
Optimizing All-Nearest-Neighbor Queries with
Trigonometric Pruning

Tobias Emrich, Franz Graf, Hans-Peter Kriegel, Matthias Schubert, and Marisa Thoma

Ludwig-Maximilians-Universität München
Oettingenstr. 67, Munich, Germany

{emrich,graf,kriegel,schubert,thoma}@dbs.ifi.lmu.de

Abstract. Many applications require to determine the k-nearest neighbors for
multiple query points simultaneously. This task is known as all-(k)-nearest-neighbor
(AkNN) query. In this paper, we suggest a new method for efficient AkNN query
processing which is based on spherical approximations for indexing and query set
representation. In this setting, we propose trigonometric pruning which enables
a significant decrease of the remaining search space for a query. Employing this
new pruning method, we considerably speed up AkNN queries.

1 Introduction

Similarity search in databases is an important problem in content-based multimedia re-
trieval. Additionally, similarity queries are a useful database primitive for speeding up
multiple data mining algorithms on large databases. In the majority of approaches for
similarity search, the objects are described as points in a high-dimensional data space,
where each dimension describes the object value w.r.t. a given characteristic or feature.
These feature vectors are compared via metric distance functions such as the Euclidean
distance or other Lp-norms. Thus, the distance between two feature vectors v1 and v2
models the similarity between the corresponding objects. One of the most important
types of similarity queries in this setting are k-nearest-neighbor (kNN) queries, retriev-
ing the k objects in the database which have the smallest distance to a given query
vector q. The majority of the approaches developed so far focus on the efficient pro-
cessing of a single query at a time. However, in many applications like data mining and
similarity search, it is previously known that it is necessary to process a large number
of kNN queries to generate a result. More precisely, an AkNN query retrieves the k-
nearest neighbors in the inner set or database S for each object in the outer or query set
R. Let us note that the same type of query is also known as kNN join [1].

Multiple computational problems use AkNN queries: In multimedia retrieval, many
recent approaches model the image content as a set of local descriptors [2] or point
clouds [3]. An AkNN query efficiently retrieves the best matches for a set of local de-
scriptors in a given image database. Another area of application is data mining: [1]
surveys multiple data mining algorithms that can be accelerated by efficient methods
for AkNN computation like parallel kNN classification and k-means clustering. Fur-
thermore, it is possible to employ AkNN processing for deriving outlier factors like [4].

In this paper, we propose a new approach for processing AkNN queries. As our
method uses spherical page regions it employs an SS-Tree [5]. To define the pruning

area around the approximations, we introduce trigonometric pruning which accounts
for the fact that the relevant search space is not necessarily symmetric around the query
approximation. Since this pruning method is based on trigonometric relationships, we
refer to it as trigonometric pruning. One of its advantages is its capability to calculate
pruning areas which are based on query approximations and to considerably decrease
the remaining search space employed by other approaches like [3, 6].

The rest of the paper is organized as follows. Section 2 surveys related work for
processing AkNN queries and kNN joins. In Sect. 3, we specify the problem and de-
scribe the methods and data structures our solution is based on. Section 4 introduces
our new pruning method and Sect. 5 then describes our new query algorithms. A per-
formance evaluation is presented in Sect. 6. The paper concludes with a summary and
some directions for future work in Sect. 7.

2 Related Work

There already exist several approaches for processing AkNN queries. The initial and
most simple approach is the computation of a separate kNN query on the inner set
S for each point in the outer set R. This method is often referred to as nested loop
join and can be accelerated by various search methods for kNN query processing. A
comprehensive survey can be found in [7]. Since this basic approach obviously is not
optimal w.r.t. the number of page accesses and distance computations, several dedicated
approaches for processing AkNN queries have been proposed. We first of all have to
distinguish index-based from scan-based solutions. In a scan-based solution, we assume
that both data sets are not organized in any form of index and thus, we have to scan the
complete data set for join processing. Examples for processing kNN joins without the
use of index structures are GORDER [8] and HANN [9].

In this paper, we assume that at least S is already organized in an index structure.
It is shown in the experiments in [6, 9] that the use of an index structure can consider-
ably speed up kNN join processing. One of the first publications discussing kNN join
algorithms was [1]. In this paper, Böhm et al. demonstrate that kNN joins are useful
database primitives that can be employed to speed up various data mining algorithms
like k-Means clustering. The proposed algorithm is based on a new data structure called
multipage index (MuX) which introduces larger pages for fast I/O accesses which are
further organized into memory pages aiming at minimizing distance calculations. The
proposed join algorithm first retrieves the current page of R and then queries S with
the set of all query points. For each query point, the algorithm maintains its own active
page list. The current pruning distance is considered as the maximum element of any
query of these queues, and pages are refined w.r.t. the minimal distance to any query
element. A drawback of this approach is that it has an overhead of distance computa-
tions because each object in S has to be compared to all elements in the query page.
In [9] the authors discuss two methods for AkNN queries that assume that S is orga-
nized in a spatial index structure like the R-Tree [10]. The first index-based approach
discussed in [9] aims at improving the use of a disk cache when posing a separate NN
query for each query point. The second proposed method, called batched nearest neigh-
bor search (BNN), groups query points based on a Hilbert curve and poses one query

for each group of points. The method considers the distance to the k-nearest neighbor
δk,x for each element x in the current query set. The maximum of these distances is
now used to extend the minimum bounding rectangle around the query set and thus,
describes the current pruning area. In [11], a kNN join algorithm based on the simi-
larity search method iDistance [12] is proposed. The paper describes a basic algorithm
called iJoin extending iDistance to the kNN join problem. Furthermore, two extensions
are proposed that employ MBR-approximations to reduce distance computations and a
dimensionality reduction approach to improve the performance on higher dimensional-
ities. Recently, two approaches have been published which reduce distance calculations
by not considering the particular elements in the current set of query points. Instead,
the pruning area is established on a minimum bounding rectangle around the query set.
[3] presents an approach for applications on large point clouds in image processing. In
this method, the set of query points is approximated by a minimum bounding rectan-
gle (MBR) which is posed as a query to an R-Tree organizing S. The authors propose
to employ the maximum distance that two points in two compared MBRs might have
to determine the current pruning range. This criterion is named MaxMaxDist. The au-
thors prove that their algorithm is optimal w.r.t. the number of pages that intersect a
query area spanned by the MaxMaxDist. The experiments are focused on the problem
of point clouds and thus, are directed at rather low dimensional settings. In [6], the
authors propose NXNDIST which is based on the observation that at each side of an
MBR, there must be exactly one contained data point which realizes the minimum dis-
tance. Thus, NXNDIST decreases the MaxMaxDist by allowing the use of the minimal
MaxDist for exactly one dimension. The result is a closer bound for MBRs that is guar-
anteed to contain at least one nearest neighbor to any query point in the query MBR in
the intersecting pages of S. In their solution, the authors additionally propose to employ
MBR-quadtrees as an index structure for S instead of R-Trees.

In contrast to all discussed approaches, our method uses spherical page approxima-
tions instead of MBRs. We employ the SS-Tree [5] for indexing S. Our main pruning
method, trigonometric pruning, describes the remaining search space based on the query
approximations only. However, opposed to previous approaches, the pruning area is not
built by symmetrically extending the query approximation in each direction. Instead, we
propose the use of an asymmetric pruning area to further limit the search space. Finally,
we show how our new approach can be effectively combined with existing pruning
methods to achieve a general improvement on data sets of varying characteristics.

3 All-k-Nearest-Neighbors Using Spherical Index Structures

In this section, we will formalize our task of AkNN queries and describe the index
structure used for our approach.

3.1 All-k-Nearest-Neighbors

As mentioned before, AkNN queries aim at retrieving the k-nearest neighbors for each
element of a given query or outer setR in the inner data set S. The set of the k-nearest
neighbors of point X in a setX is defined as follows:

Definition 1 (k-nearest neighbors). Let X ∈ IRn be a query vector, let X ⊂ IRn

be a database of feature vectors and let d : IRn × IRn → IR be a distance metric on
IRn. Then, the set NNk(X,X) of the k-nearest neighbors of X in X for any k ∈ N is
defined as follows:

(i) |NNk(X,X)| = k

(ii) ∀ Y ∈ NNk(X,X), Ŷ ∈ {X \ NNk(X,X)} : d(X,Y) ≤ d(X, Ŷ)

Definition 2 (AkNN Query). LetR,S ⊂ IRn be two data sets and d : IRn×IRn → IR
a distance metric on IRn. An all-k-nearest-neighbor (AkNN) query retrieves the result
set ANNk(R,S) ⊆ R× S for any k ∈ N for which the following condition holds:

∀ R ∈ R, S ∈ S : (R,S) ∈ ANNk(R,S)⇒ S ∈ NNk(R,S) (1)

Our algorithm for efficiently processing AkNN queries is built on trigonometric
functions, which need to be valid in the underlying featurespace. In this paper we use
the Euclidean metric, the most popular distance metric for this kind of applications.
Furthermore, we assume that the inner set S is organized in an index structure which is
based on spherical page regions. A spherical page region is specified by a centroid C ∈
IRn and a radius r ∈ IR+\{0} and thus, it describes a hypersphere aroundC, containing
all points Pi with distance d(C,Pi) ≤ r. Although approximating page regions using
minimum bounding rectangles is more common for spatial index structures, there have
been several successful index structures employing spherical page regions [5, 13].

3.2 The SS-Tree

As mentioned above, our method employs the SS-Tree [5], an efficient index structure
for similarity search based on spherical page regions. In the following, we will shortly
review the characteristics of the SS-Tree.

Definition 3 (SS-Tree). An SS-Tree in the vector space IRn is a balanced search tree
having the following properties:

– All nodes besides the root store between m and M entries. The root is allowed to
store between 1 and M entries.

– The entries of a leaf node are feature vectors in IRn. The entries of an inner node
are nodes, i.e. roots of subtrees.

– Each entry is bounded by a spherical page region containing all son entries.
– For a leaf node L, the center CL of the containing hypersphere BL is the centroid

of all contained feature vectors. The radius of BL, rL, is the maximum distance
between any entry vector L ∈ L and CL.

– For an inner node P , the center CP of the containing hypersphere BP , is the cen-
troid of the centroids CQ of the contained son pages Q ∈ P . The radius rP is
chosen as maxQ∈P (d(CP , CQ) + rQ).

In general, the structure of the SS-Tree is quite similar to the structure of the R-
Tree [10]. However, the page approximations are spherical instead of rectangular. Ad-
ditionally, the split heuristics for creating the tree are different. Instead of minimizing

the overlap between two pages, the SS-Tree tries to minimize the variance within the
entries of its pages. Thus, when splitting a node, the split heuristics determines the di-
mension having the largest variance. In this dimension, the partition is selected, which
minimizes the variance of the resulting pages and for which both new pages contain at
least m entries.

3.3 Principles of AkNN Algorithms

Given two data sets R and S, where S is organized in an index structure. We want to
find the kNN of all elements R ∈ R. The most trivial approach would be to retrieve the
kNN for each element Ri separately by using the index structure organizing S. Obvi-
ously this is not very efficient, e.g. for two query points (in R) with a close proximity
the same pages of the index have to be read twice. An efficient algorithm needs to group
the points in R so that spatially close points fall into the same group. Afterwards these
groups, containing distinct subsets ofR, are used as query sets.

For the ensuing step, it is important to decide which pages of S need to be examined
for finding the kNN of each element contained in a subset R ⊆ R. Therefore, the
search space, i.e. the space which could contain kNNs of an element R ∈ R, needs to
be defined. To successively minimize the search space, most algorithms start with the
search space containing S. Defining a pruning area has the opposite intention: define
the space which does not have to be further examined. This means, that all pages of S
lying completely in the pruning area can be discarded as candidates for the subset R.
Keep in mind that pages not completely covered by the pruning area can potentially
contain points lying in the search space and therefore need to be resolved. Since all
elements in the search space have to be considered in the further processing of R, the
goal is to minimize the search space as strongly and quickly as possible.

Minimizing the search space, respectively maximizing the pruning area, is the task
of a pruning criterion. The optimal search space would only contain the kNNs of all
R ∈ R. Therefore, a pruning criterion should try to estimate this optimum as well as
possible with low effort.

4 Pruning Criteria

In the following section, we describe MaxDist pruning and trigonometric pruning for
the case of a 1-nearest neighbor query for a query setR, using its bounding sphere BR.
In Sect. 4.2 we will then explain how to extend the pruning criteria to a kNN query with
k > 1. The notation used in the course of these analyses is summarized in Table 1.

4.1 MaxDist Pruning

Definition 4 (MaxDist, MinDist). Given a point P and a spherical region BR with
radius rR and center CR, the MaxDist of P to BR is defined as: MaxDist(BR, P) =
d(CR, P) + rR. The MinDist of P to BR is: MinDist(BR, P) = d(CR, P)− rR.

Table 1. Definition of Parameters

n The dimension of the feature space
R The outer set (⊆ IRn)
S The inner set (⊆ IRn)
R ⊆ R , S ⊆ S Subsets of the outer set or the inner set
R ∈ R , S ∈ S Points from the outer set or the inner set (∈ IRn)
BR , BS Spheres ≡ blocks around the setsR, or S, respectively (∈ IRn)
Pcand Candidate set of points of the inner set (⊆ S)
rR , rS Radius of sphere BR or BS around setR or S
CR, CS Center point of sphere BR or BS around setR or S
Ii Some intersection point on the surface of a sphere

Given a spherical region BR and an arbitrary data point S0 ∈ S, we need to dis-
tinguish the points of the inner set S which can potentially be the nearest neighbors of
any of the points enclosed by BR from the points which do not have to be examined.
All points Si with MinDist(BR, Si) > MaxDist(BR, S0) can be pruned.

Fig. 1. Example for Min-/MaxDist pruning depending on the spatial position of S0 and S1.

Fig. 1 gives an example of comparing MaxDist(BR, S0) with MinDist(BR, S1). In
case I), S1 cannot be the nearest neighbor for any point contained in BR, because any
point inR is closer to S0 than to S1. In case II), there may be points in BR (e.g. points
lying on the leftmost side of the sphere) which have S1 as their nearest neighbor and
thus S1 cannot be pruned. Case III) reveals the shortcoming of the pruning criteria men-
tioned above: Although neither MaxDist(BR, S0) nor MinDist(BR, S1) have changed
in comparison to case II), it is clear that S1 cannot be the nearest neighbor of any point
contained in BR and could thus be pruned.

This example shows that not only the distances to a query region but also the spatial
relations between points of the outer set can play an important role for an optimal
pruning criterion.

4.2 Trigonometric Pruning

Hence, we propose to consider the spatial relations of points in order to reduce the
search space and thus avoid unnecessary page accesses. Therefore, a point Si close to
the query region BR is picked as pruning candidate. By exploiting the trigonometric
properties of the spatial relation of Si and BR, the search space is reduced.

In order to generalize the correctness of our approach in an n-dimensional space,
we will first show the correctness in 2D and afterwards extend the approach to n di-
mensions. To illustrate our approach, we will use the terms and variable declarations

Fig. 2. Trigonometric pruning with active region AR(S) in comparison with MaxDist pruning.

corresponding to Fig. 2. Afterwards, we show that the distances between a point S and
a query region follow the function described in Definition 5 and thus, define a pruning
area. Next, we demonstrate how to combine these functions in order to decide whether
or not any of the points in S can be pruned (Sect. 4.2). Then, we extend the pruning
criterion such that it also holds for pages, meaning it is possible to prune pages and
to use pages as pruning candidates. Finally, we give a geometric interpretation of the
approach that allows faster calculation of the pruning area.

Defining the Pruning Area The following definition follows directly from the law
of cosines, using the triangle 4SCRI between a pruning candidate S, the center of
the page CR and an arbitrary point I on the surface of the page R. This situation is
illustrated in Fig. 2. In the following, we will define the Surface Distance describing the
distance of S to an arbitrary surface point I:

Definition 5 (Surface Distance dϕ(S,BR)). Let BR be a sphere around the center
point CR with radius rR, containing all elements R ∈ R ⊆ R of a subset of the outer
set. Let I be a point on the surface of BR, i.e. CRI = rR and let S be a point from the
inner set S. The surface distance SI follows the function

dϕ(S,BR) =
√
CRS

2
+ r2R − 2CRS rR cos (ϕ) , (2)

where ϕ =]SCRI is the angle between
−−−→
CRS and

−−→
CRI . If S is equal to the center

CR, ϕ is not defined, thus we set d∅(S,BR) = rR for S = CR.

As illustrated in Fig. 2, the distance between a candidate S and a point I on the
surface of the circle around CR fulfills Equation (2). Thus, we can define the active
region AR(S) as the remaining search space after considering S, because any point
inside the active region is closer to any position inR than S is.

Definition 6 (Active Region AR(S)). Let BR and S ∈ S be defined as above. The
regionAR(S) contains all points P for which the distance to any point I on the surface

of BR is less than or equal to the distance of S to I:

AR(S) = {P ∈ IR2 | ∃ I on BR : d(P, I) ≤ d(S, I)} (3)

= {P ∈ IR2 | ∃ ϕ ∈ [0; 2π] : dϕ−δ(P,BR) ≤ dϕ(S,BR)} , (4)

where δ =]PCRS is the angle between
−−−→
CRS and

−−−→
CRP .

This definition is equivalent to the union of all circles starting at an intersection
point I of BR with radius d(S, I). AR(S) is visualized as the gray shaded area in
Fig. 2. Since the distance condition of (3) automatically holds for points I ′ within BR,
AR(S) contains only the points P ∈ S which can still be closer or equally close to any
point R ∈ BR than S and thus it forms a valid search space.

Extension to n Dimensions The definition for the active region can be extended to
n > 2 dimensions. The points Si, Sj andCR span a 2D hyperplaneH in any dimension.

Lemma 1. Let AR(Si) be the active region of an Si ∈ S for a data sphere BR with
R ⊆ R and let Sj ∈ S be another data point. If Sj ∈ S is not in AR(Si) in the
hyperplane H spanned by Si, Sj and CR, there cannot be any R ∈ BR s.t. d(R,Sj) ≤
d(R,Si) and Sj can be pruned.

The proof is omitted due to space limitations. The idea is to reduce the test on whether
or not Sj is within the active region of Si to the test of (3), which implicitly takes place
on the common 2D hyperplane H .

Pruning Points Given two candidate points Si, Sj and a query region BR with center
CR and radius rR. Let δ be the angle]Si CR Sj . Then Sj can be pruned if

dϕ(Si, BR) < dϕ−δ(Sj , BR); ∀ϕ ∈ [0; 2π[. (5)
If dϕ(Si, BR) > dϕ−δ(Sj , BR); ∀ϕ ∈ [0; 2π[(6)

holds, Si can be pruned. If none of the conditions hold, neither Si nor Sj can be pruned.
W.l.o.g. ϕ can be limited to [0; 2π[. If neither (5) nor (6) holds, there is at least one ϕ,
where dϕ(Si, BR) = dϕ−δ(Sj , BR) and thus both Si and Sj are NN candidates for
the outer set R (see Fig. 3). This condition can be transformed to finding the roots of
function gSi,Sj ,BR(ϕ) = dϕ(Si, BR) − dϕ−δ(Sj , BR). A root of gSi,Sj ,BR(ϕ) indi-
cates that dϕ(Si, BR) and dϕ−δ(Sj , BR) intersect such that neither of the points can
be pruned safely. In the case of CR = Si or CR = Sj , we only need to compare the
according MinDists.

As the computation of the roots of gSi,Sj ,BR(ϕ) is quite expensive, we calculate
the extrema by examining the roots of g′Si,Sj ,BR

(ϕ) as defined in Equation (7) and test
them on opposite signs.

g′Si,Sj ,R(ϕ) = 2CRSi rR sin(ϕ)− 2CRSj rR sin(ϕ− δ) (7)

g′Si,Sj ,R(ϕ) = 0⇒ ϕ1,2 = arctan
(

CRSi sin(aπ + δ)
CRSj cos(aπ + δ)− CRSi

)
(8)

with a = 0, 2

Fig. 3. Distance functions dϕ(Si, BR), dϕ(Sj , BR) of two candidate points Si and Sj with
δ =]Si CR Sj .

Obviously, there are only two possible roots ϕ1 and ϕ2 in the domain [0; 2π[for
g′Si,Sj ,R because the numerator can only be zero if sin(aπ + δ) = 0. Using the signum
function, we can now differ between the following cases:

1. sgn(gSi,Sj ,BR(ϕ1)) = sgn(gSi,Sj ,BR(ϕ2)) :
⇒ ∀ϕ : gSi,Sj ,BR(ϕ) 6= 0 and thus ∀ϕ : dϕ(Si, BR) 6= dϕ−δ(Sj , BR).

2. sgn(gSi,Sj ,BR(ϕ1)) 6= sgn(gSi,Sj ,BR(ϕ2)) :
⇒ ∃ϕ∈ [0; 2π[: dϕ(Si, BR) = dϕ−δ(Sj , BR).

Only case 1 allows one of the points to be pruned. If gSi,Sj ,BR(ϕ) > 0 for all ϕ, Si can
be pruned since its active region AR(Si) completely contains the active region of Sj .
Analogously, Sj can be pruned if gSi,Sj ,BR(ϕ) < 0 holds.

Pruning Pages In order to reduce page accesses, we now extend trigonometric pruning
to prune pages without accessing the page itself.

Lemma 2. LetBR be a query region,BS a page from the inner set, let S0 be a pruning
candidate for the query region BR and let δ be the angle]S0 CR CS . Then, BS can
be pruned if dϕ(S0, BR) < dϕ−δ(CS , BR)− rS ,∀ϕ ∈ [0; 2π[.

Proof. According to Sect. 4.2, a point S can be pruned if gS,S0,BR(ϕ) > 0 ∀ϕ ∈
[0; 2π[. Since every point S ∈ S is at most rS away from the center CS , the following
condition holds because of the triangle inequality:

dϕ−δ(CS , BR)− rS ≤ dϕ−δ(S,BR),∀S ∈ S.

Therefore, all points S ∈ S and thus the page bounded by BS can be pruned if

dϕ(S0, BR) < dϕ−δ(CS , BR)− rS ,∀ϕ ∈ [0; 2π[(9)

ut

Figure 4 illustrates the initial situation with a query region BR, a pruning candidate
S0 and a page BS containing points of the inner set. I is a point on the surface of

BR. The page BS can be safely pruned if its distance to any point I is larger than
S0I . Since we have a region BS rather than a point S, we use MinDist(I,BS). The
decision whether a page BS can be pruned, is based on the existence of at least one ϕ
for which dϕ(S0, BR) ≥ dϕ−δ(CS , BR)− rS . As in the previous section, we compute
the maxima of the difference of the two functions:

gS0,BS ,BR(ϕ) = dϕ(S0, BR)− (dϕ−δ(CS , BR)− rS) (10)
⇒ gS0,BS ,BR(ϕ) = gS0,CS ,BR(ϕ) + rS (11)
⇒ g′S0,BS ,BR(ϕ) = g′S0,CS ,BR(ϕ) (12)

Subtracting rS from dϕ−δ(CS , BR) causes the distance of CS to the intersection
point I to be translated along the y-axis by −rS units. Hence, the locations of the
extrema of gS0,BS ,BR(ϕ) are not different from the extrema of gS0,CS ,BR(ϕ) such that
g′S0,BS ,BR

(ϕ) can be used for calculating the values of ϕ for testing (9) on whether or
not the page BR can be pruned.

Fig. 4. Distances of the candidates S0

and BS to I for BR.
Fig. 5. Geometric interpretation of the pruning
criterion. Pj can be pruned, if M does not inter-
sect the circle around CS .

Geometric Interpretation A computationally cheaper and thus faster result can be
achieved by using the following geometric interpretation which is illustrated in Fig. 5:
Let Pi be a pruning candidate, let CS be the center of a page BS with radius rS and
let Pj be a point to be tested on whether it can be pruned or not. Then, Pj can be
pruned if dϕ(Pi, BS) < dϕ(Pj , BS) (as shown in 4.2). This condition is fulfilled if
Pi, Pj and PS build an isosceles triangle 4Pi Pj PS , with [Pi, PS] and [Pj , Ps], rep-
resenting the two sides with equal length, so that PS is located on the perpendicular
bisector M of [Pi, Pj]. If M does not intersect the circle around CS , there is no PS for
which PiPS = PjPS holds. Thus, Pj can be pruned if CSPM > rS with PM being
the orthogonal projection of CS onto M (cf. Fig. 5). CSPM can be calculated by Equa-
tion (13). Obviously, no additional coordinates than the ones given by Pi, Pj and CS
are needed.

CSPM =
−CSPi

2
+ CSPj

2

2PiPj
(13)

Picking Pruning Candidates In this section, we explain which points should be se-
lected as pruning candidates. Generally, points close to the query region result in a
smaller active region, so that these points are preferable. The active region is further
reduced by comparing a point Sj to all pruning candidates Si ∈ Scand, since the result-
ing active region is equivalent to an intersection of the active regions of all Si. Hence,
more candidate points result in fewer page accesses at the price of an increasing num-
ber of distance calculations. The largest benefit is achieved if the pruning candidates are
equally distributed around CS because the resulting active region is minimized in this
case.

Extending the idea of trigonometric pruning from ANN to AkNN is very simple:
A point or page can be pruned if it is pruned by at least k pruning candidates. Hence,
at least k pruning candidates have to exist before defining a search space smaller than
the whole space IRn. Resulting from these findings, we define the parameter ε, which
controls the maximum number of pruning candidates that should be considered for
pruning elements from S, by setting this number to k · ε.

5 The Trigonometric Pruning Algorithm

Algorithm 1 gives an overview of our query algorithm. In the following, we explain the
employed data structures and describe the complete algorithm. Finally, we propose an
extension for employing multiple pruning techniques.

5.1 Data Structures

Algorithm 1 requires the following data structures:
PQ: A priority queue handling all yet unconsidered pages for a query set R ⊆ R.

PQ is organized as a heap with the element with the smallest MinMinDist (extension of
MinDist for two pages) to the query region on top.

RES HT: A hash table storing one priority queue for each query point. Each queue
has a capacity of k and maintains the k-nearest neighbors for its query point. The call
RES HT.add(R, Si) adds Si to the priority queue ofR.

PCLIST: A list containing the pruning candidates, ordered by their MinDist to the
query region. The maximum size of the list is defined by ε · k with k being the amount
of nearest neighbors that should be computed and ε ≥ 1 being an adjustable parameter.
The larger ε is chosen, the more pages can be pruned (as PCLIST grows and provides
more pruning power) which saves time consuming I/O-accesses at the cost of distance
calculations.

5.2 The AkNN Algorithm

Our algorithm starts with grouping the query set R into compact spherical approxima-
tions. We use BIRCH [14] to produce a list of compact regions in linear time and orga-
nize them in a list. This way, the resulting query regions can be described by compact
hyper spheres having a given maximum radius. Since the pruning area also decreases
with the radius of a query region, we use the algorithm proposed in [15] to calculate the

Algorithm 1 The AKNN algorithm
AkNN(LISTqueryRegions, SSTREEinnerSet, k, RES HT)
0 : forallR ∈ LISTqueryRegions do
1 : PCLIST := new PCLIST(ε · k)
2 : PQ := new PQ()
3 : PQ.add(SSTREEinnerSet.root, -1)
4 : while PQ.hasElements() do
5 : if PCLIST.size = ε · k and PQ.smallestDistance > PCLIST.MaxDistk
6 : break
7 : node := PQ.removeFirst()
8 : if not canBePruned(node,R, PCLIST)
9 : forall child ∈ node
10 : if child is an inner node // i.e. a BS from the SS-Tree
11 : PQ.add(child, MinDist(child,R))
12 : else // i.e. an Si ∈ S
13 : if not canBePruned(child,R, PCLIST)
14 : PCLIST.add(child)
15 : forall queryPoint ∈ R // i.e. an Ri ∈ R
16 : RES HT.add(queryPoint, child)

approximate smallest enclosing ball (SEB) for the data content of each region. Com-
puting SEBs costs extra CPU time, but it pays off fast with growing |S|, as the resulting
SEBs’ radii are about 10% - 20% smaller than the radii of the original spheres.

The main algorithm now receives a list of query regions fromR and the number of
nearest neighbors k as input and proceeds as follows:

The query regions are processed successively and independently from each other.
First, a new query region is taken from the list. Afterwards, a list for storing pruning can-
didates (PCLIST) and a priority queue (PQ) are initialized and the root of the SS-Tree
storingS is put into the page list PQ. The pages in PQ are ordered by the MinMinDist to
the currently processed query region (BR). The SS-Tree is then traversed in a best-first
manner, as proposed by Hjaltason and Samet [16]. This is done by always removing
the first node from the priority queue PQ processing it and putting all child nodes (if
available) back to PQ, as long as the queue is not empty or the stopping criterion is
triggered: The search for other kNN-candidates can be stopped if the MinMinDist of
the current node to R is larger than the MaxDist of the k-th pruning candidate. In that
case, the node and all its successors in the PQ can be pruned (cf. Sect. 4.1).

If the algorithm cannot be terminated in this way, it tests whether the current node
can be pruned. This is done by the canBePruned() function, which prunes the node or
point w.r.t. the pruning techniques introduced in Sect. 4.2. If the node cannot be pruned
and its children are nodes of the SS-Tree, they are all added to the page list PQ. If the
children are data points, another test on whether or not they can be pruned ensues. If the
test is negative, they are added to the PCLIST and to all priority queues (via RES HT)
of query points contained in R. Let us note that it is possible that the points will be
eliminated from both data structures at a later point of time.

5.3 Combining Trigonometric Pruning with Other Criteria

Fig. 6. The gray shaded area shows
the active region used by trigonomet-
ric pruning (see Definition 6) which
results from the intersection of the
three pruning areas of P1, P2, P3. The
dashed line [P1, P4] indicates the
GlobalDist(BR, S) which defines the
pruning area (dashed outer circle) used
by BNN in case of a 1NN query.

In this section, we will discuss the use of differ-
ent pruning criteria to further increase the per-
formance. Even if employing additional pruning
techniques causes additional computational cost,
the cost is negligible if the combination yields a
significant decrease of the search space and thus
saves page accesses. In order to maximize the ef-
fect of combining different pruning criteria, it is
important that the combined criteria perform al-
ways at least as well as one criterion alone. In
our case, this can be achieved when trigonomet-
ric pruning (TP) is combined with a pruning cri-
terion that also defines a pruning region so that
the intersection of both regions can be used as a
new pruning region.

In our experiments, we combine TP with
BNN [9] which turned out to be one of the best
pruning criteria we examined. The fact that the
original BNN algorithm is proposed to be applied
on rectangular page regions is not a problem, as it
can be transferred to spherical page regions, such
that BNN can be applied to the SS-Tree as well.
The authors of BNN propose to query the inner
set S with compact groups BRi ∈ R whereas
each Ri ∈ BRi organizes its NNs and according

maximum-NNDist(Ri,S). The largest value of NNDist(Ri,S) of allRi ∈ BRi defines
the GlobalDist(BRi,S) of BRi. Pages S can then be pruned if MinDist(BRi,S) >
GlobalDist(BRi,S) as S cannot contain a NN for any Ri ∈ BRi. The disadvantage of
the BNN algorithm compared to TP is that the spatial relation to other NN candidates is
ignored. This can lead to the case shown in Fig. 6 where GlobalDist(C, S) degenerates
and converges to MaxDist in the worst case.

6 Experimental Evaluation

In the following, we outline the evaluation process of the methods suggested in this
paper. We compare them w.r.t. to I/O cost to the state-of-the-art methods BNN [9] and
MBA [6]. In order to make the approaches competitive for data sets of larger dimen-
sionality, we adapted the algorithm to the X-Tree [17] and the SS-Tree [5] instead of
using an R-Tree [10]. We display results for the following algorithmic settings:

– MP: AkNN-algorithm, using MaxDist on the SS-Tree
– XBNN: BNN, using S indexed in an X-Tree
– SSBNN: BNN, using S indexed in an SS-Tree
– TP: AkNN-algorithm, using TP (see Algorithm 1)

– TP+SSBNN: AkNN-algorithm combining TP and BNN in an SS-Tree
– MBA: MBA algorithm [6]

We have evaluated the algorithms on the following three real-world data sets, which
were also used in the evaluation of [6]:

– TAC: Twin Astrographic Catalog Version 2 [18]: a library of stellar coordinates
resulting in a set of 705 099 two-dimensional star representations.

– FC: Forest Cover Type data set, retrieved from the UCI KDD repository [19]:
581 012 data points with 10 real-valued attributes, each representing a 30x30 meter
square of a forest region.

– COREL: Corel color histograms, which are also available at the UCI KDD reposi-
tory [19]. They consist of 32-dimensional color histograms for 68 040 images.

For all experiments we used a third of the data sets as outer set, the rest as inner set.
The page size was set to 1KB for TAC and 4KB for FC and COREL.

All experiments were run on a 64bit Intel R© XeonTMCPU (3GHz) with 16G RAM,
under Microsoft Windows 2003 R2, with Service Pack 1.

6.1 Results

In this section, we present the results of our experimental evaluation for the named al-
gorithms and data sets. Additionally, we will describe the effect of the employed param-
eters on the query performance. Due to space limitations, we cannot display all settings
for all data sets, but we give representative examples of the parameters involved.

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

To
ta
l T
im

e
[s
] (
lo
g‐
sc
al
e) MBA

XBNN

TP

1E+00

1E+01

1E+02

1E+03

TAC FC COREL

Fig. 7. Comparison of MBA, XBNN
and TP for k = 10. The figure displays
the sum of IO and CPU times for one
AkNN query.

Comparison to Other Approaches In order to
compare the different approaches, we performed
all-10-NN queries with the mentioned AkNN-
algorithms on the three data sets and measured
the CPU-time and the number of page accesses.
To combine these two measures, we considered
each logical page access with 8ms. Fig. 7 illus-
trates that TP and BNN perform orders of mag-
nitudes better than MBA on all used data sets
in matters of the overall runtime. Similar results
were obtained with the parametric settings used
for the experiments described in the following
paragraphs. Therefore, we excluded the results
of MBA in the further diagrams because the re-
quired scaling would conceal interesting effects.

Dependency on k In Fig. 8 we compare the named algorithm w.r.t. the number of
retrieved neighbors k on all three data sets. Though most methods compare their per-
formance on rather small values of k, larger values of k are often of large practical

relevance. In the context of search engines, it is quite common to provide large result
sets which are ordered with respect to the similarity to the query. Since the perfor-
mance mainly relies on the I/O operations, only page accesses are measured. While TP
and BNN perform comparable for smaller values of k, TP clearly shows a better per-
formance for larger values of k. For all data sets, our new combined approach (TP +
SSBNN) performed significantly better than all compared approaches.

100

150

200

250

300

pa
ge
 a
cc
es
se
s
[t
ho

u]

0

50

100

0 20 40 60 80 100

MP XBNN
SSBNN TP
TP+SSBNN

of nearest neighbours

(a) AkNN on TAC

1

1,5

2

2,5

pa
ge
 a
cc
es
se
s
[m

io
]

0

0,5

0 20 40 60 80 100

MP XBNN
SSBNN TP
TP+SSBNN

of nearest neighbours

(b) AkNN on FC

2

3

4

5

6

pa
ge
 a
cc
es
se
s
[m

io
]

0

1

2

0 20 40 60 80 100

MP XBNN

SSBNN TP

TP+SSBNN

of nearest neighbours

(c) AkNN on COREL

Fig. 8. Page accesses for AkNN queries on different data sets by all algorithms increasing k.

0 8

1

1,2

1,4

1,6

se
co
nd

s
[t
ho

u] IO

CPU

0

0,2

0,4

0,6

0,8

MP XBNN SSBNN TP TP + SSBNN

(a) A-10-NN on TAC

10

12

14

16

se
co
nd

s
[t
ho

u] IO

CPU

0

2

4

6

8

MP XBNN SSBNN TP TP + SSBNN

(b) A-10-NN on FC

25

30

35

40

se
co
nd

s
[t
ho

u]

IO

CPU

0

5

10

15

20

MP XBNN SSBNN TP TP + SSBNN

(c) A-10-NN on COREL

Fig. 9. Performance of 10-NN queries on the different dataset with all mentioned algorithms.

Dependency on the Choice of ε The ε parameter regulates the number of pruning
candidates and thus, it is the most important parameter for tuning the AkNN-algorithm
based on TP. Larger ε cause a smaller search space by the price of an increased number
of distance calculations. In Fig. 10, we summarize the effect of ε on the performance. As
expected, the number of distance calculations grows with increasing ε due to the larger
number of pruning candidates. Contrarily, more pruning candidates lead to a tighter
pruning effect, and thus the number of page accesses is reduced when increasing ε. For
all experiments in this paper we set ε = 5.

Overall Runtime Performance The direct comparison in matters of runtime is shown
in Fig. 9 and yields the following insights:

As most operations in the field of databases, the AKNN operation is I/O bound,
as CPU time is mainly consumed by distance calculations and represents only a small
portion of the overall performance.

Comparing MP and TP shows that TP reduces the page accesses by 30% - 40% in
contrast to MP. This is a consequence of the reduction of the search space as shown in

1

1,2

1,4

1,6

1

1,2

1,4

1,6

ce
 c
al
cu
la
ti
on

s
[b
n]

pa
ge
 a
cc
es
se
s
[m

io
]

page accesses

distance calculations

0

0,2

0,4

0,6

0,8

0

0,2

0,4

0,6

0,8

1 2 3 4 5 10 20 30

di
st
an

cp

Fig. 10. ε of TP for an A-10-NN query on FC.

150

200

250

300

350
SSBNN

TP

TP + SSBNN

se
co
nd

s

0

50

100

TAC FC COREL

Fig. 11. CPU-times on different data sets.

Fig. 2. This effect is very stable over all data sets, suggesting its independence from the
amount of dimensions.

The implementations of BNN on different underlying index structures (XBNN and
SSBNN) show that the SS-Tree is at least comparable to the X-Tree in the performed ex-
periments. Only for the 32-dimensional COREL data set, the X-Tree leads to a slightly
better performance. Considering that the SS-Tree is not as suitable for large dimensions
as the X-Tree, these results demonstrate that spherical page regions are well-suited for
the AkNN problem.

The effect of TP compared to BNN is dependent on the data set. On the TAC data
set, TP clearly outperforms SSBNN by about 30%. On the FC and the COREL data set,
both pruning criteria perform similar and are both outperformed by the combination of
TP and SSBNN which reduces the costs by 8%− 15%.

This demonstrates that the proposed combination nicely compensates the additional
computation costs and that the better approximation of the search space can signifi-
cantly decrease the amount of page accesses.

CPU Consumption As seen in Sect. 6.1, all AkNN-algorithms are clearly I/O bound.
However, through the use of buffers and caching strategies, the page accesses can be
dramatically reduced. Therefore, it is important to show that TP and TP+SSBNN apply
only a negligible computational overhead compared to SSBNN. The results shown in
Fig. 11 support this claim. Only at the high-dimensional COREL data set, SSBNN
is significantly faster with respect to CPU-time. Let us note that also in the presence
of buffers, the main challenge for AkNN-algorithms is to reduce the I/O operations.
Therefore, it is often beneficial for the overall runtime to reduce I/O operations by the
cost of CPU-time.

For all our compared methods it is necessary to group the outer setR into compact
query regions. In [9], the authors use a grouping approach based on a bulk-load using
the Hilbert order with a maximum threshold for the MBR volume and group size. They
argue that this procedure runs in linear time and leads to better page approximations
than, for instance, the data pages resulting from indexing R like S. This grouping pro-
cedure can also be transferred to spherical page approximations. However, we chose
BIRCH [14], which is a clustering algorithm with linear runtime. Even though this pro-
cedure uses spherical page approximations, we experienced that the groupings result-

ing from BIRCH show a better suitability even for the AkNN-algorithm based on the
X-Tree (XBNN) than those resulting from Hilbert grouping. Fig. 12 shows the experi-
ments on the three data sets for the two grouping algorithms. The Hilbert groups have
been created by limiting the group volume to the average data page size of the inner
set’s X-Tree. The parametric setting of BIRCH has been chosen such that the number
of groups is comparable to the Hilbert grouping. For the algorithms based on spheri-
cal page approximations, the results showed even more evidence for using BIRCH as
grouping algorithm.

1,5

2

2,5

pa
ge
 a
cc
es
se
s
[m

io
]

Hilbert

BIRCH

0

0,5

1

TAC FC COREL

p

Fig. 12. Grouping procedures of the outer set,
validated via XBNN.

150

200

250

300

ag
e
ac
ce
ss
es
 [t
ho

u] SSBNN

TP

TP+SSBNN

0

50

100

2 3 4

pa

dimension

Fig. 13. A-10-NN queries for synthetic clus-
tered data sets of varying dimensions

Synthetic Data Sets We have also compared SSBNN, TP and TP+SSBNN on several
synthetic data sets. Fig. 13 displays the results of A-10-NN queries on clustered datasets
of varying dimensions. The 3000 clusters in the example data set of size 600,000 have
been generated using a Gauss-like process: For each cluster a centroid has been sam-
pled from a uniform distribution. The standard deviation used for generating the cluster
points was chosen uniformly for each dimension. The experiments show that the com-
bination of TP and SSBNN outperforms TP by approximately 10% and that it outper-
forms SSBNN by 20 to 30%. We note that this effect is stable for all dimensions – also
for dimensions not displayed here due to space limitations.

7 Conclusions

In this paper, we introduced a novel approach for processing AkNN queries. Unlike pre-
vious approaches, our method is based on spherical page regions and thus, we apply it
using an SS-Tree. To exclude pages from the search as early as possible, our algorithm
introduces trigonometric pruning which allows to consider an asymmetric pruning area
around a given query approximation. We propose a new AkNN algorithm which is
based on this new pruning method. Afterwards, we further extend AkNN processing to
employ multiple pruning criteria. Thus, it is possible to construct even tighter bounds
around the remaining search space and thus to further decrease the number of neces-
sary page accesses. In our experimental evaluation, we demonstrate that our proposed
methods decrease the all-over runtime as well as the page accesses necessary to process
AkNN queries on three real-world data sets. Especially for larger values for k, our new
method considerably improves the query times.

The application of our pruning principle on spherical page regions allows a simple
computation. In future work, we aim at extending the principle of trigonometric prun-
ing to non-spherical page regions. We believe that transferring the principle to other
approximations, such as MBRs, will open up new possibilities. Additionally, we inves-
tigate the transfer of our approach to other problems involving similarity search.

Acknowledgements

This research has been supported in part by the THESEUS program in the MEDICO and CTC
projects. They are funded by the German Federal Ministry of Economics and Technology under
the grant number 01MQ07020. The responsibility for this publication lies with the authors.

References
1. Böhm, C., Krebs, F.: The k-nearest neighbor join: Turbo charging the KDD process. KAIS

6(6) (2004) 728–749
2. Lowe, D.: Object recognition from local scale-invariant features. In: International Confer-

ence on Computer Vision, Corfu, Greece. (1999) 1150–1157
3. Sankaranarayanan, J., Samet, H., Varshney, A.: A fast all nearest neighbor algorithm for

applications involving large point-clouds. Comput. Graph. 31(2) (2007) 157–174
4. Breunig, M.M., Kriegel, H.P., Ng, R., Sander, J.: LOF: Identifying density-based local out-

liers. In: Proc. SIGMOD. (2000)
5. White, D.A., Jain, R.: Similarity indexing with the SS-tree. In: Proc. ICDE. (1996) 516–523
6. Chen, Y., Patel, J.: Efficient evaluation of all-nearest-neigbor queries. In: Proc. ICDE. (2007)
7. Samet, H.: Foundations of Multidimensional and Metric Data Structures (The Morgan Kauf-

mann Series in Computer Graphics). Morgan Kaufmann (2006)
8. Xia, C., Lu, H., Ooi, B.C., Hu, J.: GORDER: An efficient method for KNN join processing.

In: Proc. VLDB. (2004)
9. Zhang, J., Mamoulis, N., Papadias, D., Tao, Y.: All-nearest-neighbors queries in spatial

databases. In: Proc. SSDBM. (2004)
10. Guttman, A.: R-Trees: A dynamic index structure for spatial searching. In: Proc. SIGMOD.

(1984) 47–57
11. Yu, C., Cui, B., Wang, S., j. Su: Efficient index-based KNN join processing for high-

dimensional data. Information and Software Technology 49(4) (2007)
12. Jagadish, H.V., Ooi, B., Tan, K.L., Yu, C., Zhang, R.: iDistance: An adaptive B+-tree based

indexing method for nearest neighbor search. ACM TODS 30(2) (2005)
13. Ciaccia, P., Patella, M., Zezula, P.: M-Tree: an efficient access method for similarity search

in metric spaces. In: Proc. VLDB. (1997)
14. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering method for

very large databases. In: Proc. SIGMOD. (1996) 103–114
15. Bâdoiu, M., Clarkson, K.L.: Smaller core-sets for balls. In: SODA ’03: Proceedings of the

fourteenth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA,
Society for Industrial and Applied Mathematics (2003) 801–802

16. Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: Proc. SSD. (1995)
17. Berchtold, S., Keim, D.A., Kriegel, H.P.: The X-Tree: An index structure for high-

dimensional data. In: Proc. VLDB. (1996)
18. Zacharias, N., Zacharias, M.I.: The twin astrographic catalog on the hipparcos system. The

Astronomical Journal 118(5) (1999) 2503–2510
19. Hettich, S., Bay, S.D.: The UCI KDD archive. http://kdd.ics.uci.edu (1999)

