the differences in more details in Sec-
tion 2. The contributions of this paper are:

• A model to handle uncertainty in databases that is
based on the assumption that the uncertainty of feature
vectors can be modelled by Gaussian distributions.

• Novel types of queries calledk-most-likely identifi-
cation queries (k-MLIQ) and threshold identification
queries (TIQ). These queries are based on the proba-
bility that a query object and a data object describe the
same object.

• A general solution to calculate the probabilities that
are necessary to process the introduced queries. This
method can be used in combination with several data
structures and query algorithms.

• An index structure for efficiently processingk-MLIQs
and TIQs called the Gauss-tree. The Gauss-tree be-
longs structurally to the R-tree family but uses novel
algorithms for query processing, insertion and tree
construction.

The rest of this paper is organized as follows: Section 2
briefly surveys related work in the area of similarity search.
In Section 3 the Gaussian uncertainty model is introduced
and the two novel query types used in this model are de-
fined. The algorithms to determine the exact results for
k-MLIQ and TIQ are described in Section 4. These algo-
rithms can either be used on top of a sequential scan of the
complete database or be used in the refinement step for the
candidate set generated by our index structure, the Gauss-
tree. Section 5 defines the Gauss-tree along with the meth-
ods for query processing and tree construction. In Section

6, we give a detailed experimental evaluation of both effec-
tiveness and efficiency of our technique and Section 7 will
conclude our paper.

2 Related Work

Similarity search for high dimensional feature vectors is
an important technique for information retrieval and data
mining. Example applications include similarity search on
structural features of 2-D contours[11], time series [7], and
color histograms in image databases.To compare different
feature vectors most systems employ a metric distance mea-
sure like the Euclidian distance. If some of the features are
more important than others the Euclidean query can be re-
placed by a weighted Euclidean query or a general ellip-
soid query. However, these approaches are not able to cope
with individual uncertainty values for different objects. To
increase the efficiency of similarity queries, various index
structures have been proposed for high-dimensional feature
spaces. For a survey cf. [2].

Recently, the research on probabilistic queries over un-
certain data has gained increasing attention. In [5], a new
uncertainty model and several new query types were pro-
posed that allow the handling of inexact data. This model is
based on the assumption that it is possible to determine an
interval for each feature value containing the exact value.
Additionally, a feature value is described by an individual
probability density function over this interval. We will re-
fer to this model as the interval uncertainty model. [6] de-
scribes two methods for efficiently answering probabilis-
tic threshold queries that are based on the R-Tree [8]. A
probabilistic threshold query returns all data objects that are
placed in a given query interval with a probability exceed-
ing a specified threshold value.

Why are recent spatiotemporal uncertainty models
not appropriate for identification tasks? The uncertainty
model employed in [5, 6] allows to determine the proba-
bilities that a given data object is placed in a given multi-
dimensional interval within the query space. These prob-
abilities are now used for a variety of queries, e.g. the
already mentioned probability threshold queries. All of
these queries are not directly applicable to identification
tasks because the probability that two observations belong
to the same data object cannot be determined by calculating
the probability of containment within a certain multidimen-
sional interval. Of course, we could assume that the query
object is given by some multi-dimensional interval and re-
trieve the uncertain object in the database that provides the
highest probability for being placed within this query in-
terval. Besides the problem how to determine this interval
for a given uncertain query, we now can apply the interval
uncertainty model to object identification.

However, the resulting method has several characteris-

22nd Int. Conf. on Data Engineering (ICDE'06), Atlanta, GA, 2006

tics contradicting the intuition. Consider, for instance, a
query object for which all features are known with a high
degree of exactness: Therefore, this object has to be as-
sociated to a very small interval. Even if we find objects
in the database which fit nicely to this query, the identifi-
cation probability tends to be 0 with increasing exactness
of the query. Inversely, if all features of the query object
are known with little certainty, this would be modelled as
a large interval by conventional uncertainty models, cover-
ing almost the complete data space. Therefore, all database
objects have an identification probability of 100% in this
model. To conclude, the probabilities of the interval un-
certainty model are not applicable to intuitively modelling
identification tasks.

We will show later that it is necessary to determine the
identification probability using the Bayes’ theorem in order
to meet the intuition that identification probabilities should
be close to 1 or close to 0 for exact knowledge of both query
and database object (depending on how good the actual fea-
ture values fit) and be rather indifferent (tending to1/n
wheren is the number of objects whichcould correspond
to the query object) for knowledge which is less exact.

3 The Gaussian Uncertainty Model

In this section, we formally specify inexact object rep-
resentations by the concept of probabilistic feature vectors
(pfv). A probabilistic feature vectorv consists ofd fea-
ture valuesµi and d uncertainty valuesσi whereσi cor-
responds to the uncertainty ofµi. The feature valueµi is
an observation e.g. from a sensor, and we assume that the
measurement error of this sensor follows a normal distri-
bution around the exact feature value with a known vari-
anceσ2

i . Therefore, the data distribution of the observed
values will follow a normal distributionNxi,σi , and the
probability density that our feature valueµi is observed,
corresponds toNxi,σi

(µi). Due to the symmetry of the
Gaussians (Nxi,σi

(µi) ≡ Nµi,σi
(xi)), we can calculate

Nµi,σi
(xi) to determine the probability density of the true

feature valuexi for the observed feature valueµi. This cir-
cumstance allows us to model an object by a multivariate
normal distribution:

Definition 1 A probabilistic feature vectorv is a vector
consisting ofd pairs of feature valuesµi and standard de-
viationsσi. Each pair defines a univariate Gaussian distri-
bution of the true feature valuexi, defined by the following
probability density function:

Nµi,σi
(xi) =

1√
2πσi

· e
−(xi−µi)

2

2σ2
i

The probability density of a probabilistic feature vector
v for a given vector of actual valuesx can be calculated in
the following way:

p(x|v) =
d∏

i=1

Nµi,σi(xi)

Our databaseDB consists of a set ofn probabilistic fea-
ture vectorsvi, 1 ≤ i ≤ n.

3.1 Queries on a database of pfv

Deriving a probability from a density function is usually
done by integration over some interval. Thus, straightfor-
ward calculation of the probability that given a pfv, we will
observe some query observation q always has a probability
that tends to be 0 because we would integrate over an in-
finitely thin interval. However, for identification tasks we
can employ the fact that a given observation has to belong
to one pfv from a specified set. Thus, we now can use the
theorem of Bayes. This theorem allows us to calculate the
conditional probability that the queryq belongs to a pfvv,
under the condition thatq belongs to one pfv of the set of
all considered pfv inDB:

P (v|q) =
P (v) · p(q|v)∑

w∈DB (P (w) · p(q|w))

In this rulep(x|v) is the probability density for observing
x under the condition that we already observedv for the
same data object.P (v) (P (w)) is the general probability
thatv (w) is the answer to a query at all. In the following,
we will assume thatP (v) (P (w))is the same for any object
and thus we can cancel it in the fraction. This assumption
is based on the observation that it is usually not possible
to anticipate the number of times that a certain object is
queried.

Once we can determine this probability, we have a nat-
ural notion of how the queries for the Gaussian uncertainty
model should be specified. The user can either specify a
probabilistic query vector and a threshold for the probabil-
ity. Then, the system has to retrieve all database objects
which correspond to the query object with a probability of
at leastPθ. We call this query a threshold identification
query:

Definition 2 (Threshold Identification Query) (TIQ) Let
q be a probabilistic feature vector andPθ ∈ [0 . . . 1] a prob-
ability threshold. The answer of a threshold identification
query is defined as follows:

TIQ(q, Pθ) = {v ∈ DB|P (v|q) ≥ Pθ}

An example, for a TIQ is: Give me all persons in the
database that could be shown on a given image with a prob-
ability of at least 10 %.

22nd Int. Conf. on Data Engineering (ICDE'06), Atlanta, GA, 2006

Figure 1. Probabilistic feature vectors in a 2D
space. 1 query pfv and 3 database pfv.

Similarly, we can also define ak-most-likely identifica-
tion query, which retrieves thek database objects providing
the highest probability of belonging to the database object:

Definition 3 (k-Most-Likely Identification Query)
(k-MLIQ) Let DB be a database of probabilistic feature
vectorsv, let q be a probabilistic query vector and let
k ∈ N be a natural number. Then, the answer to ak-most-
likely identificaiton query (k-MLIQ) on DB is defined as
the smallest setMLIQk(x) ⊆ DB with at leastk elements
fulfilling the following condition:

∀v ∈ MLIQk(q),∀w ∈ DB \MLIQk(q) :
P (v|q) > P (w|q)

An examplek-MLIQ is: Give the the 10 most likely per-
sons in the database that are shown on a given image.

We will show in Section 4 how TIQ andk-MLIQ can be
answered in general. This general solution is either usable
as a stand-alone solution operating on top of a sequential
scan of the databaseDB. Additionally, our general solu-
tion can also be applied as a refinement step following af-
ter a filter step (e.g. by an appropriate index structure) for
efficiency improvement. Several approximation techniques
can be used as filter step, e.g. approximation by intervals.
However, to guarantee correctness and completeness of the
result, it is necessary to define a filter which guarantees no
false dismissals (false hits are removed in the following re-
finement step). Therefore, we propose an index structure
guaranteeing no false dismissals in Section 5.

Figure 1 displays probabilistic feature vectors generated
from 3 facial images of varying quality that are stored in
a database and one for a query image. While featureF1

is particularly sensitive to the rotational angle,F2 is sen-
sitive to illumination. The objectO1 is taken under good
conditions (both features are relatively accurate), whereas

for O2 both rotation angle and illumination were bad. For
O3 the rotation was bad but the illumination was good. For
the query object, in contrast, the rotation was good, but il-
lumination was bad. We can easily recognize, thatO3 must
be the object providing the highest probability for describ-
ing the same object as specified by the query. Our model
derived in Section 4 will evaluate probabilities which cor-
respond to this intuition: 77% forO3 in contrast to 10%
for O1 and 13% forO2. Therefore, ak-MLIQ with k = 1
would reportO3 as result. A TIQ with a threshold probabil-
ity Pθ = 12% would additionally reportO2.

Since conventional similarity search does not consider
the individual uncertainties, a similarity query using the Eu-
clidean distance would obtain three rather similar distances
(d(Q,O1) = 1.53, d(Q,O2) = 1.97, d(Q,O3) = 1.74).
Thus in our example, the nearest neighbor would beO1

which is excluded when considering the variances. Thus,
employing ordinary feature vectors cannot be used to draw
conclusions about their probabilistic feature vectors having
the feature vectors as mean vectors.

4 Our General Solution

To answer any query over a databaseDB of probabilis-
tic feature vectors (pfv) with respect to a probabilistic query
vectorq, we have to model the probability that two proba-
bility distributions given by the query pfvq and a database
pfv v correspond to the same true object. This yields again
a probability density function p(q—v). If the query object
q would be an exact feature vector, we could calculate this
probability density as mentioned in Section 3. However, if
both objects are pfv, we have to consider all possible po-
sitions of the true feature vector when calculatingp(q|v).
Then, the complete probability density corresponds to the
integral over all these possible positions. Formally, we have
to determine the probability density that a valuex is the
true feature value of both database and query object which
implies the following term for each of the probabilistic fea-
turesvi andqi(i = 1, . . . , d):

p(qi|vi) =
∫ +∞

−∞
p(vi|x)p(qi|x)dx

Remember that we are allowed to switch the mean value
and the observed value due to the symmetry of the Gaus-
sians. The term can be computed using the following
lemma:

Lemma 1 (Joint probability) Let vi = (µv, σv) be a
probabilistic feature of a database object andqi = (µq, σq)
the corresponding probabilistic feature of the query object.
Then, the joint probability can be determined in the follow-

22nd Int. Conf. on Data Engineering (ICDE'06), Atlanta, GA, 2006

ing way:

p(qi|vi) =
∫ +∞

−∞
Nµv,σv (x)·Nµq,σq (x)dx = Nµv,σv+σq (µq)

Proof 1 The probability density of the product

Nµv,σv (x) ·Nµq,σq (x)

can be rewritten in the following way (this step can be
proven by substitution of the definition of the normal dis-
tribution Nµ,σ(x) = 1√

2πσ
e−(µ−x)2/(2σ) which is lengthy

and left out due to space limitations):

=
1√

2π(σv + σq)
e−

(µv−µq)2

2(σv+σq) ·Nσqµv+σvµq
σv+σq

,
σvσq

σv+σq

(x)

Here, the first term corresponds to the normal distribu-
tionNµv,σv+σq

(µq) and is independent from the integration
variable x. Therefore, the first term can safely be written
before the integral (as it is a constant). The second term is
the pdf of a normal distribution (with some complex values
for µ andσ) which always integrates to 1 (when integrating
from−∞ to +∞, independently ofµ andσ). Therefore, we
have ∫ +∞

−∞
Nµv,σv (x) ·Nµq,σq (x)dx

= Nµv,σv+σq (µq) ·
∫ +∞

−∞
N...(x)dx = Nµv,σv+σq (µq)

The lemma allows us to calculate the probability thatq
andv correspond to the same data object by usingµq as ex-
act feature vector while increasingσv by σq. Thus, we have
reduced the more general case to the easier case that one of
the objects is exact and the other is a pfv. To calculate the
p(q|v), we have to combine all probabilities for all features
and than again apply the rule of Bayes:

p(q|v) =
d∏

i=1

p(qi|vi)

P (v|q) =
p(q|v)∑

w∈DB p(q|w)

Employing this solution, we can give general algorithms
for probability-threshold queries andk-maximum probabil-
ity queries over a setS of probabilistic feature vectors. For
the probability-threshold query, we first have to scan over
S to determine the sum of the probability densities of all
objects inS, i.e. the total probability. Afterwards, a sec-
ond scan determines the actual probabilityP (v|q) for each
v ∈ S and reports those with a probability above the thresh-
old Pθ. For thek-MLIQ, a single scan over the database is
sufficient, keeping thosek objects (among all objects that

have been processed so far) in a local list which have the
highest probability density.

For the setS, we can use the whole databaseDB. In this
case, we operate on top of a sequential scan of the database.
As an alternative, we can also use a subset ofDB which
has been generated by a filter step, e.g. an appropriate index
structure.

Properties. We conclude this section by briefly sum-
marizing some properties of our solution (without a formal
proof) in order to substantiate that the solution agrees with
the intuitive requirements of the identification problem.

1. The sum of the probabilities of all retrieved objects of
a TIQ ork-MLIQ cannot exceed 100%.

2. To obtain a high identification probability it is required
that both database and query objects have a small un-
certainty (σq, σv) and a high compliance of the ob-
served features (µq ≈ µv), i.e. the Gaussians must
have a high overlap and must be steep. Whenever we
increase the uncertainty of database or query object (or
both), the identification probability will decrease.

3. For very high uncertainty (σ → ∞) of the query or
a database object (or both) our model becomes maxi-
mally indifferent, i.e. the identification probability cor-
responds to1/n wheren is the number of all possible
objects.

4. If the Gaussian of a database object and that of the
query object are quite disjoint, the identification prob-
ability is close to 0. Only in this case, it is possible
that the identification probability slightly increases (up
to 1/n, see above) with increasing uncertainty because
when increasing the uncertainty, the degree to which
the object can be certainlyexcluded from identification
decreases in this case.

5 The Gauss-Tree

In the previous section, we have defined our basic no-
tions of probabilistic feature vectors and queries on top of
a set of such pfv. Derived from these basic definitions, we
have introduced the basic algorithm for query processing on
top of a sequential scan over an unordered file of pfv. The
runtime complexity of these algorithms is linear in the num-
ber of stored objects. In the context of a large database, this
is not acceptable, and we are now going to define the Gauss-
tree, a suitable index structure improvingk-maximum prob-
ability and probability-threshold queries on top of pfv.

5.1 Structure of the Gauss-Tree

The Gauss-tree is a balanced tree from the R-tree family.
In contrast to the other index structures from this family,

22nd Int. Conf. on Data Engineering (ICDE'06), Atlanta, GA, 2006

root

na nb nc

nba nbb nbc

(trust vectors)

ncbncanabnaa

3.0 4.03.5

0.6

0.7

0.8

0.9 A

B

C
D

E

F

µ

σ

A

B

CD

F: N3.9, 0.6 (x)

E

x

N3.0, 4.0, 0.6, 0.9 (x)

Figure 2. A 3 level Gauss-tree.

not the space of the spatial objects (i.e. the Gaussians) is
indexed but instead the parameter space (µi, σi, 1 ≤ i ≤
d) of the Gaussian. The structure of the index is inherited
from the R-tree family which facilitates the integration into
object-relational database management systems.

Definition 4 (Gauss-tree)
A Gauss-tree of degreeM is a search tree where the follow-
ing properties hold:

• The root has between 1 andM entries unless it is a
leaf. All other inner nodes have betweenM/2 andM
entries each. A leaf node has betweenM and2M en-
tries.

• An inner node withk entries hask child nodes.

• Each entry of a leaf node is a probabilistic vector con-
sisting ofd probabilistic features(µi, σi).

• An entry of a non-leaf node is a minimum bound-
ing rectangle of dimensionality2d defining upper and
lower bounds for every feature value[µ̌i, µ̂i] and every
uncertainty value[σ̌i, σ̂i] as well as the address of the
child node.

• All leaf nodes are at the same level.

In Figure 2, we see an example of a Gauss-tree consisting
of 3 levels. In the middle, we have depicted the minimum
bounding rectangle of a leaf node for one of the probabilis-
tic features. This minimum bounding rectangle allows to
store feature values betweenµ̌ = 3.0 andµ̂ = 4.0 and un-
certainty values betweeňσ = 0.6 and σ̂ = 0.9. A few
sample pfv which are stored in this data page are also de-
picted. The Gaussian functions (probability density func-
tions, pdfs) which correspond to these pfv are also shown
on the right side of Figure 2 in gray lines.

For query processing, we need a conservative approx-
imation of the probability density functions which are
stored on a page or in a certain subtree. Intuitively, the
conservative approximation is always the maximum among

all (possible) pdf in a subtree. This maximum can be
efficiently derived from the minimum bounding rectangle.
In Figure 2, the maximum function which has been derived
from the depicted minimum bounding rectangle is shown
on the right side using a solid black line. As a formula, the
approximating pdfN̂µ̌,µ̂,σ̌,σ̂(x) is given as:

N̂µ̌,µ̂,σ̌,σ̂(x) = max
µ∈[µ̌,µ̂],σ∈[σ̌,σ̂]

{Nµ,σ(x)}

Since we assume independence in the uncertainty at-
tributes, we can safely determinêNµ̌,µ̂,σ̌,σ̂(x) in each di-
mension separately. Please note thatN̂µ̌,µ̂,σ̌,σ̂(x) is not re-
ally a probability density function as it does not integrate to
1 for the whole data space. It is the conservative approxi-
mation of some probability density functions.

5.2 Query Processing

For efficient query processing, a closed formula for
N̂µ̌,µ̂,σ̌,σ̂(x) without an explicit maximization process over
two continuous variables is needed. This can be derived by
the following lemma:

Lemma 2 The conservative approximation̂Nµ̌,µ̂,σ̌,σ̂(x) of
the probability density functions stored in a data page can
be exactly computed by the following piecewise function:

N̂µ̌,µ̂,σ̌,σ̂(x) =

8>>>>>>>><>>>>>>>>:

Nµ̌,σ̂(x) if x < µ̌− σ̂ (I)
Nµ̌,µ̌−x(x) if µ̌− σ̂ ≤ x < µ̌− σ̌ (II)

Nµ̌,σ̌(x) if µ̌− σ̌ ≤ x < µ̌ (III)
Nx,σ̌(x) if µ̌ ≤ x < µ̂ (IV)
Nµ̂,σ̌(x) if µ̂ ≤ x < µ̂ + σ̌ (V)

Nµ̂,x−µ̂(x) if µ̂ + σ̌ ≤ x < µ̂ + σ̂ (V I)
Nµ̂,σ̂(x) if µ̂ + σ̂ ≤ x (V II)

Proof 2 Since N̂µ̌,µ̂,σ̌,σ̂ is the maximum of some other
Gaussian functionsNµ,σ(x) with mean valuesµ betweeňµ
and µ̂, the hull function is monotonically increasing for all
x ≤ µ̌ and monotonically decreasing for allx ≥ µ̂. There-
fore, for a givenx in the quadrants (I) to (III), the gaus-
sian function which is maximal among all possible functions

22nd Int. Conf. on Data Engineering (ICDE'06), Atlanta, GA, 2006

I II III IV V VI VII45°x

(, max)

Figure 3. The different sectors used to calcu-
late N̂µ̌,µ̂,σ̌,σ̂(x).

Nµ,σ(x), µ ∈ [µ̌, µ̂], σ ∈ [σ̌, σ̂] must be on the left border
of the minimum bounding rectangle, i.e. on the line parallel
to theσ axis withµ = µ̌. We determine theσ value which
maximizesN̂µ̌,µ̂,σ̌,σ̂ by setting the derivative with respect to
σ to zero:

∂

∂σ
Nµ̌,σ(x) = 0

As the only positive solution we obtain a local maximum at:

σmax = µ̌− x

The functionNµ̌,σ is also monotonically increasing with re-
spect toσ for lower values ofσ and monotonically decreas-
ing for all σ > σmax. For some x betweeňµ− σ̂ andµ̌− σ̌
our maximum is at the border of the minimum bounding
rectangle, i.e.̌σ ≤ σmax ≤ σ̂, and therefore, the maximum
value for some givenx in quadrant (II) is

N̂µ̌,µ̂,σ̌,σ̂(x) = Nµ̌,σmax=µ̌−x(x)

In quadrant (I) the local maximum is atσmax > σ̂. Due
to monotonicity, the global maximum (with restriction to the
minimum bounding rectangle) must be atσ̂. To the same
reason, the maximum is at(µ̌, σ̌) for all x in quadrant (III).

In quadrant (IV) the maximumNµ,σ(x) is at µ = x.
For σ, we obtain to the same reason as for quadrant (III) a
global maximum value of̌σ.

The cases (V) to (VII) are symmetric to (III), (II), and (I),
respectively.

For query processing we will also need a lower bound
Ňµ̌,µ̂,σ̌,σ̂(x) for the stored Gaussian functions correspond-
ing to the probabilistic feature vectors. This is defined by
the following minimum:

Ňµ̌,µ̂,σ̌,σ̂(x) = min
µ∈[µ̌,µ̂],σ∈[σ̌,σ̂]

{Nµ,σ(x)}

It can be efficiently computed by considering only 4
Gaussian functions as stated in the following lemma:

Lemma 3 The lower boundŇµ̌,µ̂,σ̌,σ̂(x) for all distance
functions stored in a page given by the limits(µ̌, µ̂, σ̌, σ̂)
can be computed by:

Ňµ̌,µ̂,σ̌,σ̂(x) = min{Nµ̌,σ̌(x), Nµ̌,σ̂(x), Nµ̂,σ̌(x), Nµ̂,σ̂(x)}

Proof 3 When varyingµ and σ in our functionNµ,σ(x)
and fixingx, we observe only one local maximum and no
local minimum (and no singularities). Therefore, the global
minimum for the restricted function is at one of the four
corner points of the rectangle delimited by(µ̌, µ̂, σ̌, σ̂). The
four possible minima are tested.

Note that an even easier method is possible because it is
very easy to decide whether the minimum is atµ̌ or at µ̂
due to symmetry. All these methods have a constant time
complexity.

Later, we will also need the approximation for the sum
of all Gaussian functions which are stored in a data node or
subtree. For this approximation, we consider the number of
objects stored in the subtreen and apply:

n · Ňµ̌,µ̂,σ̌,σ̂(x) ≤
∑

t∈node

Nµt,σt
(x) ≤ n · N̂µ̌,µ̂,σ̌,σ̂(x)

The accuracy of the approximation of the sum is
bounded by:

n · (N̂µ̌,µ̂,σ̌,σ̂(x)− Ňµ̌,µ̂,σ̌,σ̂(x))

In our system, a query is defined by a probabilistic fea-
tureq = (µq, σq). The conservative approximations of the
maximum, minimum, and sum can be determined analo-
gously to Section 4 by the following equations:

• N̂µ̌,µ̂,σ̌,σ̂(q) = N̂µ̌,µ̂,σ̌+σq,σ̂+σq
(µq)

• Ňµ̌,µ̂,σ̌,σ̂(q) = Ňµ̌,µ̂,σ̌+σq,σ̂+σq
(µq)

• etc.

Note that although we have shown in this section only
the univariate case, it is very easy to extend all these formu-
las for the multivariate case because the individual univari-
ate densities can be multiplied as we assume independence
among theσi. This is also true for the lower and upper
bounding pdfŇµ̌,µ̂,σ̌,σ̂(x) andN̂µ̌,µ̂,σ̌,σ̂(x) and for the sum
approximation. Now we can provide the algorithms for our
query types defined in Section 3 on top of the Gauss-tree.

5.2.1 k-Most-Likely Identification Query

A most-likely identification query (MLIQ) reports the ob-
ject for which the probability-based similarity is maximal.
For the Gauss-tree, we give an algorithm operating on top

22nd Int. Conf. on Data Engineering (ICDE'06), Atlanta, GA, 2006

of a priority queue [9]. The algorithm maintains a pri-
ority queue of pointers to some of the nodes (calledac-
tive nodes) of the tree. The elements in the queue are or-
dered by the value of the approximation function evalu-
ated for the query pfv. Leta be a node of the tree with
a.appx = (µ̌i, µ̂i, σ̌i, σ̂i, 1 ≤ i ≤ d) the µ andσ bounds
associated to nodea. Then the priority attributea.prio of
nodea in the queue is defined as follows:

a.prio(q) = N̂a.appx(q) =
∏

1≤i≤d

N̂µ̌i,µ̂i,σ̌i+σq,i,σ̂i+σq,i
(µq,i)

Intuitively, this ordering keyN̂q.appx corresponds to the
maximum (relative) probability that one of the Gaussian
functions stored in nodea could yield when inserting the
probabilistic query vectorq. The top element of the queue
is the node with maximum priority. Initially, the queue con-
tains only the root. The algorithm runs in a loop which
removes the top element from the queue, loads the corre-
sponding node from disk (if not in cache), and re-inserts
pointers to the children (ordered by their priority attribute)
into the queue. The algorithm keeps acandidateobject in
a variable which is the maximum pfv that has been seen
so far by the algorithm in any of the leaf nodes. The
algorithm stops when a probabilistic feature vectorv =
(µ1, σ1, . . .) has been found for which the relative proba-
bility exceeds that of the top elementt of the queue, with
t.appx= (µ̌i, µ̂i, σ̌i, σ̂i, 1 ≤ i ≤ d):∏
1≤i≤d

Nµi,σi+σq,i
(µq,i) >

∏
1≤i≤d

N̂µ̌i,µ̂i,σ̌i+σq,i,σ̂i+σq,i
(µq,i)

Fork-MLI queries we have to maintain the set ofk prob-
abilistic feature vectors of maximal probability that have
been found so far (thecandidate set). The algorithm can
safely stop now if all pfv in the candidate set have probabil-
ities higher than the top element of the priority queue of the
active nodes.

The pseudo code is given in Figure 4.

5.2.2 Determining the Result Probability

The algorithm in Section 5.2.1 is able to determine those
k elements having the highest probability with respect to
the query object, but it is not able to determine the actual
value of the probability. The reason is, that the stored Gaus-
sian functions are only relative probabilities. These must
be contrasted to the sum of the relative probabilities (theo-
retically) ofall other Gaussian functions in the database, as
discussed in Section 3:

P (t|q) =
p(q|t)∑

s∈DB p(q|s)

For pages which are far away from the query point, these
relative probabilities (and also their approximations) are

PriorityQueue kMLI_Query(int k, Page root, Point query) {
// descending priority queues with k entries
PriorityQueue candidates = new PriorityQueue(descending, k);
// descending priority queues
PriorityQueue activePages = new PriorityQueue(descending);
//init
activePages.put(root, MAX_REAL);
//traverse Gauss-tree
do {

Page current = activePages.removeFirst();
if(current is a data page) {

for each vector in current {
probability = calcProbability(vector, query);
candidates.put(vector, probability);

}
} else {
Page successors [] = current.getSuccessors();
for each s from successors {

probability = calcMaxProbability(s, query);
activePages.put(s, probability);

}
}

} while (activePages.isNotEmpty() &&
candidates.getLastProbability ()
< activePages.getFirstProbability());

return candidates;
}

Figure 4. Pseudo Code for the k-MLIQ.

close to zero. Therefore, notall database objects need to
be examined in order to determine the true denominator of
this formula with sufficient accuracy.

We modify our algorithm of Section 5.2.1 in the follow-
ing way:

• Whenever a leaf node is accessed, the corresponding
pfv are examined and summed up for the total proba-
bility.

• Additionally, we maintain the upper and lower bounds
for the impact of the objects which are stored in sub-
trees which have not yet been examined.

• The parent nodes of all subtrees which have not yet
been examined are stored in the priority queue. There-
fore, the upper and lower bounds are always updated
whenever the top element is taken out of the queue and
when the child nodes are re-inserted.

• The lower and upper bounds of the part of the sum
which is caused by a single node in the tree in which
n entries are stored, is given byn · Ňµ̌,µ̂,σ̌,σ̂(q) and
n · N̂µ̌,µ̂,σ̌,σ̂(q), respectively.

• The algorithm stops when both of the following condi-
tions hold:

22nd Int. Conf. on Data Engineering (ICDE'06), Atlanta, GA, 2006

– Thek pfv of highest probability are determined
(i.e. all candidates have higher probabilities than
the top element of the queue)

– The upper and lower bounds of the sum are close
enough together to guarantee that the result is ex-
act for allk answers according to user’s specifi-
cation of exactness (e.g. by a certain number of
digits)

5.2.3 Probability Threshold Queries

This algorithm is similar to that of Section 5.2.2 with the
difference that an unknown number of possible answer ob-
jects is maintained. An object must be stored in that set
until it is guaranteed (according to thelower bound of the
denominator) that the object has a probability which is be-
low the specified threshold. The algorithm can safely stop
when for all objects in the answer set it is guaranteed (ac-
cording to theupperbound of the denominator) that they
are safely above the specified threshold. We need both a
lower and upper approximation of the Gaussian functions
stored in a node.

If the user additionally specifies to report the actual prob-
abilities of the answer elements at a specified accuracy, the
algorithm may have to access more pages from the priority
queue until all probabilities are known with sufficient cer-
tainty, like in Section 5.2.2

The pseudo code of our method for the probability
threshold query is given in Figure 5.

5.3 Tree Construction

In the following we derive the optimization goals for the
insert- and split strategies applied in the Gauss-Tree. In-
tuitively, we have to collect such probabilistic feature vec-
tors in one common leaf node (or subtree in general) which
share both similarµ andσ values because if one of these pfv
is needed for a given query, also the other ones are proba-
bly needed for that query. However, the situation is not that
clear as it is for conventional feature vectors where the typ-
ical optimization goal is to achieve hyper-rectangles with
approximately uniform side lengths. The main difference is
the following: If we have a node which contains only pfv
which have a small standard deviation for one of the prob-
abilistic features, i.e.̂σi ' 0 then it is also beneficial if the
µ values are spread over a small range, i.e.µ̂i − µ̌i ' 0
because if we have both small values ofσ as well as small
rangesof µ then this node will be very selective, i.e. the
node will only be accessed for queries for which the stored
pfv are highly probable candidates. In this case,N̂...(x) is
narrow, and unnecessary page accesses can be avoided. In
contrast, if the node also contains pfv with a high variance
then a small range ofµ will not help much either because

PriorityQueue TI_Query(Page root, Point query, float t) {
real minSum, maxSum, sum = 0;
PriorityQueue candidates = new PriorityQueue(desc);
PriorityQueue activePages = new PriorityQueue(desc);
//init
activePages.put(root, MAX_REAL);
minSum += root.minProb*root.size;
maxSum += root.maxProb*root.size;
//search
do {

Page current = activePages.removeFirst();
minSum -= current.minProb*current.size;
maxSum -= current.maxProb*current.size;
if(current is a data page) {

for each vector in current {
probability = calculateProbability(vector, query);
candidates.put(vector, probability);
sum += probability;

}
} else {
Page successors [] = current.getSuccessors();
for each s from successors {

probability = calculateMaximalProbability(s, query);
activePages.put(s, probability);
minSum += s.minProb*s.size;
maxSum += s.maxProb*s.size;

}
}
//delete unnecessary candidates
while(candidates.getLastProbability()/(minSum+sum) < p)
candidates.removeLast();

} while (activePages.isNotEmpty()
&& activePages.getFirstProbability()/(minSum+sum)<p);

//calculate final probabilities
for each c in candidates {
prev = candidates.getProbability(c);
candidates.updateProbability(c, prev/(maxSum+sum));

}
return candidates;

}

Figure 5. Pseudo Code for the TIQ.

N̂...(x) will be spread over a wide range anyway. But if
the range ofσ values (i.e.σ̂i − σ̌i) is small, then we know
at least that this node contains no pfv with a high proba-
bility density. In this case, the node can be excluded for
many queries (e.g.k-MPQ) which have already found at
leastk pfv with higher probability in some other nodes of
the Gauss-tree.

We can summarize this intuition for the split strategy (on
every node overflow) in the following way: If̂σi is low,
then perform a node split according toµi. Otherwise per-
form a split operation according toσi. In the following, we
will capture this intuition more precisely because we do not
only have to decide whether to split inµ or σ but also which
of thed differentµ or σ have to be used for splitting. Ad-
ditionally, our analysis gives a formal justification for the

22nd Int. Conf. on Data Engineering (ICDE'06), Atlanta, GA, 2006

strategy. The mathematical model can be used not only for
the decision of the split but also for resolving the situations
during the insert (i.e. whenever more than one branch of the
tree is eligible for the new pfv).

The split decision must minimize the probability of a
node to be accessed for an arbitrary query. This probability
is proportional to the integral of the hull curve:∫ +∞

−∞
N̂µ̌,µ̂,σ̌,σ̂(x)dx

The integral can be determined for each probabilistic fea-
ture separately. The computation of the integral is straight-
forward. Remember the case analysis of lemma 2. Case
(IV) is a constant function, and cases (I), (III), (V), and (VII)
are Gaussian functions with givenµ andσ for which effi-
cient integration methods are known. We apply sigmoid
approximation by a degree-5 polynomial. The only part
which requires a little bit of consideration is case (II) and
its symmetric counterpart (VI) where we have to integrate
overNµ̌,µ̌−x(x) from µ̌ − σ̂ to µ̌ − σ̌. However, substitut-
ing (µ̌− x) for σ in the definition of the probability density
function of the Gaussian distribution yields:

Nµ̌,µ̌−x(x) =
1√

2πe · (µ̌− x)

which integrates to(ln σ̂ − ln σ̌)/
√

2πe for the above men-
tioned integration limits.

For the insertion strategy, we apply the following rules
to select a path of the Gauss-tree :

• If the new pfv fits into exactly one node, this node is
followed.

• If the new vector does not fit into any node, we exam-
ine all subnodes and find the leaf node which causes
the least increase of volume.

• If the new vector fits into more than one node, we fol-
low all paths and try to find a leaf node where the node
exactly fits in (or minimize the increase of volume, if
no exactly fitting node exists).

When a node is beyond its capacity, it has to be split.
We tentatively perform a median split in eachµ-dimension
and eachσ-dimension of the Gauss-tree. For every ten-
tative split, we determine the lower and upperµ and σ
bounds of the two resulting nodes, and evaluate the inte-
gral

∫
N̂µ̌,µ̂,σ̌,σ̂(x)dx for both nodes. The split operation

minimizing the sum of these two integrals is made perma-
nent.

6 Experimental Evaluation

For our experimental evaluation, we implemented the
Gauss-tree and all compared methods in Java. All exper-
iments described below were performed on a workstation

0

20

40

60

80

100

x1 x2 x3 x4 x5 x6 x7 x8 x9

Pr
ec

is
io

n,
 %

0

20

40

60

80

100

x1 x2 x3 x4 5x 6x 7x 8x 9x

R
ec

al
l,

%

NN

MLIQ /
G-Tree

0

20

40

60

80

100

x1 x2 x3 x4 x5 x6 x7 x8 x9

Pr
ec

is
io

n,
 %

(b) Data Set 2

(a) Data Set 1

0

20

40

60

80

100

x1 x2 x3 x4 5x 6x 7x 8x 9x

R
ec

al
l,

%

NN

MLIQ /
G-Tree

Figure 6. Precision and Recall of 3-NN query
on conventional feature vectors and 3MLIQ
on pfv.

that is equipped with two AMD Opteron 1.8 GHz proces-
sors and 8 GB main memory. We used up to 50 MByte as
database cache which was cold started before each exper-
iment. In our experiments, we compare the effectiveness
and efficiency of the proposed solution for handling uncer-
tain data on two different data sets.

Data set 1 consists of 10,987 27-dimensional color his-
tograms of an image database. To describe these images
as probabilistic feature vectors, we complemented each di-
mension with a randomly generated standard deviation. A
total number of 100 objects was randomly selected and new
observed mean value was generated w.r.t. the corresponding
Gaussian. For these queries, new standard deviations were
randomly generated. To additionally test our method on a
larger data set, we randomly generated 100,000 probabilis-
tic feature vectors in a 10-dimensional feature space along
with correspondingσ values (data set 2). For data set 2,
500 query vectors were selected and modified as described
above.

To demonstrate that ordinary similarity search on feature
vectors using Euclidean distance is not sufficient for proba-
bilistic queries on imprecise data, our first experiment com-
pares precision and recall for both methods. To compare the
performance of the Gaussian uncertainty model to ordinary
similarity search, we processed an MLIQ on the Gauss-tree
and a nearest neighbor query on the mean values. For each
query, we measured precision and recall. The recall is the
percentage of retrieved and correct answers among all ob-
jects in the database that are correct and precision is the
percentage of the retrieved and correct objects among all
objects in the result set. For NN queries and MLIQ, both
measures are the percentage of queries that retrieved the

22nd Int. Conf. on Data Engineering (ICDE'06), Atlanta, GA, 2006

Data Set 1

0

20

40

60

80

100

120

140

160
Pa

ge
 A

cc
es

s,
%

1-MLIQ TIQ (P=0.8) TIQ (P=0.2)
0

20

40

60

80

100

120

140

C
PU

 T
im

e,
 %

1-MLIQ TIQ (P=0.8) TIQ (P=0.2)

(a)

(b)

0
20
40
60
80

100
120
140
160
180

O
ve

r
A

ll
T

im
e,

 %

1-MLIQ TIQ (P=0.8) TIQ (P=0.2)

G-Tree

X-Tree

Seq. File

Data Set 2

0

20

40

60

80

100

120

140

160

Pa
ge

 A
cc

es
s,

%

1-MLIQ TIQ (P=0.8) TIQ (P=0.2)
0

20

40

60

80

100

120

C
PU

 T
im

e,
 %

1-MLIQ TIQ (P=0.8) TIQ (P=0.2)
0

20

40

60

80

100

120

140

O
ve

r
A

ll
T

im
e,

 %

1-MLIQ TIQ (P=0.8) TIQ (P=0.2)

G-Tree

X-Tree

Seq. File

Figure 7. Performance of sequential scan, X-tree on hyper-rectangle approximations of pfv and
Gauss-tree on data set 1 and data set 2 (see text for details).

correct object.
Figure 6 compares precision and recall for both methods.

The MLIQ achieved a precision and recall of 98% for data
set 1 and 99% for data set 2. Thus, our new query, based on
the Gaussian uncertainty model, achieved almost optimal
results in this experiment. On the other hand, the NN query
displayed only a precision of 42% for data set 1 and 61%
for data set two. Thus, ordinary similarity search seems not
to be suited well for handling uncertain data corresponding
to a Gaussian error. To show that ordinary similarity search
cannot improve its performance by using larger result sets,
we increased the number of retrieved objects for the near-
est neighbor query which increases the recall but decreases
the precision. For data set 1 the recall did not significantly
increase. Even for a result set being 9 times bigger than nec-
essary the recall reached only a value of 60%. For data set 2
the recall could be improved to 97% when using more than
6 times the size of the result set that is necessary. However,
due to the dependency between precision and recall, the pre-
cision dropped to only 18%. Thus, the right selection ofk
cannot compensate for the missing handling of uncertainty.

In the next set of experiments, we compare the efficiency
of query processing when using the Gauss-tree to the basic
solution of a sequential scan over the complete database.
To additionally compare to a more sophisticated method,
we use an X-tree to store rectangular approximation of each
pfv. To derive these approximations, we calculate the 95%

quantiles in each dimension, i.e. we determine the interval
around the mean value of a Gaussian that contains a random
observation with a probability of 95%. By combining these
intervals to a hyperrectangle, we generate a good approxi-
mation for each pfv. To process a MLIQ with this method
we first calculate an approximation for the query pfv. After-
wards, we use the X-tree to determine a candidate set con-
sisting of all approximations that intersect with the query
approximation. To find out the final result the candidate set
is refined by calculating the exact probabilities. Let us note
that this method does not offer exact results with respect to
Gaussian uncertainty model because the used approxima-
tions allow false dismissals. However, using this method,
we observed a precision and recall that was only slightly
below the values we observed for the Gauss-tree.

Figure 7 displays the page accesses, cpu time and com-
plete query time for an MLIQ and two TIQ (Pθ = 0.2 and
Pθ = 0.8) on both data sets. All values are given in per-
cent to the values of the sequential scan using the Gaussian
uncertainty model. For data set 1, the Gauss-tree was able
to reduce the page accesses as well as the CPU time up by
a factor of 4.2 compared to the sequential scan for all three
query types. Though, the all over time suffered from addi-
tional seeks on the hard disc, the Gauss-tree was still able to
improve query processing by at least 46% for all three types
of queries. For data set 2, the Gauss-tree achieved a speed
up of 4.3 with respect to the number of accessed pages and

22nd Int. Conf. on Data Engineering (ICDE'06), Atlanta, GA, 2006

of 4.8 for the cpu time of the MLIQ. For the TIQ, it even
achieved to improve the page accesses by a factor between
35.7 and 43.2 of the page accesses of the sequential scan
and the cpu time by a factor of 13.2 of the cpu time of the
sequential scan. The speed up of the all over query time was
between 3.1 for the MLIQ and about 7.5 for both TIQ. Thus,
the Gauss-tree offered a significant improvement of the effi-
ciency compared to the sequential scan. The X-tree storing
rectangular approximations on the other hand did not offer
any speed up against the sequential scan for MLIQ. Though
it achieved some improvement for the TIQ, it was only ca-
pable to decrease the all over time of both queries by 17.3%
for data set 1 and 23.2% for data set 2. Thus, it did not offer
any real benefit.

7 Conclusions

In this paper, we have introduced the Gaussian uncer-
tainty model for identification queries on inexact, proba-
bilistic feature vectors (pfv). This model extends feature
vectors by an additional uncertainty value for each dimen-
sion, associating each feature vector to a multivariate Gaus-
sian distribution. To speed up query types such as Threshold
Identification Queries (TIQ) ork-Most Likely Identification
Queries (k-MLIQ) we propose the Gauss-tree, a balanced
index structure from the R-tree family which does not index
the Gaussian curves as spatial objects but instead the param-
eter space of the means and variances of the Gaussians. In
our experimental evaluation, we demonstrate the superior
quality of the query result when using probabilistic feature
vectors as well as the efficiency when using the Gauss-tree.
For future work, we plan to investigate the storage of proba-
bilistic feature vectors using paradigms different from hier-
archical index structures such as vector approximation. We
also plan to parallelize our index structure for a distributed
database environment.

References

[1] S. Berchtold, D. A. Keim, and H.-P. Kriegel. ”The
X-Tree: An Index Structure for High-Dimensional
Data”. In Proc. 22nd Int. Conf. on Very Large Data
Bases (VLDB’96), Bombay, India, pp. 28-39., 1996.

[2] C. Böhm, S. Berchthold, and D. Keim. ”Searching
in High-dimensional Spaces: Index Structures for Im-
proving the Performance of Multimedia Databases”.
ACM Computing Surveys, 3(33), 2001.

[3] J. P. Campbell. ”Speaker Recognition: A Tutorial”.
Proceedings of the IEEE, Vol. 85, No. 9, 1997.

[4] R. Chellappa, C. Wilson, and S. Sirohey. ”Human and
machine recognition of faces: A survey”. Proc. IEEE,
83(5):705–740, 1995.

[5] R. Cheng, D. Kalashnikov, and S. Prakhabar. ”Evalu-
ating Probabilistic Queries over Imprecise Data”. In
Proc. ACM SIGMOD Int. Conf. on Management of
Data (SIGMOD’03), San Diego, CA, USA), pages
551–562, 2003.

[6] R. Cheng, Y. Xia, S. Prakhabar, R. Shah, and J. Vitter.
”Efficient Indexing Methods for Probabilistic Thresh-
old Queries over Uncertain Data”. InProc. 30th Int.
Conf. on Very Large Data Bases (VLDB’04), Toronto,
Cananda, pages 876–887, 2004.

[7] C. Faloutsos, M. Ranganathan, and Y. Manolopou-
los. ”Fast Subsequence Matching in Time-Series
Databases”. InProc. ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD’94), Minneapolis,
MN, pages 419–429, 1994.

[8] A. Guttman. ”R-trees: A Dynamic Index Structure for
Spatial Searching”. InProc. ACM SIGMOD Int. Conf.
on Management of Data, pages 47–57, 1984.

[9] G. Hjaltason and H. Samet. ”Ranking in Spatial
Databases”. InProc. 4th Int. Symposium on Large
Spatial Databases, SSD’95, Portland, USA, volume
951, pages 83–95, 1995.

[10] K.-I. Lin, H. V. Jagadish, and C. Faloutsos. ”The
TV-Tree: An Index Structure for High-Dimensional
Data”. VLDB Journal, 3(4):517–542, 1994.

[11] R. Mehrotra and J. Gary. ”Feature-Based Retrieval
of Similar Shapes”. InProc. 9th Int. Conf. on Data
Engineering, Vienna, Austria, pages 108–115, 1993.

[12] F. B. of Investigation. ”The Science of Fingerprints:
Classification and Uses”. Washington, D.C., U.S.
Government Printing Office., 1984.

[13] T. Seidl and H.-P. Kriegel. ”Efficient User-Adaptable
Similarity Search in Large Multimedia Databases”.
In Proc. 23rd Int. Conf. on Very Large Data Bases
(VLDB’97), pages 506–515, 1997.

[14] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosen-
feld. Face recognition: A literature survey.ACM Com-
put. Surv., 35(4):399–458, 2003.

22nd Int. Conf. on Data Engineering (ICDE'06), Atlanta, GA, 2006

