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ABSTRACT

In this paper we focus on the problem of continuously monitoring
the set of Reverse k-Nearest Neighbors (RENNs) of a query object
in a moving object database using a client server architecture. The
RENN monitoring query computes for a given query object g, the
set RENN(q) of objects having g as one of their k-nearest neighbors
for each point in time. In our setting the central server can poll the
exact positions of the clients if needed. However in contrast to most
existing approaches for this problem we argue that in various appli-
cations, the limiting factor is not the computational time needed but
the amount of traffic sent via the network. We propose an approach
that minimizes the amount of communication between clients and
central server by an intelligent approximation of the position of the
clients. Additionally we propose several poll heuristics in order to
further decrease the communication costs. In the experimental sec-
tion we show the significant impact of our proposed improvements
to our basic algorithm.

Categories and Subject Descriptors

H.3.3 [INFORMATION STORAGE AND RETRIEVAL]: Infor-
mation Search and Retrieval—Query Processing

General Terms

Algorithms, Performance
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1. INTRODUCTION

The prevalence of inexpensive Global-Positioning-Devices (GPS)
enables to track and coordinate large numbers of continuously mov-
ing objects, and store their positions in databases. This results in
new challenges for query optimization in such databases because it
is no longer sufficient to have a query processing strategy that is tai-
lored to meet disk specific problems only. Rather, query processing
in mobile databases needs to consider also problems specific to the
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hardware of mobile devices such as power source, network traffic,
etc. Particularly, a main goal in many applications where mobile
objects are tracked is to minimize the network traffic and, as a con-
sequence, minimize the drain of the power source of the devices.
In this paper, we consider the monitoring of the RENNs of a
query object (that may itself move or not) in a set of mobile clients
at a central server. The set of reverse k-nearest neighbors (RKNN)
of a query object ¢ contains all objects in a database that have ¢
among their corresponding k-nearest neighbors (kKNN). Recent ap-
proaches for supporting RENN queries focus on traditional database
settings using spatial or metric index structures. Considerably less
work has been done so far to support RENN queries on mobile ob-
jects that may not be indexed by a point access method. In fact,
many applications that deal with mobile objects require to continu-
ously monitor the RENNSs of query objects in the database in order
to know which objects the queries have an influence on. Our so-
Iution can handle mono-chromatic (queries and possible answers
are drawn from the same set of clients) as well as bi-chromatic
(queries and possible answers are drawn from two different sets
of clients) scenarios, though we will focus on the mono-chromatic
case for clarity reasons. To track and observe large numbers of
continuously moving objects we use a standard model. The latest
submitted positions of clients are stored in a database at the server.
After the time slot of this transmission, the position of the client is
conservatively approximated at the server by a minimal bounding
box that contains all possible positions the client may have reached
since its last location update and that usually grows over time.

2. CONTINUOUS R&KNN MONITORING

In the following, we assume that D is a database of n objects
(clients) moving continuously within a 2D Euclidean space and
dist is the Euclidean distance'. In addition, we assume that the
objects (clients) are connected with a central server via a wireless
network and can send their exact positions when requested from the
server. We focus on the mono-chromatic case here but all concepts
can easily be extended for bi-chromatic scenarios.

At server side the position of each object o € D is approxi-
mated by a 2-dimensional axis aligned rectangle O that minimally
bounds the possible positions of 0. The object sends its exact posi-
tion o.pos to the server only if necessary. During query processing
at the server, the exact position of o will not be updated at server
side as long as the exact position o.pos is within the rectangle O
and the query can be answered based on the information of the ob-
ject positions that is currently available at the server.

The set of reverse k-nearest neighbors (RkENNs) of an object g
contains all objects pinD such that g is one of the k-nearest neigh-

'The concepts described here can also be extended to any dimen-
sionality d > 2 and any L;,-norm.
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(a) Snapshot 1. (b) Snapshot 2. (c) Snapshot 3.

Figure 1: RENN monitoring in a database of moving objects.

bors (kKNN) of p, i.e., the distance dist(p, q) is smaller or equal
to the kKNN-distance of p. The problem of monitoring the RENNs
of a query q can be illustrated by considering the sample database
of mobile objects depicted in Figure 1 for k = 1. Three snap-
shots at consecutive time slots of the spatio-temporal data objects
are shown. At each of these snapshots, the current position of each
client is given and the current direction of movement as well as the
velocity of each object is indicated by a vector. At the first snapshot
(cf. Figure 1(a)), the query object ¢ has object 01 as its only RINN.
At next time slot (cf. Figure 1(b)), object 01 moves away from ¢
and is no longer a RINN of ¢. At this time RINN(q) = 0, since
no object in the database has ¢ as its INN. At the next time slot (cf.
Figure 1(c)) objects 02 and 03 are R1INNs of q.

2.1 General Idea

The aim of monitoring the RENNSs of a query q is to keep track of
these changes of RkNN (q), i.e., to continuously update the set of
RENNSs of ¢ (or multiple query objects {q1, . . ., ¢m }) such that the
set RkNN (q) (or RENN (g;)) is valid at each point of time. During
the monitoring, we want to keep the communication cost between
the clients and the server as low as possible. For this reason, we
try to avoid unnecessary position updates at the server side. For a
straightforward approach to monitoring RENN (q), we require the
exact positions of each mobile object in D at each point of time.
Therefore, we propose that each time a mobile object sends its po-
sition to the server, the server sends to this mobile object a rect-
angular region (approximation) containing this position which we
call safe region in the remainder. The mobile object automatically
sends a position update to the server once it leaves its safe region
and is assigned a new safe region by the server. The server can
use the safe region as an approximation of the moving object’s true
position. The safe regions of the moving objects can be used to
conservatively prune candidates, and progressively detect results
without any communication cost.

In order to implement this idea, the following issues need to be
solved. First, we need a basic filter-refinement framework. To ob-
tain an actual algorithm from the framework, we need to explore
possibilities for correctly and sufficiently performing conservative
pruning and progressive true hit detection based on rectangular ap-
proximations (safe regions). This will be discussed in Section 3.
Second, for the remaining candidates, we need to decide, which
objects should be refined next, i.e., for which objects should the
server request the exact positions. This is not trivial because the
exact position of a candidate might be sufficient to decide about
the status of other candidates without further refinement. We will
solve this question in Section 4. Finally, the size and position of the
safe regions obviously have an impact on the number of necessary
position polls. Obviously, an object that is at the edge of being an

RENN of g should have a rather small safe region to allow more
accurate decisions based on these region. Contrarily, an object that
is far from being an RENN of ¢ should have a large safe region in
order to reduce the number of updates caused by the object leaving
its safe region. We will deal with this problem in Section 5.

2.2 Initialization

Initially, we need to create the safe regions of all clients in the
database and to generate the initial set of RENNs. We assume that
each object o, € D U {q} is assigned a safe region O; conserva-
tively approximating its current location, i.e., O; covers the exact
location of o; 2. D’ denote the set of all save regions of objects in
D U {q}. At the beginning, the server is assumed to be aware of
the save regions in D’ but not the exact object locations. Based on
this setting, the server can initialize RENN (¢q) by performing the
snapshot RENN query. We propose a filter/refinement solution for
this initial query where the query object and all database objects are
approximated using the general pruning concepts described in [6].
For the selection of the object whose position is polled next, we use
heuristics detailed in Section 4. Each object which has submitted
its exact location is stored in a list called update_list. For all these
objects we have to update the safe regions. The filter iteratively re-
fines objects until there are no candidates anymore and RkNN (g)
is determined. Finally, we have to compute new safe regions for all
objects in update_list. Heuristics for the determination of appro-
priate safe regions are given in Section 5. Subsequently, the safe
regions are sent back to the objects (clients).

2.3 Monitoring

After performing the query initialization, the first query result
is stored in rknns. It is obvious that if the objects now change
their locations over time then the query result may change as well.
However, the safe regions are designed such that the query result
remains valid as long as the objects stay within their safe regions.
However, when an object 0; € D U {q} leaves its safe region it has
to inform the server about its new position. Then, the current query
result could become invalid and has to be updated. The safe region
of o; is repositioned and possibly changes its extension. Heuristics
for this method are presented in Section 4. As long as the filter
step yields candidates, the exact position of an object has to be
polled and the safe region has to be updated. Similarly, new safe
regions of refined objects are computed and returned to the clients.
Thus, during monitoring, communication is only necessary when
performing a location update.

3. SPATIAL PRUNING STRATEGIES

In the filtering step of the initialization and monitoring proce-
dures, we need to decide if the safe region O, of object 01 is closer
to the safe region O3 of an object 02 than the safe region () of the
query q. For this purpose, we use two existing techniques for spa-
tial pruning, namely the Minimal-Maximal-Distance (short: Min-
MaxDist) based spatial pruning and the optimal spatial pruning Cri-
terion [6]. Probably the most widely used decision criterion for spa-
tial pruning among rectangles is based on two well known metrics
defined on rectangles [10]. The minimum distance MinDist(A, B)
between two rectangles A and B is the largest distance that always
underestimates the distance of point pairs (a,b) € A x B. The
maximum distance MaxDist(A, B) between two rectangles A and
B is the smallest distance that always overestimates the distances
of all point pairs (a,b) € A x B. The Min-/MaxDist criterion

“Note that save regions are also allowed to have zero extension, in
this case they represent the exact locations.



Figure 2:
heuristics.

Illustration of the maximum pruning potential

has certain limitations that are discussed in [6]. The second spatial
pruning technique [6] that we propose to plug into our algorithm
overcomes these limitation and is shown to be optimal.

4. REFINEMENT HEURISTICS

In our initialization and monitoring procedures, we need to choose
an object that sends its current position to the server in order to
compute the RENNs of ¢g. The Mindist heuristics propose to refine
the object with the smallest minimal distance to the query object
g. In the following we propose a novel heuristics called Maximum
Pruning Potential Heuristics that utilizes the optimal spatial prun-
ing technique. The main idea of this heuristics is to choose the ob-
ject o, for which refinement has the highest expected candidate size
reduction. Intuitively, the pruning potential of an object o is com-
posed of the number of objects in the database that do not prune
the safe region O of o (if o is a candidate) but may prune the exact
representation of o (self pruning) and the number of candidates c,
for which the refinement of o may prune ¢ (mutual pruning).

For the self pruning potential of a given candidate object c the
task is to determine the number of objects o in the database that
may prune c if cis refined. Consider the example in Figure 2. Here,
the pruning region of the safe region O of a database object o is de-
picted. In particular, the shaded region containing ) (analogously:
O) depicts the half-space for which any point in this half-space is
definitely closer to g (analogously: o) than to o (analogously: g).
Note that we do not have to compute these pruning half-spaces. We
just use them for illustration purpose here. The shaded region con-
taining O is called the conservative pruning region of O, whereas
the region containing Q) is called progressive pruning region of O.
The unshaded region contains the points p for which it cannot be
decided (based only on the approximations @) and O) if p is closer
to g or to o. Considering the safe region of the candidate c; (anal-
ogously: ¢s), it is clear that refining the region C' (analogously:
C’5) will not give us any new information with respect to o, since
c1 (analogously: cs) are definitively closer to (analogously: far-
ther from) ¢ than o when considering the approximations only. In
contrast, refining the region C> of candidate co may result in c2
being definitely closer to ¢ than o which may allow c2 to be re-
ported as a true hit. Analogously, the exact position of c4 may be in
the conservative pruning region, so that refining its safe region C4
may allow c4 to be pruned. Therefore, the self pruning potential
of ¢ (analogously: c4) is increased by 1, since refinement of the
safe regions of these objects may yield new information about the
topology between ¢, o and c2 (analogously: c4). However, the self
pruning potential for ¢z cannot be increased through the refinement
of its safe region C' — 3, since regardless of the exact position of
cs, it cannot be decided if it is closer to ¢ or to o.

We can see that for the safe region @) of a given query ¢ and the
safe region O of a database object o, the self pruning potential is
incremented for each candidate which is located on the edge of ei-
ther the conservative or the progressive pruning region. Although
computing the curvilinear pruning regions is expensive in the case
of rectangular approximations [5], we can use the technique of par-
tial domination ([6]) to detect if a candidate is located on the edge
of the conservative (analogously: progressive) pruning region be-
tween the safe regions () and O.

For the mutual pruning potential of a given database object o,
the task is to determine the number of candidates c in the database
that may be pruned if the safe region C' of c is refined. Again,
consider the example in Figure 2. The task is to determine the
mutual pruning potential of o. It is clear that no more information
is gained regarding candidates c; and cs since the location of these
object w.r.t. ¢ and o can be decided based on the safe regions @),
O, (', and Cs, only. Refining the safe region O of object o may
allow a decision to be made for objects c2 and cs, since refining
O will generate new pruning regions that contain the old pruning
regions. In addition, the change of the pruning region may also
allow a decision for object c3 based on C's. Since the refinement of
O may allow to decide the spatial topology of the regions C5, Cs
and C}, the Mutual-Pruning Potential of o is three in this example.

We increase the mutual pruning potential of an object o by 1 for
each candidate ¢ for which refining the safe region O of o may
allow a new decision. For identifying those objects, we can again
use the optimal pruning criterion in [5]. If ¢ is not yet pruned,
the refinement of O may allow ¢ to be pruned if and only if the
safe region C of ¢ does not intersect both the conservative and the
progressive pruning region of O.

Our maximum pruning potential heuristics refines the objects
with the highest total self- and mutual pruning potential.

S. SAFE REGIONS

In our solution, the server is required to determine new safe re-
gions for moving objects that have been refined in the refinement
step of the algorithm.

Our first approach is to use a safe region of constant size for each
moving object, depending on the velocity of the moving object as
well as possibly other, domain specific properties of the moving
object. The choice of an optimal size is not trivial since too small
safe regions will result in a large number of required position up-
dates due to objects moving out of their safe region. On the other
hand, if the safe regions are chosen too large, it is more likely that
the object has to be refined. Our approach tries for each object o;
that are currently refined to re-compute the safe region to an object
specific size. If the new safe region O; is valid, i.e., if the result of
the RENN query is still deterministic based on O;, then the server
sends a message to o; informing o; to use its new safe region. Any
object for which the new safe region is not possible has to contin-
uously stream its position updates to the server until the server is
able to set a new valid safe region for o;.

We note that objects that are very far from the query point may
have a large safe region. The reason is that for an object o that
is far from the query object, it is likely that there exist objects that
can prune o, even if the safe region of o is large. In contrast, objects
that are close to the query object are likely necessary to be refined
if their safe region is too large. Thus objects far from the query
should have a smaller safe region. Therefore, we propose a second
strategy where we change the size of the safe region dynamically.
In particular, we propose to adjust the size of the safe region of an
object o each time it is required to communicate with the server. We
differentiate between two cases. First, if o sends its position update



to the server due to moving out of its safe region we try to enlarge
the safe region of o. Second, if the exact position of o is polled
by the server in the refinement step, we try to successively reduce
the size of the safe region of o, until either no more reduction is
necessary to answer the RENN query, or until the size of the safe
region of o becomes too small. In the later case, o is given no safe
region and has to stream its position updates to the server until it
becomes assigned a new safe region.

6. EXPERIMENTAL RESULTS

For the evaluation of the different approaches we used two dif-
ferent data set generators, an artificial data generator that generates
mobile objects at random positions in a d dimensional space that
move into a uniformly distributed random direction at a constant
velocity and the traffic generator Viewnet [9] using the road net-
work of Oldenburg, Germany, containing 6105 Nodes and 7035
Edges. The default parameter values are k = 1, |D| = 1000. If not
stated otherwise, we monitored the RENNs of 100 query objects
simultaneously and report the average results in terms of network
traffic, i.e., the number of required exact positions that have to be
sent to the server.

In a first experiment, we increased the number of moving objects
in the database from 50 moving objects to 1000 moving objects and
measured the number of required position updates that have to be
sent to the server in a time frame of 30 minutes in order to simul-
taneously monitor the RENNs of 100 query objects. The query ob-
jects in this experiment are static query points randomly located in
the object space. The results of this scalability experiment showed
that using the optimal decision criterion and the maximum pruning
potential heuristics, the number of required position updates scales
sub-linear in the number of moving objects.

In general, the number of position updates increases in our exper-
iments as k increases, since more objects may have to be refined to
answer the RENN query at a given time. The absolute improvement
of using the optimal decision criterion and the maximum pruning
potential heuristic was constant in k.

We compared the strategies of using rectangles of fixed size with
the strategy of dynamically adjusting the size of the approxima-
tions. It can be observed that the total number of position updates
using dynamic safe regions is only a fraction of the number of po-
sition updates using static safe regions. However, in the case of
static safe regions, moving objects only need to send their current
position and do not need to receive the new safe region. It can be
argued that the overhead of receiving the new safe region is negligi-
ble, since the communication channel has already been established
for sending the current object position, and receiving data is always
less expensive than sending.

Finally, we evaluated the impact of the proposed refinement heuris-
tics using a random refinement heuristic as a baseline. The results
confirm that using the MinDist heuristic reduces the number of re-
quired position updates by a significant factor. However, using the
maximum pruning potential heuristic additional reduces the perfor-
mance by another factor of similar size.

7. RELATED WORK AND CONCLUSIONS

A number of methods have been proposed for supporting RkNN
queries for stationary points [7, 15, 11, 1, 14, 2, 8] focussing on spe-
cialized pruning techniques based on spatial or metric index struc-
tures. However, none of these pruning concepts can be applied to
our problem of dynamic data.

An approach for index-based RENN search on mobile objects
has been proposed in [3] using a TPR-Tree [4]. This approach re-

quires knowledge about the future trajectory of the moving objects,
i.e., knowledge about the direction and velocity of moving objects.
However, the movement of objects in real applications is usually
unknown and the motion patterns are constantly changing [12].

In our paper, we do not make any assumption on the movement
of objects. Instead, the objects may send updates of their locations
to the central server at arbitrary time intervals. For this general
scenario, we propose an approach for continuous reverse k-nearest
neighbor monitoring in a client-server architecture. We aim at re-
ducing the communication cost between the clients and the server
by means of the concept of safe regions. Therefore, we propose
a filter and refinement strategy using an effective spatial pruning
filter and proposed effective heuristics for the refinement step. In
addition we proposed appropriate heuristics for the safe region gen-
eration. Our proposed pruning strategies and refinement heuristics
empirically outperform state-of-the-art solutions in terms of effec-
tiveness and efficiency.
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