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Abstract. Relational index structures, as for instance the Relational Interval Tree, the Relational R-Tree, or
the Linear Quadtree, support efficient processing of queries on top of existing object-relational database sys-
tems. Furthermore, there exist effective and efficient models to estimate the selectivity and the I/O cost in
order to guide the cost-based optimizer whether and how to include these index structures into the execution
plan. By design, the models immediately fit to common extensible indexing/optimization frameworks, and
their implementations exploit the built-in statistics facilities of the database server. In this paper, we show
how these statistics can also be used for accelerating geo-spatial queries using the relational quadtree by re-
ducing the number of generated join partners which results in less logical reads and consequently improves
the overall runtime. We cut down on the number of join partners by grouping different join partners together
according to a statistic driven grouping algorithm. Our experiments on an Oracle9i database yield an average
speed-up between 30% and 300% for spatial selection queries on the Relational Quadtree.

1 Introduction
The efficient management of complex objects has become
an enabling technology for geographical information sys-
tems (GIS) as well as for many novel database applica-
tions, including computer aided design (CAD), medical
imaging, molecular biology. For commercial use, a seam-
less and capable integration of spatial indexing into indus-
trial-strength databases is essential. In order to integrate
these index structures into modern ORDBMSs, we need
suitable cost models [7], which exploit the built-in statis-
tics facilities of the database server. Based on these statis-
tics it is possible to estimate the selectivity of a given que-
ry and to predict the cost of processing that query.

In an ORDBMS the user has no access to the exact
information where the blocks are located on the disk.
Former approaches which try to generate efficient read
schedules for a given set of disk pages [14] must know the
actual position of the pages on the storage media. As this
information is not available in an ORDBMS, we pursue
another idea which exploits already existing statistics in
order to accelerate spatial query processing. We introduce
our approach in general as well as exemplarily for spatial
selection queries performed on the Relational Quadtree
(RQ-tree). 

The remainder of this paper is organized as follows.
In Section 2, we discuss the paradigm of relational index-
ing. Exemplarily, we present the RQ-tree, for which we
will demonstrate the advantages of our new approach
throughout this paper. In Section 3, we show how we can
use the already existing statistics to accelerate the query
process. In Section 4, we present convincing experimental
results based on both, a geographical 2D data set which
corresponds to the SEQUOIA 2000 benchmark [13] and a
3D CAD data set from a German car manufacturer. Final-
ly, we conclude the paper with a few remarks on future
work.

2 Relational Access Methods
In this section, we will discuss the basic properties of rela-
tional access methods with respect to the storage of index
data and query processing, by exemplarily introducing the
RQ-tree. Furthermore, we discuss in Section 2.2 how we
can integrate these index structures into modern OR-
DBMSs. We start with a definition common to all rela-
tional access methods:

Definition 1 (Relational Access Method)
An access method is called a relational access method, iff
any index-related data are exclusively stored in and re-
trieved from relational tables. An instance of a relational
access method is called a relational index. The following
tables comprise the persistent data of a relational index:

(i) User table: a single table, storing the original user
data being indexed.

(ii) Index tables: n tables, n ≥ 0, storing index data de-
rived from the user table.

(iii) Meta table: a single table for each database and each
relational access method, storing O(1) rows for each
instance of an index.

The stored data are called user data, index data, and meta
data. 

To illustrate the concept of relational access methods,
Figure 1 presents the minimum bounding rectangle list
(MBR-List), a very simple example for indexing two-di-
mensional polygons. The user table is given by the object-
relational table polygons (cf. Figure 1a), comprising at-
tributes for the polygon data type (geom) and the object
identifier (id). Any spatial query can already be evaluated
by sequentially scanning this user table. In order to speed
up spatial selections, we decide to define an MBR-List
polygons_idx on the user table. Thereby, an index table is

V Simpósio Brasileiro de Geoinformática (GEOINFO 2003), Campos do Jordão (SP), 2003.



created and populated (cf. Figure 1b), assigning the mini-
mum bounding rectangles (mbr) of each polygon to the
foreign key id. Thus, the index table stores information
purely derived from the user table. All schema objects be-
longing to the relational index, in particular the name of
the index table, and other index parameters are stored in a
global meta table (cf. Figure 1c).

In order to support queries on the index tables, a rela-
tional access method can employ any built-in secondary
indexes, including hash indexes, B+-trees, and bitmap in-
dexes. Alternatively, index tables may be clustered by ap-
propriate primary indexes. Consequently, the relational
access method and the database system cooperate to
maintain and retrieve the index data [2]. This basic ap-
proach of relational indexing has already been applied in
many existing solutions, including Linear Quadtrees [16]
[10] [3] and Relational R-trees [11] for spatial databases,
Relational X-trees [1] for high-dimensional nearest-
neighbor search, or inverted indexes for information re-
trieval on text documents [2].

2.1 The Relational Quadtree

A paradigmatic example for a spatial access method im-
plementing the direct scheme is the Relational Quadtree
[12]. This access method strictly follows the paradigm of
relational storage structures since its implementation is
purely built on (procedural and declarative) SQL but does
not assume any lower level interfaces to the database sys-
tem. In particular, built-in index structures are used as
they are, and no intrusive augmentation or modification of
the database kernel is required. In this subsection, we
present the basic idea of the Relational Quadtree accord-
ing to the in-depth discussion of Freytag, Flasza and
Stillger [3].

The Relational Quadtree organizes the multidimen-
sional data space by a regular grid. Any spatial object is
approximated by a set of tiles. Among the many possible
one-dimensional embeddings of a grid approximation, the
Z-order is one of the most popular [6]. The corresponding
index representation of a spatial object comprises a set of
Z-tiles which is computed by recursively bipartitioning
the multidimensional grid. By numbering the Z-tiles of
the data space according to a depth-first recursion into this
partitioning, any set of Z-tiles can be represented by a set
of linear values. Thereby an object is decomposed into
several tiles which are stored independently within an in-
dex, i.e. redundancy is introduced because spatially ex-
tended data is referenced in an index more than once [4].
Figure 2 depicts some Z-tiles on a two-dimensional grid
along with their linear values. The linear values of the Z-
tiles of each spatial object can be stored in an index table
obeying the schema (zval, id), where both columns com-
prise the primary key. This relational mapping imple-
ments the direct scheme, as each row in the index table
exclusively belongs to a single data object. The linear or-
dering positions each Z-tile of an object on its own row in
the index table. Thus, if a specific row in the user table
polygons is updated, e.g. (B, …) in Figure 1, only the rows
(6, B), (17, B), and (29, B) in the index table are affected
(cf. Figure 2), causing no problems with respect to the na-
tive two-phase locking.

In order to process spatial selection on the Relational
Quadtree, the query region is also required to be decom-
posed to a set of Z-tiles. We call the corresponding func-
tion ZDecompose. For each resulting linear value zval,
the intersecting tiles have to be extracted from the index
table. Due to the Z-order, all intersecting tiles having the
same or a smaller size than the tile represented by zval
occupy the range ZLowerHull(zval) = [zval, ZHi(zval)]
which can be easily computed [3]. In the example of Fig-
ure 2, we obtain ZLowerHull(17) = [17, 23]. In a similar
way, we also compute ZUpperHull(zval), the set of all
larger intersecting tiles. As in the case of ZUpperHull(17)
= {0, 16} the corresponding linear values usually form no
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consecutive range. To find all intersecting tiles for a given
zval, a range scan on the index table is performed with
ZLowerHull(zval) and multiple exact match queries are
executed for ZUpperHull(zval). These queries are opti-
mally supported by a built-in B+-tree on the zval column.
Figure 3 depicts the complete window query on an in-
stance of the Relational Quadtree using SQL:1999. Alter-
natively, the transient rowsets generated by the functions
ZDecompose and ZUpperHull can be precomputed in the
procedural phase for all Z-tiles of the query box and
passed to the SQL layer in one step by using bind vari-
ables. This approach reduces the overhead of barrier
crossings between the declarative and procedural envi-
ronments to a minimum. 

2.2 Extensible Indexing
The design of extensible architectures represents an im-
portant area in database research. The object-relational
data model marked an evolutionary milestone by intro-
ducing abstract data types into relational database servers.
Thereby, object-relational database systems may be used
as a natural basis to design an integrated user-defined da-
tabase solution. The ORDBMSs already support major as-
pects of the declarative embedding of user-defined data
types and predicates. In order to achieve a seamless inte-
gration of custom object types and predicates within the
declarative DDL and DML, ORDBMSs provide the data-
base developer with extensibility interfaces. They enable
the declarative embedding of abstract data types within
the built-in optimizer and query processor. Corresponding
frameworks are available for most object-relational data-
base systems, including Oracle and DB2.

An important requirement for applications is the
availability of user-defined access methods. Extensible
indexing frameworks proposed by Stonebraker [15] en-
able developers to register custom secondary access
methods at the database server in addition to the built-in
index structures. An object-relational indextype encapsu-
lates stored functions for creating and dropping a custom
index and for opening and closing index scans. The row-
based processing of selections and update operations fol-
lows the iterator pattern [5]. Thereby, the indextype com-
plements the functional implementation of user-defined
predicates. If the optimizer decides to include this custom

index into the execution plan for a declarative DML state-
ment, the appropriate indextype functions are called by
the built-in query processor of the database server. Thus,
the maintenance and access of a custom index structure is
completely hidden from the user, and the desired data in-
dependence is achieved. Furthermore, the framework
guarantees any redundant index data to remain consistent
with the user data.

The architecture of extensible optimization is analo-
gous to extensible indexing as illustrated in Figure 4.
Whereas the new methods are built on top of the relational
SQL layer, they are object-relationally embedded by im-
plementing the respective interfaces of the frameworks.
Object-relational database systems typically support rule-
based and cost-based query optimization. The extensible
indexing framework comprises interfaces to tell the built-
in optimizer about the characteristics of a custom index-
type. Cost models particularly support methods to esti-
mate the selectivity of a given range query on a database
(function getSelectivity) and methods to predict the cost
of processing that query (function getIndexCost).With a
cost model registered at the built-in optimizer framework,
the cost-based optimizer is able to rank the potential usage
of a custom access method among alternative access
paths. Thus, the system supports the generation of effi-
cient execution plans for queries comprising user-defined
predicates. This approach preserves the declarative para-
digm of SQL, as it requires no manual query rewriting.

3 Statistic based Acceleration of Spatial Queries

In addition to the query optimizer of an ORDBMS, which
uses statistics for rule-based optimizations such as push-
selections, we use the statistics to minimize the overall
navigational cost of a relational index structure. Our ap-
proach accelerates relational access methods by trying to
reduce the total number of logical reads for a given query.

SELECT DISTINCT idx.id  // select data object
FROM polygons_quadtree idx,

TABLE(ZDecompose(BOX((0,0),(100,100)))) tiles,
TABLE(ZUpperHull(tiles.zval)) uh

WHERE (idx.zval BETWEEN tiles.zval AND ZHi(tiles.zval))
OR (idx.zval = uh.zval);

Figure 3: Window query on a Relational Quadtree
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Figure 4: Analogous architectures for the
object-relational embedding of user-defined
index structures and cost models into
extensible indexing and optimization
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Extensible 
Indexing Framework

Object-relational interface for index 
maintenance and querying functions.

User-defined Index Structure

Relational Implementation
Mapping to built-in indexes (B+-trees); 

SQL-based query processing.



The relational access method can be any custom index
structure mapped to a fine granular relational schema
which is organized by built-in access methods, as for in-
stance the B+-tree. All statistic-based optimizations pre-
sented in this section can also be applied to variants of the
basic relational index structures. For instance, there exist
index structures which were especially tuned for coping
efficiently with sequences. One example is the RI-tree as
introduced in [9]. It supports the efficient detection of in-
tersecting spatial objects, which are represented by inter-
val sequences. The main idea of this index structure is to
neglect such nodes as join partners which are already han-
dled by the previous query interval or which will be han-
dled by the following one. The main disadvantage of this
approach is that only specific predicates are supported by
this kind of index structures. For instance the RI-tree ac-
cording to [9] only supports boolean intersection queries,
but already fails to compute the intersection volume. Sim-
ilar optimizations are possible for the RQ-tree by elimi-
nating duplicates from the upper hulls resulting from dif-
ferent query tiles of a given query sequence.

In this section, we first look at very comprised statis-
tic values, which can already be very useful for accelerat-
ing the relational Quadtree. Then we show how we can
benefit from the statistics, used by the cost-models be-
longing to the relational access method.

3.1 Statistics Related to the Relational Quadtree

As already indicated in Definition 1 and Figure 1, the
metadata table is a single table for each database and each
relational access method, storing O(1) rows for each in-
stance of an index. All schema objects belonging to the
relational index, in particular the name of the index table,
and other index parameters are stored in this global meta
table. 

Especially in the case of space partitioning index
structures, often a few values, describing the actual data
distribution, help to reduce the I/O cost dramatically. If we
use the RQ-tree for indexing extended objects, very often
only the lower levels of the virtual primary structure are
engaged, as spatial objects tend to decompose into numer-
ous small tiles (cf. Section 4). Consequently, we store two
additional parameters MaxTileLevel and MinTileLevel
within the metadata table of the Relational Quadtree.
These two parameters reflect the highest and lowest level
of stored tiles within the database. If we compute the up-
per hull of a given query tile q, we only have to consider
those tiles t as join partners, for which MinTileLevel ≤
Level (t) ≤ MaxTileLevel holds. In general such kind of
simple statistics are especially useful for indexing extend-
ed spatial objects.

3.2 Statistics Related to the Build-In Index Structure
In [7] it was shown that using quantiles (‘equi-count his-
tograms’) is more suitable for estimating the selectivity
and the corresponding I/O cost than using common histo-
grams (‘equi-width histograms’). In addition, the runtime
required for the histogram computation is increased by the
cost of barrier-crossings between the declarative environ-
ment of the SQL layer and our stored procedure. Fortu-
nately, most ORDBMS comprise efficient built-in func-
tions to compute single-column statistics, particularly for
cost-based query optimization. Available optimizer statis-
tics are accessible to the user by the relational data dictio-
nary. The basic idea of our quantile-based selectivity esti-
mation is to exploit these built-in index statistics rather
than to add and maintain user-defined histograms. We
start with the definition of a quantile vector, the typical
statistics type supported by relational database kernels. 

Definition 2 (Quantile Vector).
Let (M, ≤) be a totally ordered multi-set. Without loss

of generality, let M = {m1, m2, …, mN} with mj ≤ mj+1,
1 ≤ j < N. Then Q(M, ν) = (q0, …, qν) ∈ Mν is called a
quantile vector for M and a resolution ν ∈ IN, iff the fol-
lowing conditions hold:

(i) q0 = m1

(ii) ∀ i ∈ 1, …, ν: ∃ j ∈ 1, …, N:  qi = mj ∧  <  ≤  

We will now discuss how we can use this information
to accelerate the query process itself. Any query for the
RQ-tree leads to several index range scans on the built-in
index structures, e.g. B+-tree. The general idea of our ap-
proach is to minimize the overall navigational cost of the
built-in index by applying extended index range scans.
Thereby, we read false hits from the index, which are fil-
tered out by a subsequent refinement step. Our approach
closes the gaps between the index scan ranges if and only
if the number of additional read data is comparably small,
more precisely the cost related to these false hits is smaller
than the navigational cost related to an additional range
scan. This decision whether to close a gap is based on the
built-in statistics. We will now formally introduce this
idea.

3.2.1 Index Range Scan Sequences

For spatial intersection queries, the query object Q leads
to many disjoint range queries si = (li, ui) on the built-in
index I, e.g. the B+-tree. We consider them as a sequence
SeqQ,I = (〈s1,..., sn〉) of index range scans (cf.  Figure 5a)
for which the following assumptions hold:

• The elements ri stored in the index are of the same
type as li, ui. Furthermore, we assume that the

j 1–
N

----------
i
ν
---

j
N
----



elements ri can be regarded as a linear ordered list
L(I) = <r1,...,rN> for which r1 ≤ ... ≤ rN holds.

• We assume that the data pages pi of the index obey
a linear ordering ≤ and fulfill the following
property: r’≤ r’’⇔  p(r’) ≤ p(r’’), where p(r)
denotes the disk page of the index I, which
contains the entry r.

I/0 cost. The I/O cost CI/O(s) associated with one index
range scan s = (l, u) of SeqQ,I = (〈s1,..., sn〉) are composed
from two parts: Cn

I/O(s) the navigational I/O cost for find-
ing the first page of the result set, and Cs

I/O(s) the cost for
scanning the remaining pages containing the complete re-
sult set. Formally, CI/O(s) = Cn

I/O(s) + Cs
I/O(s), with the

following two properties: 

(i) Cn
I/O(s) = Cn

I/O(p(r’)) (navigational cost)

(ii) Cs
I/O(s) = Cs

I/O(<p(r’),...,p(r’’)>) (scan cost)

where r’, r’’ ∈ L(I) and ∀ r ∈ L(I) : (r’ ≤ r ≤ r’’) ⇔ (l ≤ r
≤ u) holds. The I/O cost CI/O(SeqQ,I) associated with

SeqQ,I = (〈s1,..., sn〉) are determined by the sum of all indi-

vidual I/O cost: CI/O(SeqQ,I ) =
 .

3.2.2 Extended Index Range Scan Sequences

The main purpose of our approach is to minimize the
overall cost for the navigational part of the built-in index.
Therefore, we try to reduce the number of generated range
queries on the index I, while only allowing a small in-
crease in the output cost. This can be achieved by merging

two suitable adjacent range scans s’ = (l’, u’) and s’’ =
(l’’, u’’) together to one extended range scan xs = (l’, u’’). 

Intuitively, an extended range scan xs =  is
an ordered list of index range scans. When carrying it out,
we traverse the index directory only once and perform a
range scan (lr, us), as for example (l3, u4) in Figure 5b. Per-
forming the extended range scan we read false hits from
the index I, which have to be filtered out in a subsequent
refinement step. The overall cost C(xs) of an extended
range scan xs are composed from the sum of the I/O cost
of the extended range scan and the CPU cost related to the
refinement step: C(xs) = CI/O(xs) + CCPU(xs).

I/O cost. The I/O cost CI/O(xs) associated with one ex-
tended range scan xs =  are composed from two
parts CI/O(xs) = Cn

I/O(xs) + Cs
I/O(xs), with the following

properties: 

(i) Cn
I/O(xs) = Cn

I/O(sr) (navigational cost)

(ii) Cs
I/O(xs) = Cs

I/O(lr,us) (scan cost)

CPU cost. The CPU cost CCPU(xs) associated with one
extended range scan xs =  denote the cost
which are required to perform the filter operation for all
tuples resulting from the extended range scan: 

CCPU(xs) = CCPU(<r’,..,r’’>), 
where ∀ r ∈ L(I) : (r’ ≤ r ≤ r’’) ⇔ (lr ≤ r ≤ us).

The total cost C(XSeqQ,I) associated with an extended
index range scan sequence XSeqQ,I = (〈xs1,..., xsm〉) can be
computed as follows: 

C(XSeqQ,I) =
 

. 

Obviously, there might exist extended index range
scan sequences XSeqQ,I for which the following relation
C(XSeqQ,I) << C(SeqQ,I) holds. For each gap g between
two adjacent range queries s’ and s’’ we decide, whether
the cost of scanning over the gap g are lower than the nav-
igational I/O cost related to s’’. The decision whether to
merge range scan s’ and s’’ to one extended range scan and
apply an additional refinement step afterwards in order to
filter out false hits is based on statistics, which are neces-
sary for the cost models anyway. 

The multi-set M of our quantile vector (q0, …, qν) (cf.
Definition 2) is formed by the values of the first attribute
A1 of the domain values of our index I. By means of these
statistics we can estimate the I/O cost Cs

I/O(s) associated
with one range scan s = (l, u). In the following formula, b
denotes the number of disk blocks at the leaf level of I, v
denotes the resolution of the quantile vector, N denotes the
overall number of entries stored in the index I and overlap

s3

pb

Figure 5:  Accelerated query processing   
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returns the intersection length of two intersecting inter-
vals.

We can also apply the above formula to estimate the
total cost Cs(g) = Cs

I/O(g + CCPU(g) related to scanning
over a gap g = ]u’, l’’[ between two adjacent range queries
s’ and s’’. The CPU cost can be estimated by CCPU(g)
= , with a parameter k > 0, since both the I/O
cost and the CPU cost are directly proportional to the size
of the result set of the range scan. If Cs(g) are lower than
Cn(s’’), we close the gap g.

We can find the extended range scan sequence XSe-
qQ,I, trying to minimize C(XSeqQ,I), by deciding for each
of the n-1 gaps between the index range scans s1,..., sn of
the index range scan sequence SeqQ,I= (〈s1,..., sn〉), wheth-
er we close this gap or skip it. Thus we obtain an extended
index range scan sequence XSeqQ,I = (〈 ,...,

〉), which satisfies the following proper-
ty:

Usually, the actual navigational cost Cn
I/O are inde-

pendent of the actual range scan and can easily be estimat-
ed by Cn

est, e.g. by the height of the B+-directory. 
In the next sections, we will show how our approach

can be applied to the intersect predicate for a specific in-
dex structures, namely the Relational Quadtree.

3.2.3 Adoption to the RQ-tree

In this section, we shortly introduce our approach based
on the basic idea of the Relational Quadtree according to
the in-depth discussion of Freytag, Flasza and Stillger [3]. 

Assume object Q in Figure 6 is used as query object.
Then there are multiple exact match and range scan que-
ries which have to be performed in order to detect all in-
tersecting database objects. We can reduce the cost by
closing small gaps on the leaf-level of the underlying B+-
tree. By using the information stored in the statistics, i.e.
using the tile quantiles, the number of join partners, which
correspond directly to the navigational cost Cn

I/O, can be
reduced drastically. The quantile vector is built over the
values stored in the leaf-level of the B+-tree. 

We investigate all gaps included in the sequence of
our generated join partners and decide whether it is bene-
ficial to close this gap. Assume the height of our B+-direc-
tory is n. If we close the gap, we reduce the navigational
cost as follows: Cn

I/O = Cn
I/O - n. On the other hand, we

estimate the cost Cs(g) required to read the leaf blocks on
our index (zval), which are covered by the database tiles
of the actual investigated gap g. If these estimated cost are
lower than n, we close this gap. Thus we reduce the join
cost Cn

I/O by n, while not increasing the output cost Cs by
more than n. This procedure is depicted in Figure 6. 

The above mentioned cost-based grouping step can
be carried out in a procedural preparation step JoinPart-
Gen by using bind variables, leading to one single SQL-
statement (cf. Figure 7). This approach reduces the over-
head of barrier crossings between the declarative and pro-
cedural environments to a minimum. The resulting table
tiles contains entries of a type which consists of three at-
tributes ZvalLow, ZvalHigh and ExactZvalList. The at-
tribute ExactZvalList is a collection of tile ranges, repre-
senting the accurate query information. It is needed for an
additional refinement step to filter out false index hits, by
calling TestZval().

4 Experimental Evaluation

The tests are based on two test data sets CAR (3D CAD
data) and GEO (2D geographical data, derived from the
SEQUOIA benchmark). 

CAD data set: The first test data set is provided by our
industrial partner, a German car manufacturer, in form of

Cs
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Figure 6: Cost-Based Tile Grouping 
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high-resolution voxelized three-dimensional CAD parts.
It consists of approximately 14 million voxels represent-
ing 200 parts. The CAD data space is of size 233. 

GEO data set: The GEO data set consists of voxelized
two-dimensional polygons derived from the SEQUOIA
2000 Polygon Data Set. It contains approximate 1.1•109

voxels representing about 57,500 polygons. The GEO
data space is of size 230.

In both cases, the Z-curve was used as a space filling
curve to enumerate the voxels. 

We have implemented our approach for the RQ-tree
on top of the Oracle9i Server using PL/SQL for the com-
putational main memory based programming. All experi-
ments were performed on a Pentium III/700 machine with
IDE hard drives. The database block cache was set to 500
disk blocks with a block size of 8 KB and was used exclu-
sively by one active session.

4.1 Histograms of the Test Data Sets

Mainly the lowest levels of the RQ-tree contain index en-
tries. Figure 8a shows that in the case of the GEO data set
only the lower levels are occupied and in the case of the
CAD data set (cf. Figure 8b) even only the seven lowest of
33 levels. The observation that spatial objects are decom-
posed into many small tiles are not confined to our two
test data sets but hold for spatial objects in general [4] [8].
Therefore, the statistics presented in Section 3.1 are very
beneficial for efficient query processing on spatially ex-
tended objects in general. 

4.2 Query Processing

In this section, we examine the benefits of using extended
index range scans. The experiments on the GEO data set
are based on window queries, which comprise about 9500

tiles and have an average selectivity of about 2% of all
stored objects. For the CAD data set we used 10% of the
database objects as query objects. For all experiments we
report the average results from these queries.

In the following experiments, we applied the statistic
based approach to the RQ-tree for the GEO data set as
well as for the CAD data set. Figure 9 shows that the use
of our quantile statistics (cf. Section 3.2) accelerates the
RQ-tree dramatically. A further improvement can be
achieved by using the information of the highest and low-
est level of stored tiles within the database (cf. Section
3.1), leading to a speed-up of almost 300% in the case of
the CAD data set. Figure 10 depicts the acceleration of the
sequence optimized RQ-tree, where we compare the vari-
ant without incorporating the CPU-cost of the refinement
step with the variant including the CPU-cost (cf. Section
3).  The first variant considers only the I/O-cost and ne-
glects the CPU-cost for forming the extended range scan
sequences: Figure 10b shows that this approach leads only
to an acceleration in the preparation step, but the overall
query time increases due to the expensive refinement pro-
cess. On the other hand, if we incorporate the CPU-cost
for the cost estimation, we can achieve an overall speed-
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up of approximately 30%, even for this highly specialized
index structure. 

To sum up, we achieve an acceleration of the query
process by 30% to 300%, if we form the extended range
scans according to the available statistics considering
both expected I/O-cost and expected CPU-cost.

5 Conclusion
In this paper, we have shown how we can accelerate spa-
tial query processing by means of statistics which are
available for free, as they are maintained by the cost mod-
els belonging to the corresponding spatial index struc-
tures. We have implemented our approach for the Rela-
tional Quadtree on top of the Oracle9i database system.
According to our experiments, we achieved speed-up fac-
tors of up to 300%. Our new statistic-driven approach ac-
celerates the query processing considerably. This acceler-
ation is due to the fact that we can dynamically switch
between a further use of the index structure and a linear
scan. Our statistic-driven approach adapts the access
method continuously to the best of these two worlds.

In our future work, we want to show that our statistic-
based acceleration approach can fruitfully be applied to

time critical applications as for instance Virtual Reality
applications Furthermore, we plan to apply our statistic
driven query processing for dynamic spatial queries.
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