
Continuous Proximity Monitoring in Road Networks

Hans-Peter Kriegel
Ludwig-Maximilians-University

Munich
Oettingenstr. 67

München, Germany
kriegel@dbs.ifi.lmu.de

Peer Kröger
Ludwig-Maximilians-University

Munich
Oettingenstr. 67

München, Germany
kroegerp@dbs.ifi.lmu.de

Matthias Renz
Ludwig-Maximilians-University

Munich
Oettingenstr. 67

München, Germany
renz@dbs.ifi.lmu.de

ABSTRACT
In this paper, we consider the following scenario: a set of mobile

objects continuously track their positions in a road network and are

able to communicate with a central server. The server which gets

position updates from the moving objects has to detect the event

that two objects reach or exceed a specified proximity distance.

This way, the server is permanently aware of all pairs of objects that

are within a certain distance range. Obviously, the communication

costs between the objects and the server quickly become the bottle-

neck if a position update is sent to the server at each tracking time

slot. We propose update strategies in order to reduce the communi-

cation overhead by defining special regions for each object. These

regions are defined such that no position updates at the server are

required as long as the objects do not leave their corresponding re-

gions. We present efficient algorithms for updating these regions

and detecting proximity/separation when objects leave their corre-

sponding regions. Furthermore, we empirically evaluate the differ-

ent strategies in terms of communication overhead, i.e. the number

of required position updates.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search process

General Terms
Algorithms,Performance

Keywords
proximity monitoring, traffic networks

1. INTRODUCTION
With the spreading of modern mobile devices like PDAs or car

navigation systems, location-based services (LBS) became more

and more important. The detection of proximity among moving

objects in traffic networks is a key issue in many LBS applications

such as routing applications, traffic jam analysis, and prediction, as

well as in traffic mining tasks e.g. traffic pattern analysis and con-

tinuous clustering of moving objects in a traffic network. Typically,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ACM GIS ’08, November 5-7, 2008, Irvine, CA, USA

Copyright 2008 ACM ISBN 978-1-60558-323-5/08/11 ...$5.00.

an object that moves around in a network is able to track its posi-

tion, e.g. via a GPS transmitter. In order to deploy location-based

services provided by systems embedded in stationary networks, it

is necessary that the mobile individuals are able to communicate

with the network, e.g. via cell phone. This way, the traffic can

be continuously monitored at a stationary central server which can

communicate with the mobile individuals which we call clients in

the remainder. An important information for the above mentioned

LBS applications is to know at what time which clients are in prox-

imity and which clients are in separation, i.e. to know for each

client the set of all other clients that are within or outside a range

of a critical distance ε. This information has to be computed by

the central server which globally detects the set of clients that are

in proximity, i.e. are within distance ε, and the set of clients that

are in separation, i.e. are not within distance ε. The global detec-

tion of proximity and separation corresponds to a kind of proximity

self-join and separation self-join of all clients moving within the

network. The result of these joins is a set of client pairs that are in

proximity and a set of client pairs that are in separation. The join

results can be used to support continuous density-based clustering

as proposed in [4] which in turn provides traffic flow analysis and

information routing among the mobile individuals assuming car to

car communication is available. If no privacy issues are infringed,

the join results can even be sent to the corresponding clients for

local analysis or further services.

Since the clients in the network are generally in motion, the re-

sults of the proximity join and separation join most likely change

steadily over time. A naive approach for keeping the join results

up-to-date is to recompute all proximity and separation informa-

tion after each new position update of the clients at the server from

scratch. However, this has two severe disadvantages: First, since

not all clients are affected by a change in proximity/separation, a lot

of already existing information will be redundantly re-computed.

This is obviously rather inefficient. Second, even worse, each client

must send a position update at each tracking time slot. This results

in a very large communication traffic overhead. In real-world sce-

narios, where we have more than thousands of clients, the commu-

nication costs are the bottleneck and this solution is simply infea-

sible. While there have been some more sophisticated approaches

proposed addressing the position update cost specialized for con-

tinuously moving clients in Euclidean space, no solution exists for

clients moving in a road network.

In this paper, we present an efficient approach for clients moving

in a road network that provides solutions for both afore mentioned

problems. In particular, we propose to compute for each client a

proximity region and a separation region at the server. The prox-

imity region of a client c defines that part of the traffic network in

which c can move around without causing any proximity violation

c2

c3 c4

c1

4

1

c5

Figure 1: Illustration of proximity regions in a traffic network.

with other clients that are currently in separation with c. The sepa-

ration region of a client c is defined analogously. The server sends

these regions back to the corresponding client. As far as a client

does not leave its corresponding regions, it does not need to send a

position update due to the conservative definition of the regions, i.e.

its movement does not affect the join results. On the other hand, if a

client moves across the boundary of one of its regions, it must send

a position update to the server. The server then must update the

join results and must re-compute the corresponding regions to send

it back to the affected clients. We present efficient algorithms for

these re-computations that only update the affected regions. As a

consequence, our approach provides the following advantages over

the naive solution. First, it incrementally updates only those re-

gions that are affected by the position change of a particular client

rather than redundantly re-computing the complete proximity and

separation information. Thus, also only those parts of the proxim-

ity and separation joins are updated that are affected by the position

change and a complete re-computation of the entire join results is

usually avoided. Second, it minimizes communication costs be-

tween clients and server because as long as the clients move within

their regions, no position updates need to be sent from the clients

to the server. The general idea of using proximity regions is visu-

alized in Figure 1. The region of each client is defined in such a

way, that as long as each client stays in its own proximity region, it

cannot approach any other client more than the distance threshold

ε. Consequently, the minimum distance between the boundaries of

two regions is ε.

The rest of the paper is organized as follows. In Section 2, we

discuss related work. Section 3 formalizes the problem of prox-

imity and separation detection in traffic networks. Our novel con-

cepts for efficient proximity detection and separation detection are

described in Sections 4. Section 5 presents a comprehensive ex-

perimental evaluation of the proposed concepts and Section 6 con-

cludes the paper.

2. RELATED WORK
In recent years diverse approaches for spatial query processing

on moving objects have been proposed. Some of them are based on

adequate access methods that can cope with highly dynamic data

[12, 20, 21, 22, 2]. They assume that the objects update their po-

sitions isochronously, if the current position exceeds a given dis-

tance from the assumed position [12, 20, 21] or after a fix number

of certain motion patterns. Jensen et al. [12] proposed to use an up-

date efficient B
+-tree that organizes time-stamped location vectors.

The location vectors were linearized based on their time-stamp and

based on a space-filling curve allowing to partition the data accord-

ing to their time-stamp while preserving spatial proximity. Saltenis

et al. proposed in [20, 21] a time-parameterized variant of the R-

tree [7] called the TPR-tree. The TPR-tree efficiently organizes

objects assuming that the objects move according to a linear func-

tion of time. Later Tao et al. presented in [22] the TPR*-tree which

improves the original TPR-tree by taking unique features of mov-

ing objects into account. Argarwal et al. introduced in [2] three

indexing approaches for objects moving along a linear trajectory.

Generally, the approaches for spatial query processing on mov-

ing objects can be classified into two classes, snapshot-based meth-

ods and methods based on continuous query monitoring. Snapshot

based methods [12, 20, 21, 22, 2, 26, 11, 18, 9, 13] aim at effi-

ciently processing queries that are issued at certain points of time.

Some of these methods exploit index structures that can cope with

moving objects [3, 12, 20, 21]. Our approach falls into the category

continuous query monitoring [6, 16, 24, 10, 19, 8, 5, 14, 25, 17].

In contrast to our approach, most existing approaches have focused

exclusively on Euclidean space [8, 5, 1, 23, 15]. In our scope are

techniques that are based on determining the validity of (previous)

queries based on their current locations [26, 8, 5, 1, 23, 15]. In this

context, the approaches [23, 15] are very close to our approach.

Given a set of client objects moving on a plane in the Euclidean

space, the goal is to detect when two objects approach each other

within a given proximity. Furthermore, the events when two ob-

jects lose their proximity should also be detected. The detection

is performed at a central server which can communicate with the

clients. The proposed approaches aim at reducing the communica-

tion between the mobile clients and the central server. In order to

keep the communication cost low, each moving object is assigned

to a region forming of a circle. The regions are constructed in such

a way, that the mobile clients do not need to send their actual posi-

tions to the central server until they leave their regions. This strat-

egy is quite close to that of our approach, except for the fact that

we detect the proximities within a spatial network. In a spatial net-

work, approaches based on the Euclidean distance cannot be used.

Rather, we need other types of “safe” regions.

3. PROXIMITY AND SEPARATION JOINS
IN TRAFFIC NETWORKS

We assume that a set of clients O move around in a given traf-

fic network and each client tracks its position on a globally fixed

set of discrete time slots, e.g. every 10 seconds. A traffic net-

work is a bidirectional graph G = (N, E) containing a set N
of nodes and a set E of edges connecting the nodes. Each node

n ∈ N is assigned to a two-dimensional point Pos(n) in the Eu-

clidean space. Each edge e ∈ E is assigned to a part Pos(e)
of the Euclidean space representing the possible locations on the

corresponding road segment. Each client c ∈ O is assigned to

a position c.pos ∈ Pos(G), where Pos(G) denotes all positions

Pos(G = (N, E)) = {p ∈ {Pos(n) ∪ Pos(e)} : n ∈ N, e ∈ E} in

the Euclidean space. This way, a client c can be assigned to a node

n ∈ N or to an edge e = (n1, n2) ∈ E. A weight is assigned to

each edge (n1, n2) between two nodes n1, n2 ∈ N that reflects the

cost that is required to traverse it, i.e. move from n1 to n2 or vice
versa. In addition, we assume that we can also compute a weight

representing the costs to move from a position p ∈ Pos(e) of an

edge e ∈ E to another position p′ ∈ Pos(e) of that edge. This

way, if a client is located on an edge e = (n1, n2), the distance of

c1
c2

c3

(a) Client c1 and c2 are

in proximity to each
other, i.e. c2 ∈ P (c1)
and c1 ∈ P (c2).
Client c3 ∈ P (c2) and
c3 ∈ S(c2).

1
P

1
S

c1
c2 c3

c4

(b) Client c2 ∈ P (c1)
and c3 ∈ S(c1), while
either c4 ∈ P (c1) or
c4 ∈ S(c1).

Figure 2: Examples of clients that are in proximity or in sepa-
ration in the Euclidean space.

the client to n1 is given in order to compute the exact traversal cost

to both adjacent nodes n1 and n2. The distance dist(., .) between

two clients in the network is measured by the network distance us-

ing these weights, e.g. computed by the Dijkstra algorithm.

The problem of proximity and separation detection is as follows.

Given a user-defined distance threshold ε, the server should com-

pute a proximity join, i.e. the set

O1 ��P O2 = {(c1, c2) ∈ O1 ×O2 | dist(c1, c2) < ε}
of pairs of clients that are in proximity to each other1. The set

O1 ��S O2 = {(c1, c2) ∈ O1 ×O2 | dist(c1, c2) ≥ ε}
represents the separation join, i.e. the set of pairs of clients that are

in separation to each other.

Both join sets need to be kept up-to-date, i.e. they need to be

updated and adjusted when clients approach to or depart from each

other.

For convenience, given a client c1 ∈ O we call all clients c2 ∈ O
with dist(c1, c2) < ε in proximity of c1. The set of clients that are

in proximity of c1 is defined as P (c1) = {c2 ∈ O | dist(c1, c2) <
ε}. Analogously, the set of clients that are in separation to c1 is

defined as S(c1) = {c2 ∈ O | dist(c1, c2) ≥ ε}.
Let us note that proximity and separation is a symmetric rela-

tionship, i.e. c1 ∈ P (c2) ⇔ c2 ∈ P (c1) and c1 ∈ S(c2) ⇔
c2 ∈ S(c1) as shown in the example illustrated in Figure 2(a). In

addition, obviously,

O1 ��S O2 = (O1 ×O2)− (O1 ��P O2)

holds, as well as c1 ∈ P (c2) ⇒ c1 �∈ S(c2) and, thus, c1 ∈
S(c2)⇒ c1 �∈ P (c2).

Let us note that clients may cause a permanent change between

proximity and separation to other clients because they steadily move

from proximity to separation and vice versa during two tracking

time slots. This in turn causes a steady update of the correspond-

ing join sets with a huge communication and computation over-

head. To avoid this, in many applications, it can be sensible to

introduce a lazy update of proximity and separation detection by

using two thresholds εP and εS for proximity detection and sep-

aration detection, respectively, where εS > εP . The sets P (c)

1Usually, O1 = O2 = O holds, i.e. we are interested in a self-join
of O

and S(c) of all clients c ∈ O have to be defined accordingly, i.e.

∀c2 ∈ O : dist(c1, c2) < εP ⇒ c2 ∈ P (c1) and ∀c2 ∈ O :
dist(c1, c2) > εS ⇒ c2 ∈ S(c1). When realizing lazy updates

where we assume that εS > εP clients which are between both

proximity/separation borders to a client c can either be in proxim-

ity of c or in separation of c, i.e. ∀c2 ∈ O : εP < dist(c1, c2) <
εS ⇒ (c2 ∈ P (c1) ∨ c2 ∈ S(c1)), e.g. client c4 in the example

shown in Figure 2(b). If εP = εS , c4 would permanently change

its membership in P (c1) and S(c1). Consequently, the join results

would also change permanently which can be avoided by the lazy

update setup where εP < εS . The larger the difference between

εS and εP is, the smaller is the probability of such a permanent

change.

In the remainder of this paper we consider that clients moving

within the traffic network and continuously tracking their own po-

sitions in the network can communicate with a central server. The

join computation, i.e. the detection that an client is in proxim-

ity/separation to another client, has to be done at the server be-

cause we assume that the clients do not have much computational

power (e.g. a PDA) while the server does. In order to perform this

computation, the server needs some information of the current lo-

cations of all clients which has to be transmitted from the clients

to the server. The main goal is to transmit only the location in-

formation which is absolutely necessary to continuously maintain

the correct join result. This is important to minimize the commu-

nication traffic between the clients and the server which is usually

the bottleneck in such scenarios. Furthermore, the costs required

to maintain the proximity/separation sets P (c)/S(c) of all clients

can be reduced minimizing the location updates at the server side,

since the proximity/separation properties have to be checked only

if the location of a client is updated. Our proposed solution works

in both a normal as well as in a lazy update scenario, i.e. using

only one threshold ε or using two separate thresholds εP and εS

to define the proximity and separation join. For clarity reasons, we

focus on using only one threshold ε.

4. MONITORING PROXIMITY AND SEP-
ARATION

The key idea of our approach is to store for each client c ∈ O
a proximity region and a separation region in which c can move

safely without causing any proximity or separation alert, i.e. as long

as c does not reach the boundary of one of these regions, the final

proximity and separation join results are up-to-date and need no

revision. Thus, as long as an client does not reach the boundary

of one of its regions, it does not need to send a position update

to the server and the server does not need to verify the proxim-

ity/separation property of c w.r.t. any other client ĉ.

The concept of proximity regions is introduced in the following

definition.

DEFINITION 1 (PROXIMITY REGION). The proximity region

of a client c ∈ O, denoted by PR(c), is defined as the set of posi-
tions in the network graph G that have a distance larger than ε to
any position p̂ of proximity regions of clients ĉ that are in separa-
tion to c, formally

PR(c) = {p ∈ Pos(G) | ∀ĉ ∈ S(c), p̂ ∈ PR(ĉ) : dist(p, p̂) ≥ ε}
Note that if we want a lazy update strategy, we have to replace ε by

εP (cf. Section 3).

Analogously, the concept of separation regions is defined below.

DEFINITION 2 (SEPARATION REGION). The separation region

of a client c ∈ O is defined as the set of positions in the network

proximity region of c1

c1
n1 n2

dist(n n) =

n7nn5n3

dist(n5,n1) =

c2

n7n6n53

n4

proximity region of c2

Figure 3: Visualization of the concept of proximity regions.

graph G that have a distance smaller or equal to ε to any position p̂
of separation regions of clients ĉ that are in proximity of c, formally

SR(c) = {p ∈ Pos(G) | ∀ĉ ∈ P (c), p̂ ∈ SR(ĉ) : dist(p, p̂) ≤ ε}
Again, if we want a lazy update strategy, we have to replace ε by

εS (cf. Section 3).

Figure 3 illustrates the concept of proximity regions. Here the

distances between all possible positions p ∈ PRc1 of the prox-

imity region of client c1 to all possible positions p̂ ∈ PR(c2) of

client c2 are at least ε. For example, all paths between the nodes

n1 and n5 have at least a length of ε. Consequently, the distance

between c1 and c2 is greater than ε, as long as they stay in their own

regions. This condition can be violated only if at least one of the

two clients reaches the border of its own proximity region. In this

case, a proximity alert together with a position update is sent to the

server where the proximities to the other clients that are affected by

the proximity alert are tested (in order to possibly update the final

join results) and all corresponding regions have to be re-computed.

Analogously, the separation regions are defined such that clients

can move safely within their regions without causing any update

requirements. A procedure similar to the proximity alert has to be

processed if an client approaches the boundary of its separation re-

gion, i.e. causing a separation alert. Again, the big advantage of

this concept is that clients need only to send their actual position

to the central server if their last move caused a proximity or sep-

aration alert, rather than sending their current position after each

tracking time slot. Obviously, this usually saves a huge amount of

communication cost.

Figure 4 presents an overview of the general process of monitor-

ing proximity and separation among clients continuously moving

within a traffic network using proximity and separation regions.

Each client c ∈ O stores its actual proximity and separation re-

gions PR(c) and SR(c). Each client c continuously tests if its

current position is still within its proximity and separation region,

i.e. whether c ∈ PR(c) and c ∈ SR(c). If at least one of these two

conditions is violated, a proximity and/or separation alert is sent

to the central server together with the current position of client c.

At the server side, all candidates Cc that are affected by the alert of

client c need to be determined. Depending on the type of alert, these

candidates are acquired from P (c) (proximity alert, Cc ⊆ P (c))

or from S(c) (separation alert Cc ⊆ S(c)). This is necessary in

order to avoid a recomputation of all proximity/separation regions.

Usually, only the regions of a few clients are affected by the cur-

rent alert. After having identified the affected candidates, the server

client c

during travelling test predicate:
i id PR() (i id SR())

proximity (separation) alert

c inside PR(c) (c inside SR(c))
no

proximity (separation) alert

central server

alert + current position

gi
on

identify all candidates P(c)} (S(c))
affected by the proximity (separation)

central server

ar
at
io
n)

re
g

y p y (p)
alert

update the sets P(c) (S(c)) andim
ity

(s
ep
a

build new proximity (separation)

p () (())
P(o candidates) (S(o candidates))

pr
ox
i

p y (p)
regions for c and all objects

o candidates

for all o {candidates c}: send new
region PR(o) (SR(o)) to the client o

Figure 4: Proximity (separation) detection algorithm.

needs to update the set P (c) and for all ĉ ∈ Cc the sets P (ĉ) in case

of a proximity alert and the set S(c) and for all ĉ ∈ Cc the sets S(ĉ)
in case of a separation alert. For this purpose, the server has to poll

the position of all candidates in Cc to get their actual positions.

These updated sets are used in two ways. First, the updated join re-

sults can be computed from the updated proximity/separation sets

at the server. Second, the server can also compute new proxim-

ity and/or separation regions for c and all candidates Cc. Finally,

these new proximity/separation regions are sent to the correspond-

ing clients.

In the following, we detail the most important steps of this gen-

eral process. In particular, we discuss how proximity and separa-

tion regions are initialized. We will then show how these regions

can be stored efficiently on the client and on the server side. Last

but not least, we present efficient algorithms for processing a prox-

imity alert, i.e. testing for proximity and updating all affected re-

gions.

4.1 Initializing and Updating Proximity and
Separation Regions

4.1.1 Proximity Region

The basic idea of a proximity region PR(c) is to identify a sec-

tion of the network in which a given client c can move around safely

without causing a tentative proximity alert. Definition 1 provides

only a description of properties PR(c) must meet rather than a

constructive blueprint for building such a region. In addition, the

proximity region of any client c ∈ O obviously depends on the

proximity regions of (possible all) clients that are in separation to

c. Therefore, we can construct many different sets of positions that

qualify as proximity regions according to Definition 1. If we as-

sume that all clients move with the same characteristics such as ve-

locity, we are interested in those regions that equally maximize the

regions of all clients simultaneously with the additional constraint

that each client has a maximum distance to its region boundaries. In

this scenario, the optimal proximity region of a client c is a Voronoi

cell around c w.r.t. all clients ĉ ∈ S(c) with boundary width ε. If

the characteristics of movement are different for some clients, the

PR(c3)

c2c3 2

c1
PR(c2)

c1

c4

PR(c1)

Figure 5: Initial proximity regions of clients c1, c2 and c3. Here,
S(c1) = {c2, c3}, whereas c4 ∈ P (c1).

Voronoi-like regions have to be adapted likewise. However, for

clarity reasons, we focus on the simple case that all clients move

with the same characteristics.

Due to these considerations, we initially compute Voronoi cells

around a client c w.r.t. all clients ĉ ∈ S(c) and a boundary width

of ε. In the example illustrated in Figure 5 the initial proximity

regions are generated according to all three clients c1, c2 and c3

which are in separation of each other, i.e. S(c1) = {c2, c3} and

S(c2) = {c1, c3}. Here, the proximity region of client c4 (not de-

picted in the example) does not affect the proximity region of c1,

as c4 is in P (c1) but not in S(c1). For this purpose, we can launch

a parallel Dijkstra expansion from each client c ∈ O. The Dijk-

stra expansion for client c is bounded by graph nodes n that have

already been reached by the expansion of a client ĉ ∈ S(c). From

the distance of c to n and ĉ to n, the exact position of the center

between c and ĉ on the path through n which is mostly located

on an edge can be determined. From this position, we can search

backwards in the direction of c with a distance of ε/2 to determine

the border to PR(c) and also in the direction of ĉ in order to deter-

mine the border of PR(ĉ). The backward search is simply done by

backtracking those paths that have been found during the previous

Dijkstra expansion.

The Voronoi cell based computation of the proximity regions is

only appropriate for those clients for which we need to build a new

proximity region. This includes the clients that are currently not

assigned to a proximity region or which need an update of their

proximity region. However, when constructing a proximity region

of a client c ∈ O, we must also take into account those clients

ĉ ∈ S(c) that are not affected by the proximity alert of c and,

thus, do not require an update of their proximity region. In fact, we

need a second concept called ε-boundary of the proximity region

to manage the update of a proximity region efficiently.

DEFINITION 3 (ε-BOUNDARY). The ε-boundary of the prox-
imity region PR(c) of a client c ∈ O, denoted by Bε(c), includes
all positions in the network graph G that are in ε distance from the
proximity region PR(c), formally

Bε(c) = {p ∈ Pos(G) | dist(p, PR(o)) = ε},
where the distance of a position p ∈ Pos(G) and a region R ⊆
Pos(G) is the minimum distance of p to all positions r ∈ R, i.e.

dist(p, R) = min
r∈R

dist(p, r).

Figure 6 illustrates the ε-boundary of the proximity region of client

c1. The dotted positions define the ε-boundary corresponding to

boundary B (c3) of PR(c3)

PR(c3)
PR(c2) extension is bounded

c3 c2

by B (c1) and B (c3)

2

PR(c2)

c1
boundary B (c1) of PR(c1)c1

PR(c1)

Figure 6: Proximity region of client c1 with the corresponding
ε-boundary.

those positions in the network graph that have a distance of ε to

PR(c1).

The ε-boundary of a proximity region can be used to update other

proximity regions efficiently because obviously, the proximity re-

gions are bounded by the ε-boundaries of neighboring clients. For

example, in Figure 6, the proximity region of client c2 is bounded

by the ε-boundaries of client c1 and client c3.

4.1.2 Separation Region

In a similar way we construct the proximity regions, we have

to generate the separation region SR(c) assigned to each client

c ∈ O. The separation region SR(c) of an client c identifies the

part of the road network that can be traversed by c without causing

a tentative separation alert, i.e. c is no longer guaranteed to be in

proximity with another client ĉ ∈ P (c). Consequently, the sepa-

ration region of a client c ∈ O depends on the separation regions

of all clients ĉ ∈ P (c) that are in proximity to c (cf. Definition 2).

Similar to the formation of the proximity regions, for the construc-

tion of the separation region we aim at maximizing the distance

between the client and the region border.

A separation region of a client c is composed by the joint overlap

of auxiliary regions called ε-regions guaranteeing that the clients

travelling within them are definitely in proximity. The ε-regions

are defined for pairs of clients as follows:

DEFINITION 4 (ε-REGION). The ε-region defined for a pair
of clients (c, ĉ) ∈ O×O, denoted by εR(c, ĉ), is a set of positions
in the network graph G that includes the positions of c and ĉ and
guarantees that arbitrary two positions in εR(c, ĉ) have a distance
of at most ε to each other, formally

εR(c, ĉ) = {p ∈ Pos(G) | dist(p, center(c, ĉ)) ≤ ε

2
},

where center(c, ĉ) denotes the center point located on the shortest
path between c and ĉ, i.e.

center(c, ĉ) = min{p ∈ Pos(G) | dist(p, c) = dist(p, ĉ))}
For example, the separation region of client c1 ∈ O which is in

proximity with three other clients c2, c3 and c4, i.e. S(c1) =
{c2, c3, c4}, is depicted in Figure 7. Figure 7(a) shows the ε-region

εR(c1, c2) of the client pair c1 and c2 which is centered at the

center point between c1 and c2 and covers the part of the network

which is within the ε
2

range around the center point. Figure 7(b)

shows the separation region of c1 which is specified by the part

of the network that is covered by all three ε-regions εR(c1, c2),

εR(c1, c3) and εR(c1, c4).

region(c c)

c2/2

region(c1,c2)

c1

2

c1
center(c1,c2)

(a) ε-region for the

client pair c1 and c2

SR(c1) = R(c1,c2) R(c1,c3) R(c1,c4)

c2

c1c1
c3c4

(b) Separation region of

client c1 built by the joint
overlap of all ε-regions
{εR(c1, ĉ)/; | ĉ ∈ P (c1)}

Figure 7: Separation region of a client (in Euclidean space)

For the initial generation of the separation region of a client

c ∈ O, first the center point center(c, ĉ) ∈ Pos(G) is computed ac-

cording to each client ĉ ∈ P (c). Then, the corresponding ε-regions

{εR(c1, ĉ) | ĉ ∈ P (c)} are generated and finally intersected to

generate the separation region of c. Note, that an eps-region has to

be constructed for a pair of clients only, if there does not already

exist one which is still valid, i.e. fulfills the criterion specified in

Definition 4. The separation region SR(c) has to be updated as

soon as there is an update of one of the eps-regions assigned to

it, i.e. if an existing eps-regions is removed from or a new one is

assigned to SR(c).

4.2 Managing Proximity and Separation Re-
gions

In the following, we describe the data structures used in order

to efficiently manage and access the information about the proxim-

ity region and the separation region of each client c ∈ O. Since

client and server must have different views on that information, we

distinguish between client-side and server-side data structures.

Client-side. Each client c ∈ O needs to know only the regions

PR(c) and SR(c) in which it can safely move without the need

to initiate a proximity/separation alert. Other information is not

relevant for the client and may conflict with privacy issues, e.g. no

client should have any hints on the exact position of other clients
2.

In fact, only the boundaries of the corresponding regions would

suffice to detect when c leaves a region. As we aim at keeping the

client-server communication traffic low and the clients obtain their

region information from the server, only region boundaries, i.e. a

list of edges and the exact region boundary positions are transmitted

from the server to the clients. Consequently, for each client c we

store

• the graph G = (N, E) representing the road network,

• a list of all positions {p ∈ PR(c) | ∀p′ ∈ Pos(G), p′ �∈
PR(c), dist(p, p′) = dist(p′ = PR(c))}, denoted by c.PR,

• a list of all positions {p ∈ SR(c) | ∀p′ ∈ Pos(G), p′ �∈
SR(c), dist(p, p′) = dist(p′ = SR(c))}, denoted by c.SR.

2Note that with the information on its boundaries an client may
infer knowledge about the position of its neighbors that are not in
proximity but it cannot identify those clients.

For efficient retrieval, these lists can be indexed by a simple B-tree

or using a hashmap. Let us note that the road-network graph does

not necessarily need to be stored at client-side, since the regions

do not need to be specified by means of network components. For

example, the region borders can be in the form of GPS coordinates.

Obviously, the information which resides on the client side should

be not very large in size. This is important since we can assume that

each client has only limited resources for computation and storage.

Server-side. The server must store the following information. First

of all, it has to store the graph G = (N, E) representing the traf-

fic network. Secondly, for the proximity detection the server must

manage the proximity regions and the corresponding ε-boundaries

of all clients in O. We can combine both pieces of information as

follows.

For each edge e = (n1, n2) ∈ E of the network, we store

• a list of all clients c ∈ O for which this edge intersects their

proximity region, i.e. {Pos(e) ∩ PR(c)} �= ∅, denoted by

e.PRL.

• a list of all clients c ∈ O for which their ε-boundary Bε(c)
is located on this edge, i.e. {Pos(e) ∩ Bε(c)} �= ∅, denoted

by e.EBL.

The entries of e.PRL and e.EBL are associated with an exact po-

sition p ∈ Pos(e) if necessary, e.g. if the edge partially intersects

a region of client c the exact position of the region bound must

be stored with c in e.PRL. Obviously, this also holds for the list

e.EBL. Again, to ensure efficient retrieval, these lists can be in-

dexed using a B-tree or a hashmap.

Analogously to the data structures necessary to store the vari-

ous proximity regions, we need several lists to store the separation

regions. For each edge e ∈ E we need to store

• a list of all clients c ∈ O for which this edge intersects their

separation region, i.e. {Pos(e) ∩ SR(c)} �= ∅, denoted by

e.SRL.

• a list of all pairs of clients (c, ĉ) ∈ O × P (c) for which

this edge intersects their separation region, i.e. {Pos(e) ∩
εR(c, ĉ)} �= ∅, denoted by e.EpsRL.

Again the entries of e.SRL and e.EpsRL are associated with an

exact position p ∈ Pos(e) if necessary. Furthermore, the lists re-

quired to manage the separation regions can also be indexed using

a B-tree or a hashmap for efficiency reasons.

Note that if {Pos(e)∩SR(c)} �= ∅ then there must be a client ĉ
such that {Pos(e)∩εR(c, ĉ)} �= ∅. On the other hand, if {Pos(e)∩
εR(c, ĉ)} �= ∅ it may be that {Pos(e) ∩ SR(c)} = ∅ because

SR(c) is the intersection of all ε-regions associated with c (see

above).

In order to enable that updates of proximity regions and sepa-

ration regions can be made in an efficient way, at server-side we

additionally have to store for each client c ∈ O a list of edges or

nodes that intersect the proximity region and separation region of

c, denoted by c.PR and c.SR. Furthermore, we have to store for

each client c ∈ O and each client ĉ ∈ P (c) which is in proximity

with c a list of edges or nodes that intersect the ε-region εR(c, ĉ),

denoted by c(ĉ).εR. Once, a new region has to be generated or an

existing region of a client c ∈ O has to be extended, the affected

edges are inserted into the corresponding lists. Again, the clients

are inserted in the lists e.PRL, e.EBL, e.SRL and e.EpsRL. If

a region of a client c ∈ O has to be reduced or has to be deleted,

we have to determine the set of affected edges E′ ⊆ E from the

lists c.PR, c.SR or c.ĉ.εR and have to remove c from the lists

Proximity (Separation) Alert:

clients server
client c sends proximity
(separation) alert + c.pos

y (p)

identify proximity (separation)
candidates proxCand (sepCand)request position update of

proxCand (sepCand)

sends .pos

identif all pro Cand (sepCand)identify all proxCand (sepCand)
which are in proximity with c

update P(c), S(c), P() and S(),
if necessary

update proximity (separation) regions
PR(c) (SR(c)) and PR() (SR()) for all

proxCand (sepCand)

update separation (proximity) regions
SR(c) (PR(c)) and SR() (PR()) for all() (()) () (())

proxCand (sepCand), if necessarysend new regions to c and all
proxCand (sepCand)

Figure 8: Message sequence of a proximity (separation) alert.

stored for each e ∈ E′. Finally, the lists associated with c have to

be updated.

4.3 Proximity And Separation Alert Process-
ing

If a client c crosses the border of PR(c) or SR(c), c has to send

an alert to the server including its current position, because now c
may have moved in proximity or separation to one or several other

clients. In the case c is leaving PR(c) a proximity alert has to be

issued and if c is leaving SR(c) it has to issue a separation alert.

Proximity Alert. After the server has received a proximity alert

from a client c ∈ O, the server must check if there is any other

client ĉ ∈ O such that c and ĉ have not been in proximity so far

but possibly are in proximity. Note that this check is important in

order to avoid that the server-side join of the clients produces in-

correct results (cf. Section 3). In addition, the server has to update

the proximity region of c and that of the other affected clients. The

procedure and communication between the clients and the server

associated with a proximity alert is illustrated in the message se-

quence chart depicted in Figure 8.

First, the server has to identify all clients that are affected by

the proximity alert issued by c, i.e. those clients ĉ ∈ S(c) for

which client c moved beyond their ε-boundary Bε(ĉ). We call

this set of clients proximity candidates proxCand which can be

efficiently identified by the server by searching the corresponding

ε-boundaries stored in the lists e.EBL assigned to the edges e of

the network graph. Subsequently, the server has to request a po-

sition update to all proximity candidates ĉ ∈ proxCand. Af-

ter the server has received the actual positions from the clients

ĉ ∈ proxCand, it pair-wise computes the distances between c
and all ĉ ∈ proxCand to test if c and ĉ are now in proximity, i.e.

if dist(c, ĉ) < ε. If so, ĉ is now in proximity with c, and thus, we

have to update the proximity/separation sets by adding c to P (ĉ)
and adding ĉ to P (c). Furthermore, c and ĉ have to be removed

from S(ĉ) and S(c), respectively. Next, the proximity regions and

potentially some separation regions of c and all other proximity

candidates have to be updated.

For those clients ĉ ∈ proxCand fulfilling the proximity crite-

rion, i.e. dist(c, ĉ) < ε, we do not need to update their proximity

regions. The rationale for this is, although the recent proximity re-

gion of ĉ does not need to be bounded by the proximity region of c
any longer, and thus, could be enlarged, it still conservatively guar-

antees that client ĉ is separated from all other clients c′ ∈ S(ĉ).

Since we want to reduce the communication costs, we do not up-

date the region of these clients because otherwise, we would be

required to send this new information from the server to all those

clients. However, we have to update their separation regions includ-

ing the region of client c. Initially, we remove the corresponding

entries from the affected edge lists e.SRL associated with the old

separation regions. Then, the ε-regions εR(c, ĉ) are built pair-wise.

Afterwards, the separations regions of client c and the other clients

ĉ are rebuilt by means of the new sets of ε-regions, as described in

Section 4.1.2. Finally, we insert the new separation regions into the

corresponding edge lists e.SRL and transmit the new separation

regions back to the clients.

Up to now, we have considered the update processing associated

with the proximity candidates ĉ ∈ proxCand fulfilling the prox-

imity criterion. In the following, we treat the updates associated

with the other proximity candidates ĉ ∈ proxCand which are still

not in proximity of c. For these clients we do not need to update

their separation regions, since their proximity sets P (ĉ) and separa-

tion sets S(ĉ) have not modified. However, these clients including

client c require new proximity regions. Analogous to the separation

region update, first, the old proximity regions are removed from

the corresponding edge lists e.PRL. Then, the proximity regions

are built for c and all clients ĉ ∈ proxCand through the parallel

Voronoi cell based computation using Dijkstra as described in Sec-

tion 4.1.1. Finally, the edge lists e.PRL of the network graph are

updated and the new proximity regions are transmitted back to the

corresponding clients.

Separation Alert. Analogous to the update process induced by a

proximity alert we have to process the updates if a client issues a

separation alert to the server. Again, this process guarantees cor-

rect join results at server-side (cf. Section 3). Generally, the sep-

aration alert processing, simplified illustrated in Figure 8, is quite

similar to the proximity alert processing. The main difference is

that the set sepCand of clients ĉ ∈ P (c) associated with the ε-

regions εR(c, ĉ) client c has left are affected. After the server has

requested and received the exact positions from these clients, the

server identifies those clients ĉ ∈ P (c) which are now in separa-

tion, i.e. dist(c, ĉ) > ε. Consequently, the corresponding proxim-

ity and separation sets have to be updated, analogous to the proxim-

ity alert process. In this case, the separation regions of client c and

all clients ĉ ∈ sepCand have to be updated, definitely. While,

the proximity regions have to be updated only for those clients

ĉ ∈ sepCand which are not in proximity to c any longer. The

proximity region of c has to be updated if the latter case is true for

at least one client ĉ. For an efficient region update we access the

edge lists as described above for the proximity alert processing. Fi-

nally, the new regions (proximity regions and separation regions)

are transmitted back to the corresponding clients.

5. EXPERIMENTAL EVALUATION

5.1 Test Bed
For the experimental evaluation of our approach we used a traffic

simulator that is able to simulate multiple cars moving on a given

road network. Initially, the cars are assigned to a starting point and

a target. Both the starting and the target points are randomly dis-

(a) “OL” (b) “SG”

Figure 9: Traffic network graphs used as experimental test bed.

tributed over the network. After the cars are placed at their starting

points they simultaneously move on the shortest path to their tar-

gets. As soon as a car reaches its destination, it is removed from

the road network and a new car with a new starting position and a

new destination is generated. The velocities of the cars are set to a

realistic value.

For our experiments we used two different road network graphs

of different size. The first network graph (OL) which is depicted

in Figure 9(a) corresponds to the road network of the city of Old-

enburg, Germany, which is a well-known benchmark road network

frequently used by diverse query processing approaches. It con-

tains about 7,036 road segments and 6,105 intersection nodes. The

second network graph (SG) is depicted in Figure 9(b). It contains

about 679 road segments and 533 intersection nodes.

We performed our experiments by running the simulation with

the corresponding parameter settings and counted the following

events during the simulation run that indicate the total communi-

cation cost.

• ProxUp corresponds to the number of position updates due

to proximity alerts (client→ server).

• SepUp equals to the number of position updates due to sepa-

ration alerts (client→ server).

• Polls represents the number of position polls inquired from

the server, including the request (client ← server) and the

answer of the client (client→ server).

• MsgCnt corresponds to the total number of required mes-

sages between the clients and the server.

We measured the above events w.r.t. the number of motion steps

per car which indicates the message traffic required when using the

naive brute-force method where for each car the position updates

are simply permanently sent to the server.

We compare our approach, in the following denoted by NMA,

with the Dynamic Centered Circle approach (denoted by DCC in

the following) proposed in [23, 15] which is the state-of-the-art

approach designed for the Euclidean space. In order to adapt the

DCC approach to be able to detect proximities and separations in

road networks correctly, we simply need to use the network dis-

tance instead of the Euclidean distance to define the corresponding

proximity and separation regions.

In all our experiments we set εP = εS = ε, since this is the

most relevant environment in real-world applications and it is also

the most challenging one as discussed at the end of Section 3.

Bla 20-50-50 Polling

0

200

400

600

800

1000

1200

1 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time steps

Dcc Nm a

Bla 20-50-50 Separation Update

0

200

400

600

800

1000

1200

1400

1 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

tim e s teps

Dcc Nma

Bla 20-50-50 Proximity Update

0

500

1000

1500

2000

2500

3000

1 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

tim e steps

Dcc Nma

Bla 20-50-50 Total Messages

0

1000

2000

3000

4000

5000

6000

1 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

tim e s teps

Dcc Nma

DCC

NMA

DCC

NMA

Polls (SG, = 50)

motion steps motion steps

motion stepsmotion steps

SepUp (SG, = 50)

ProxUp (SG, = 50) MsgCnt (SG, = 50)

DCC

NMA
DCC

NMA

0.01 5 10 20 30 40 50 60 70 80 90 100
motion steps (x 100)

0.01 5 10 20 30 40 50 60 70 80 90 100
motion steps (x 100)

0.01 5 10 20 30 40 50 60 70 80 90 100
motion steps (x 100)

0.01 5 10 20 30 40 50 60 70 80 90 100
motion steps (x 100)

0

1000

2000

3000

4000

1 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

tim e steps

Bla 20-200-200 Proximtiy Update

0

1000

2000

3000

4000

5000

6000

7000

8000

1 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time steps

Dcc Nma

Bla 20-200-200 Separation Update

0

1000

2000

3000

4000

5000

6000

7000

1 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time steps

Dcc Nm a

Bla 20-200-200 Total Messages

0

5000

10000

15000

20000

1 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time steps

Dcc Nm a

DCC

NMA

DCC

NMA

Polls (SG, = 200) SepUp (SG, = 200)

ProxUp (SG, = 200)
DCC

NMA

MsgCnt (SG, = 200)

DCC

NMA

motion steps motion steps

motion stepsmotion steps

0.01 5 10 20 30 40 50 60 70 80 90 100

motion steps (x 100) 0.01 5 10 20 30 40 50 60 70 80 90 100
motion steps (x 100)

0.01 5 10 20 30 40 50 60 70 80 90 100

motion steps (x 100)

0.01 5 10 20 30 40 50 60 70 80 90 100
motion steps (x 100)

Old 20-200-200 Polling

0

50

100

150

200

250

300

350

1 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

tim e s teps

Dcc Nma

Old 20-200-200 Polling

0

200

400

600

800

1000

1 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

tim e steps

Dcc Nma

Old 20-200-200 Proximity Update

0

20

40

60

80

100

120

1 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

tim e steps

Dcc Nma

Old 20-200-200 Total Messages

0

200

400

600

800

1000

1200

1400

1 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

tim e steps

Dcc Nma

motion steps motion steps

motion stepsmotion steps

Polls (OL, = 200) SepUp (OL, = 200)

ProxUp (OL, = 200) MsgCnt (OL, = 200)

DCC

NMA

DCC

NMA

DCC

NMA
DCC

NMA

0.01 5 10 20 30 40 50 60 70 80 90 100
motion steps (x 100)

0.01 5 10 20 30 40 50 60 70 80 90 100
motion steps (x 100)

0.01 5 10 20 30 40 50 60 70 80 90 100
motion steps (x 100)

0.01 5 10 20 30 40 50 60 70 80 90 100
motion steps (x 100)

Old 20-600-600 Polling

0

50

100

150

200

250

300

350

400

450

1 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time steps

Dcc Nm a

Old 20-600-600 Polling

0

200

400

600

800

1000

1200

1400

1 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time steps

Dcc Nm a

Old 20-600-600 Polling

0

100

200

300

400

500

600

700

1 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time steps

Dcc Nma

Old 20-600-600 Polling

0

500

1000

1500

2000

2500

1 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time steps

Dcc Nm a

motion steps motion steps

motion stepsmotion steps

Polls (OL, = 600) SepUp (OL, = 600)

ProxUp (OL, = 600) MsgCnt (OL, = 600)

DCC

NMA

DCC

NMA

DCC

NMA
DCC

NMA

0.01 5 10 20 30 40 50 60 70 80 90 100
motion steps (x 100)

0.01 5 10 20 30 40 50 60 70 80 90 100
motion steps (x 100)

0.01 5 10 20 30 40 50 60 70 80 90 100
motion steps (x 100)

0.01 5 10 20 30 40 50 60 70 80 90 100
motion steps (x 100)

Figure 10: Performance of NMA and DCC on “SG” and “OL”
with 20 clients and different values for ε.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

50 200 600

DCC NMA

proximity distance

n
u

m
b

e
r

o
f
to

ta
l
m

e
s
s
a

g
e

s

(a) SG, #cars = 20

0

500

1000

1500

2000

2500

3000

50 200 600

DCC NMA

proximity distance

n
u

m
b

e
r

o
f
to

ta
l
m

e
s
s
a

g
e

s

(b) SG, #cars = 50

0

500

1000

1500

2000

2500

50 200 600

DCC NMA

proximity distance

n
u

m
b

e
r

o
f
to

ta
l
m

e
s
s
a

g
e

s

(c) OL, #cars = 20

0

5000

10000

15000

20000

25000

200 600

DCC NMA

proximity distance

n
u

m
b

e
r

o
f
to

ta
l
m

e
s
s
a

g
e

s

(d) OL, #cars = 50

Figure 11: Performance of NMA and DCC on “SG” and “OL”
w.r.t. ε.

5.2 Performance Evaluation
In a first experiment we evaluated the impact of the proxim-

ity/seperation distance threshold ε on the parameters measured to

evaluate the communication costs. For that purpose, the number

of clients currently traveling around in the network was fixed to

20. We used a range of considerably larger values for ε for “OL”

compared to “SG” in order to account for the different sizes of the

network graphs. The results on the smaller “SG” network are de-

picted in Figure 10 (first eight charts) featuring a setting of ε = 50
and ε = 200, respectively. The figures display the evolution of

the costs during simulation time. The total simulation lasts 10,000

tracking time slots. As it can be seen, for all measured parameters,

our NMA approach outperforms the DCC approach significantly.

A similar observation can be made on the larger “OL” graph (cf.

Figure 10, last eight charts), featuring a setting of ε = 200 and

ε = 600, respectively. Obviously, in all experiments, using NMA

instead of DCC yields a considerable reduction of the communica-

tion costs. Both approaches scale linearly w.r.t. the proceeding of

simulation time, but NMA with a clearly smaller slope. It is also

interesting that the DCC approach performs considerably well at

the beginning in terms of proximity updates. On both networks,

the DCC approach seems to produce rather good proximity regions

at first: after a short period of simulation, only few clients left their

proximity regions so that these regions need to be updated. How-

ever, with proceeding simulation time, even the costs for the prox-

imity updates clearly increase over the NMA approach. This sug-

gests that the quality of the proximity regions of the DCC approach

is steadily decreasing after each update. As a consequence, more

clients reach their region boundaries after a shorter time causing in

turn a higher number of region updates. We make a similar obser-

vation when using the NMA approach, but the increase of the cost

is much lower compared to the DCC approach.

The total communication costs after 10,000 tracking time slots

in terms of the number of total messages on the “SG” graph using

20 and 50 cars in motion w.r.t. varying settings of ε are shown in

Figures 11(a) and 11(b), respectively. The results of the same ex-

periment on the “OL” graph is shown in Figures 11(c) and 11(d)

with 20 and 50 cars in motion, respectively. Again, the results con-

0

10000

20000

30000

40000

50000

60000

70000

80000

5 20 50

DCC

NMA

number of cars

n
u

m
b

e
r

o
f
to

ta
l
m

e
s
s
a

g
e

s

(a) “SG”, ε = 200

0

2000

4000

6000

8000

10000

12000

5 20 50

DCC

NMA

number of cars

n
u

m
b

e
r

o
f
to

ta
l
m

e
s
s
a

g
e

s

(b) “OL”, ε = 200

Figure 12: Performance of NMA and DCC on both data sets
w.r.t. the number of clients.

firm the observations made before that our approach outperforms

the DCC algorithm and scales better to different values of ε.

A second range of experiments evaluates the performance of the

competitors w.r.t. the number of clients moving around in the net-

work. For that experiments, we fixed the value of ε to a given

value. Again, we only report the number of total messages after

the entire simulation with 10,000 time steps. In Figure 12(a) the

results are shown for the “SG” graph using ε = 200. As it can

be observed, when varying the number of cars from 5 to 20 and to

50, the more cars are around in the network, the more our NMA

approach outperforms the DCC approach. In case of 50 moving

clients, the superiority of NMA over DCC is the highest. Again

similar observations can be made on the “OL” data set when vary-

ing the number of cars from 5 to 20 and to 50. Figure 12(b) depicts

the performance results of the competitors for ε = 200. The re-

sults confirm that the more clients are in motion in the network,

the higher is the performance gain of NMA over DCC in terms of

saved communication costs.

In summary, we can conclude that our NMA approach outper-

forms the DCC approach significantly in terms of client-server com-

munication costs. The main reason for this result is that our NMA

approach generates much more accurate proximity and separation

regions than the DCC approach.

6. CONCLUSIONS
In this paper, we have proposed a method for efficiently monitor-

ing proximity and separation joins among objects (clients) moving

around in road networks in a client/server scenario. Usually, the

computationally complex join determination is done at the server

side, thus, the bottleneck of monitoring proximity and separation

joins is usually the communication cost caused by position polls

and position updates between the server and the clients. To reduce

the communication costs, we propose a solution based on identi-

fying regions for each client in which the corresponding client can

move around without causing a proximity/separation alert, i.e. a

possible change at the overall join results. We present efficient al-

gorithms for the case when an client exceeds its proximity or sep-

aration region to test for changes at the join results and update the

affected regions. Our experiments show a considerable superiority

of our solution over a state-of-the-art approaches that was originally

proposed for Euclidean spaces but can be adapted to road networks

rather straightforward.

To extend this work in the future, we see the following points.

First, it is very intersecting, yet challenging, to consider knowledge

about the movement of the clients (direction, velocity, etc.) when

building and updating the regions of each client. Integrating this

knowledge may lead to optimized regions and, thus, to less prox-

imity and/or separation alerts. Second, the idea of lazy updates

using different ε-thresholds for proximity and separation has been

sketched. A more thorough evaluation of these ideas (which could

not be done here due to space limitations) could bear new insights

like “in which situations are lazy updates better than normal up-

dates?” Such an information could be used to develop e.g. a clever

combination of lazy and normal update strategies that adapts flexi-

bly to the actual setup.

7. REFERENCES
[1] A. A. Afrat, J. Myllymaki, L. Palaniappan, and K. Wampler.

"Buddy Tacking - Efficient Proximity Detection among

Mobile Friends". In Proceedings of IEEE Infocom 2004,
Hongkong, 2004.

[2] P. K. Argarwal, L. Arge, and J. Erickson. "Indexing moving

points". In Proceedings of the Conference on Principles of
Database Systems (PODS), Chicago, IL, pages 175–186,

2000.

[3] R. Benetis, C. C. Jensen, G. Karciauskas, and S. Saltenis.

"Nearest neighbor and reverse nearest neighbor queries for

moving objects". In Proceedings of the International
Database Engineering and Applications Symposium
(IDEAS), pages 44–53, 2002.

[4] C. Böhm, B. Braunmüller, M. M. Breunig, and H.-P. Kriegel.

"Fast Clustering Based on High-Dimensional Similarity

Joins". In Int. Conf. on Information Knowledge Management
(CIKM), 2000.

[5] Y. Cai, K. A. Hua, and G. Cao. "Processing

range-monitoring queries on heterogeneous mobile objects".

In Proceedings of the IEEE International Conference on
Mobile Data Management (MDM), pages 27–38, 2004.

[6] B. Gedik and L. Liu. "MobiEyes: Distributed Processing of

Continuously Moving Queries on Moving Objects in a

Mobile System". In Proceedings of the 9th International
Conference on Extending Database Technology (EDBT),
Crete, Greece, pages 67–87, 2004.

[7] A. Guttmann. "R-trees: A dynamic index structure for spatial

searching". In Proceedings of the SIGMOD Conference,
Boston, MA, 1984.

[8] H. Hu, J. Xu, and D. Lee. "A Generic Framework for

Monitoring Continuous Spatial Queries over Moving

Objects". In Proceedings of the SIGMOD Conference, Paris,
France, pages 479–490, 2005.

[9] X. Huang, C. S. Jensen, and S. Saltenis. "Multiple k Nearest

Neighbor Query Processing in Spatial Network Databases".

In Proceedings of the International Conference on Advances
in Databases and Information Systems (ADBIS), pages

266–281, 2006.

[10] G. S. Iwerks, H. Samet, and K. Smith. "Continuous k-nearest

neighbor queries for continuously moving points with

updates". In Proceedings of the 29th International
Conference on Very Large Data Bases (VLDB), Berlin,
Germany, pages 512–523, 2003.

[11] C. S. Jensen, J. Kolar, T. B. Pedersen, and I. Timko. "Nearest

neighbor queries in road networks". In Proceedings of the
ACM International Symposium on Geographic Information
Systems (ACMGIS), pages 1–8, 2003.

[12] C. S. Jensen, D. Lin, and B. C. Ooi. "Query and Update

Efficient B+-Tree Based Indexing of Moving Objects". In

Proceedings of the 30th International Conference on Very
Large Data Bases (VLDB), Toronto, Canada, pages

768–779, 2004.

[13] M. R. Kolahdouzan and C. Shahabi. "Voronoi-Based K

Nearest Neighbor Search for Spatial Network Databases". In

Proceedings of the 30th International Conference on Very
Large Data Bases (VLDB), Toronto, Canada, pages

840–851, 2004.

[14] N. Koudas, B. C. Ooi, K.-L. Tan, and R. Zhang.

"Approximate NN queries on streams with guaranteed

error/performance bounds". In Proceedings of the 30th
International Conference on Very Large Data Bases (VLDB),
Toronto, Canada, pages 804–815, 2004.

[15] A. Küpper and G. Treu. "Efficient Proximity and Separation

Detection among Mobile Targets for Supporting

Location-based Community Services". In ACM SIGMOBILE
Mobile Computing and Communications Review, 10(3),
2006.

[16] M. F. Mokbel, X. Xiong, and W. G. Aref. "SINA: Scalable

Incremental Processing of Continuous Queries in

Spatio-temporal Databases". In Proceedings of the SIGMOD
Conference, Paris, France, pages 623–634, 2004.

[17] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou.

"Conceptual partitioning: An efficient method for continuous

nearest neighbor monitoring". In Proceedings of the
SIGMOD Conference, Baltimore, ML, pages 634–645, 2005.

[18] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. "Query

processing in spatial network databases". In Proceedings of
the 29th International Conference on Very Large Data Bases
(VLDB), Berlin, Germany, pages 802–813, 2003.

[19] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and

S. E. Hambrusch. "Query indexing and velocity constrained

indexing: Scalable techniques for conitnuous queries on

moving objects". IEEE Transactions on Computers,

51(10):1124–1140, 2002.

[20] S. Saltenis and C. S. Jensen. "Indexing of Moving Objects

for Location-Based Services". In Proceedings of the 18th
International Conference on Data Engineering (ICDE), San
Jose, CA, pages 463–472, 2002.

[21] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A.

Lopez. "Indexing the Positions of Continuously Moving

Objects". In Proceedings of the SIGMOD Conference,
Dallas, TX, pages 331–342, 2000.

[22] Y. Tao, D. Papadias, and J. Sun. "The TPR*-Tree: An

Optimized Spatio-temporal Access Method for Predictive

Queries". In Proceedings of the 29th International
Conference on Very Large Data Bases (VLDB), Berlin,
Germany, pages 790–801, 2003.

[23] G. Treu and A. Küpper. "Efficient Proximity Detection for

Location Based Services". In In Proceedings of the Joint 2nd
Workshop on Positioning, Navigation and Communication
2005 (WPNC05) and 1st Ultra-Wideband Expert Talk
(UET05), Hannover, Germany, 2005.

[24] X. Xiong, M. F. Mokbel, and W. G. Aref. "SEA-CNN:

Scalable Processing of Continuous K-Nearest Neighbor

Queries in Spatio-temporal Databases". In Proceedings of
the 21st International Conference on Data Engineering
(ICDE), Tokyo, Japan, pages 643–654, 2005.

[25] X. Yu, K. Q. Pu, and N. Koudas. "Monitoring k-Nearest

Neighbor Queries Over Moving Objects". In Proceedings of
the 21st International Conference on Data Engineering
(ICDE), Tokyo, Japan, pages 631–642, 2005.

[26] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee.

"Location-based spatial queries". In Proceedings of the
SIGMOD Conference, San Diego, CA, pages 443–454, 2003.

