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Abstract. Similarity search and data mining often rely on distance or
similarity functions in order to provide meaningful results and seman-
tically meaningful patterns. However, standard distance measures like
Lp-norms are often not capable to accurately mirror the expected simi-
larity between two objects. To bridge the so-called semantic gap between
feature representation and object similarity, the distance function has to
be adjusted to the current application context or user. In this paper, we
propose a new probabilistic framework for estimating a similarity value
based on a Bayesian setting. In our framework, distance comparisons are
modeled based on distribution functions on the difference vectors. To
combine these functions, a similarity score is computed by an Ensemble
of weak Bayesian learners for each dimension in the feature space. To
find independent dimensions of maximum meaning, we apply a space
transformation based on eigenvalue decomposition. In our experiments,
we demonstrate that our new method shows promising results compared
to related Mahalanobis learners on several test data sets w.r.t. nearest-
neighbor classification and precision-recall-graphs.
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1 Introduction

Learning similarity functions is an important task for multimedia retrieval and
data mining. In data mining, distance measures can be used in various algo-
rithms for classification and clustering. To improve classification, the learned
distance measure can be plugged into any instance-based learner like kNN clas-
sification. Though clustering is basically an unsupervised problem, learning a
similarity function on a small set of manually annotated objects is often enough
to guide clustering algorithms to group semantically more similar objects. For
similarity search, adaptive similarity measures provide a powerful method to
bridge the semantic gap between feature representations and user expectations.
In most settings, the similarity between two objects cannot be described by a
standardized distance measure fitting all applications. Instead, object similarity



is often a matter of application context and personal preference. Thus, two ob-
jects might be similar in one context while they are not very similar in another
context. For example, assume an image collection of various general images of
persons, vehicles, animals, and buildings. In this context, a picture showing a
red Ferrari will be considered as quite similar to a picture of a red Volkswagen.
Now, take the same images and put them into a different context like a catalogue
of rental cars. In this more specialized context, both pictures will most likely be
considered as dissimilar. An important assumption in this paper is that there is
no exact value specifying object similarity. Instead, we consider object similarity
as the probability that a user would label the objects as similar.

Learning a distance or similarity function requires a general framework for
comparing objects. In most established approaches to similarity learning, this
framework is provided by using Mahalanobis distances or quadratic forms. In
general, a Mahalanobis distance can be considered to be the Euclidean distance
in a linear transformation of the original feature space. Thus, Mahalanobis dis-
tances are metric distance functions guaranteeing reflexivity, symmetry and the
triangular inequality. Furthermore, the computed dissimilarity of two objects
might be increased infinitely. In this paper, we argue that these mathemati-
cal characteristics are unnecessarily strict and sometimes even against intuition
when trying to construct a similarity measure. For example, it is known from
cognition science that humans do not distinguish dissimilar objects to an infinite
degree. Thus, a human would not care whether object o1 is more dissimilar to the
query object q than object o2 after having decided that both objects o1, o2 have
nothing in common with the query object q. Furthermore, it is questionable if
characteristics such as strictness are necessary for successful similarity search. In
most feature transformations, it is possible that two different objects are mapped
to the same feature representation. Thus, even if we can guarantee that two ob-
jects having a zero distance are represented by the same feature description, we
have no guarantee that the corresponding objects should be considered to be
maximally similar as well.

In this paper, we describe similarity in a different way by considering it
as the probability that an object o is relevant for a similarity query object q.
The core idea of our similarity estimation approach is to consider each feature
as evidence for similarity or dissimilarity. Thus, we can express the implica-
tion of a certain feature i to the similarity of objects o and q as a probability
p(similar(o, q) | (o[i]− q[i])). To calculate this probability, we employ a simple
one-dimensional Bayes estimate (BE). However, to build a statement compris-
ing all available information about object similarity, we do not build the joint
probability over all features. We argue that in most applications considering a
single feature it is not sufficient to decide either similarity or dissimilarity. Thus,
to derive a joined estimation considering all available features, we average the
probabilities derived from each BE. Our new estimate is basically an Ensem-
ble of weak Bayesian learners. Therefore, we call our new dissimilarity function
Bayes Ensemble Distance (BED). A major benefit of BED is that dissimilarity
is very insensitive to outlier values in a single dimension which is a drawback of



classical Lp-norm based measures. The major factors to successfully employing
an Ensemble of learners are the quality and the independence of the underlying
weak classifiers. Therefore, we will introduce a new optimization problem that
derives a linear transformation of the feature space, allowing the construction of
more descriptive BEs. To conclude, the contributions of this paper are:

– A discussion about Lp-norms and Mahalanobis distances for modelling ob-
ject similarity.

– A new framework for similarity estimation that is built on an Ensemble of
Bayes learners.

– An optimization method for generating a linear transformation of the feature
space that is aimed at deriving independent features which are suitable for
training high quality weak classifiers.

The rest of the paper is organized as follows. In Sect. 2, we discuss Lp norm
and Mahalanobis distances for modeling object similarity. Our new framework
for modeling object similarity is described in Sect. 3. In Sect. 4, we introduce an
optimization problem to derive an affine transformation that allows the train-
ing of more accurate Bayes estimates. Section 5 briefly reviews related similarity
learners. Afterwards, Sect. 6 illustrates the results of our experimental evaluation
comparing our new method with related metric learners on several UCI classifi-
cation datasets and two image retrieval data sets. Finally, Sect. 7 concludes the
paper with a summary and some directions for future work.

2 Lp-norms and Problem Definition

The task of similarity learning is to find a function mapping a pair of objects
o1, o2 to a similarity value sim(o1, o2) describing how strongly the first object
resembles the other one in the best possible way. To train this function, it is
necessary to have training examples representing the notion of similarity which
underlies the given application. Let us note that there might be various notions
of similarity on the same data set depending on the application context or even
the current user.

Basically, there are two categories of examples used for learning similarity
functions. The first type is providing class labels to a training set indicating that
objects with equal labels are similar and objects with different labels are con-
sidered as dissimilar. Most machine learning approaches in metric learning use
class labels because most of the proposed methods in this area aim at improving
the accuracy of instance-based learners. One important advantage of this type
of labeling is that there is a large variety of classification data sets available.
Additionally, having n labeled objects results in n·(n−1)

2 labeled object pairs.
Finally, in classification data sets the labeling is usually quite consistent because
the classes are usually reproducible by several persons. As a drawback of this
approach, it is required to find an universal set of classes before learning a simi-
larity function. Thus, this type of user feedback is difficult to use when learning
similarity measures for similarity search. The second type of user feedback is



direct relevance feedback providing a similarity value for a set of object pairs.
Using relevance feedback allows to determine a degree of similarity for each pair
and thus, the similarity information is not necessarily binary. Additionally, rel-
evance feedback does not require to define explicitly known classes and is thus
more attractive for similarity search systems. A drawback of relevance feedback
is that labelling a sufficiently large set of object pairs with similarity scores is
usually much more strenuous than labelling objects with classes. Furthermore,
it is often much more difficult to generate a consistent labelling because there
usually are no well-defined criteria for object similarity.

After describing the labels of our examples, we will now formalize our object
descriptions, i.e. the feature vectors. A feature is a type of observation about an
object and the corresponding feature value describes how an object behaves w.r.t.
this type of observation. Mathematically, we will treat a feature F as a numerical
value xF ∈ R. Considering a predefined number of features d leads to a feature
vector x ∈ Rd. Formally, a training example in our setting is a triple (x1, x2, y)
where x1, x2 ∈ Rd are two d-dimensional feature vectors and y ∈ [0, . . . , l] is a
dissimilarity score, i.e. a 0 represents maximum similarity whereas l describes
maximum dissimilarity. In case of class labels, we assign 1 to dissimilar and 0 to
similar objects. The most common approach for describing object similarity is
to sum up the differences of feature values which is the basis of Lp-norm-based
similarity. Given two feature vectors x1, x2 ∈ Rd, the Lp-norms are defined as:

Lp(x1, x2) =

(
d∑

i=1

|x1,i − x2,i|p
) 1

p

For p = 2, the Lp-norm is called Euclidean distance which is the most com-
mon distance metric in similarity search and distance-based data mining. Seman-
tically, we can interpret the Lp-norm as an evidence framework. Each feature
represents an observation about an object and the difference of feature values
determines how similar two objects behave with respect to this observation.
Since a single observation is usually not enough to decide similarity, all obser-
vations are combined. By summing up over the differences for each observation,
the Lp-norm describes the degree of dissimilarity of two objects. The parameter
p determines the influence of large difference values in some dimensions to the
complete distance. For p→∞, the object distance is completely determined by
the largest object difference in any dimension. Let us note that the exponent 1

p
is used for normalization reasons only. Therefore, it is not required in algorithms
that require a similarity ranking.

Given a specialized application context, the standard Lp-norms have several
drawbacks:
1. Correlated features are based on the same characteristics of an object and

thus, they implicitly increase the impact of this characteristics when calcu-
lating the dissimilarity.

2. Not each observation is equally important when deciding about object sim-
ilarity. When, for instance, deciding between large and small people, the
height parameter will be more significant than the weight parameter.



3. In order to have a large distance w.r.t. an Lp-norm, it is sufficient to have a
considerably large difference in any single feature. Correspondingly, a small
dissimilarity requires that both vectors display small difference values in each
feature. On the other hand, to decide dissimilarity, any single feature is suf-
ficient. This effect is a serious drawback because object similarity might not
necessarily always depend on the same set of features. Having an extraor-
dinarily large difference w.r.t. a single rather unimportant feature, could
thus prevent two otherwise identical objects from being found in a similar-
ity query. Thus, we argue that dissimilarity as well as similarity should be
decided based on a combination of several features.

To solve the problems (1) and (2), the Euclidean distance has been extended
to the Mahalanobis distance or quadratic form. The idea of this approach is to
employ an affine transformation of the original feature space which is applied
within the distance measure itself:

DMah(x1, x2) =
(
(x1 − x2)T ·A · (x1 − x2)

) 1
2

In order to make DMah a metric, the transformation matrix A has to be
positive definite. In this case, A implies an affine transformation of the vector
space B where the Euclidean distance is equivalent to DMah in the original
space. (

(x1 − x2)TA(x1 − x2)
) 1

2 =
(
(x1 − x2)TBTB(x1 − x2)

) 1
2

=
(
(Bx1 −Bx2)T (Bx1 −Bx2)

) 1
2

When properly derived, this matrix A can achieve that the directions in
the target space are uncorrelated. Additionally, the directions are weighted
by their importance to the given application. There are multiple methods to
learn a proper Mahalanobis distance like Fisherfaces [2], RCA [1], ITML [7] or
LMNN [21] which are described in Section 5.

However, the Mahalanobis distance does not adequately solve the third prob-
lem named above because the feature values are only linearly scaled. Thus, all
observed difference values are decreased by the same factor. Therefore, when
decreasing a very large difference value to limit its too strong impact in a com-
parison, the impact of the feature is limited in all other comparisons as well.
Thus, by preventing a too large impact in some distance calculations, we would
generate too small distance values in others. To conclude, Mahalanobis distances
are still equivalent to an Euclidean distance in a transformed data space and
thus, these methods are no solution to the third problem mentioned above.

3 Ensembles of Bayes Estimates

In the following, we formally describe our method. We start with the definition
of Bayes Estimates (BE) and Bayes Ensemble Distance (BED) on the original



feature dimensions. Afterwards, we introduce our solution to the problem of
correlated features and provide a new way to derive an affine transformation of
the feature space that allows the training of a meaningful BED.

3.1 Bayes Estimates and Bayes Ensemble Distance

As mentioned above, we want to learn a function having a pair of feature vec-
tors as input and returning a similarity score as output. Similar to the Lp-norm,
we describe the comparison between two feature vectors x1, x2 ∈ Rd by their
difference vectors (x1 − x2), or (x2 − x1). Thus, our method assigns a similarity
score to each difference vector. Since both difference vectors should provide the
same dissimilarity score, we have to make sure that our similarity function is
symmetric with respect to the direction of the input difference vector. As men-
tioned before, our approach treats each dimension of the input space separately.
Thus, we define the Bayes Estimates (BE) for feature dimension i as simple
Bayes classifier receiving a difference value x1,i − x2,i as input. This classifier
distinguishes object comparisons of similar objects (sim) from comparisons of
dissimilar objects (dis). Thus, we learn two distribution functions over the dif-
ference values for similar objects and dissimilar objects. Additionally, we employ
a prior distribution describing whether similarity is less likely than dissimilar-
ity. As a result, we can calculate the conditional probability P (dis | x1,i − x2,i)
describing the dissimilarity likelihood for two objects under the condition of the
observed difference value in dimension i. Correspondingly, P (sim | x1,i − x2,i)
expresses the likelihood that two objects are similar and can be used as simi-
larity function. Formally, the Bayes Estimate (BE) for comparing two vectors
x1, x2 ∈ Rd w.r.t. dimension i is defined as:

Definition 1 (Bayes Estimate). Let x1, x2 ∈ Rd be two feature vectors. Let
ps and pd represent a prior distribution describing the general likelihood that
objects are considered to be similar. Then, the Bayes Estimate (BE) for x1 and
x2 w.r.t. dimension i is defined as follows:

BEi(x1, x2) =
pd · P ((x1,i − x2,i) | dis)

Ptotal(x1,i, x2,i)
,

where ptotal(x1,i, x2,i) is the sum of the similarity and the dissimilarity probabili-
ties (ps·P ((x1,i − x2,i) | sim) and pd·P ((x1,i − x2,i) | dis)) in the ith dimension.

To combine these probabilities, we take the average estimates over all dimen-
sions. Thus, we employ an Ensemble approach combining the descriptiveness of
all available features. Let us note that this approach is different from building
the joint probability for class dis like in an ordinary näıve Bayes classifier. This
approach would imply that in order to be similar, two objects have to be suffi-
ciently similar in each dimension. Correspondingly, dissimilarity would require
a sufficiently large difference value in all dimensions. Thus, the joint probability
could again be determined by a single dimension. By building the average, our
method underlies the more flexible understanding of similarity. Thus, neither a



very large difference nor a very small difference in a single dimension can imply
similarity or dissimilarity on its own. Formally, we define the Bayes Ensemble
Distance (BED) in the following way:

Definition 2 (Bayes Ensemble Distance). Let x1, x2 ∈ Rd be two feature
vectors. Let ps and pd represent a prior distribution describing the general likeli-
hood that objects are considered to be similar. Then, the Bayes Ensemble Distance
(BED) for x1 and x2 is defined as follows:

BED(x1, x2) =
1
d
·

d∑
i=1

BEi(x1, x2)

From a data mining point of view, the BED is an Ensemble of d weak
Bayesian learners, each deriving a probabilistic statement from the corresponding
feature. Each learner distinguishes two classes, i.e. similarity and dissimilarity.
Let us note that our method does not directly distinguish degrees of similar-
ity. Instead, a quantitative view on object similarity is provided by the average
probability that both objects are similar.

‐0.4 ‐0.3 ‐0.2 ‐0.1 0.0 0.1 0.2 0.3 0.4

(a) Conf-hsv (10D)

‐1 ‐0.8 ‐0.6 ‐0.4 ‐0.2 0 0.2 0.4 0.6 0.8 1

(b) Conf-hsv (29D)

Fig. 1. Difference distributions for similar (solid lines) and dissimilar (dashed lines)
objects in a retrieval data set in dimension 10 and 29.

An open issue to the use of BED is the type of probability distribution being
used to model the Bayes estimate. To select a well-suited probability density
function, we examined several data sets with respect to their difference vector
distribution for similar and dissimilar objects. Therefore, we built histograms on
the observed difference values in each dimension. Remember that the all distri-
butions have to be symmetric to the origin because of the pairwise appearance
of positive and negative distance values. An example for the histograms derived
from two image retrieval data sets is displayed in Fig. 1. In this and all other
examined data sets, we observed a normal distribution for similar objects. Very
similar or identical objects will usually display almost identical feature values.
For the distributions describing dissimilarity, we sometimes observed distribu-
tions that also resemble a normal distribution but displayed a larger variance.
In cases having well separated classes, the dissimilarity distribution often is split
into two components, one for positive and one for negative difference values.



Thus, the dissimilarity resembled a mixture model having two symmetric com-
ponents of equal weight where the first has a positive mean value and the second
component has a negative mean value. In our experiments, we employed Gaus-
sians as basis distribution. However, the general method is applicable for any
other type of distribution function, e.g. exponential power distributions.

3.2 Training BEs

Training BEDs consists of determining the distribution parameters for each
dimension, e.g. mean and variance for a Gaussian. Furthermore, it is often useful
to determine prior probabilities for similarity and dissimilarity.

In the case that the examples are provided with class labels, it is easy to
decide whether an object comparison is counted for the similar class (sim) or for
the dissimilarity class (dis). If both objects belong to the same class, the observed
difference value contributes to the sim distribution. If both objects belong to
different classes, the observed difference vector contributes to the distribution
describing dis. For small data sets, it is possible to consider all possible difference
vectors occurring in the training set. However, this approach is not feasible for
large data sets because the number of difference vectors is increasing with the
squared number of training vectors. Thus, it is often advisable to select a subset
of the difference vectors instead of employing all available samples. To find this
subset, random sampling is applicable. In our experiments, we adapt the idea of
target neighbors from [21] and select the difference vectors corresponding to the
k-nearest neighbors of the same class and the k-nearest neighbors belonging to
any other class for each training object. We employed the Euclidean distance to
determine the target neighbors.

In case of labeled pairs, selecting examples is usually not an option because
each object comparison has to be manually labeled and thus, it is rather unlikely
that there will be too many examples for efficient training. However, labeling ob-
ject pairs allows to distinguish several degrees of similarity y ∈ [0..1], e.g. the la-
bel could indicate a similarity of 0.8 or 0.1. To employ these more detailed labels,
we propose to proceed in a similar way as in EM clustering and let the training
example contribute to both distributions. However, to consider the class labels,
we weight the contribution to the similar distribution by y and the contribution
to the dissimilar distribution by 1−y. This way, undecidable comparisons having
a label of 0.5 would equally contribute to both distribution functions, whereas
a comparison having a label of 1.0 would exclusively contribute to the similar
distribution.

In many applications, using a prior distribution can improve the accuracy
of similarity search and object classification. Especially when using BED for
nearest neighbor classification, we can assume that we know how many objects
belong to the same class and how many objects belong to any other class. In
these cases, we can determine the frequency |ci| of examples for each class ci ∈ C
in the training set and easily derive the prior probability for similarity:



ps =

∑
ci∈C |ci|2

(
∑

ci∈C |ci|)2
pd = 1− ps

In other words, we know that there are |ci|2 comparisons of similar objects
within each class ci. Dividing the amount of these comparisons by all possible
comparisons computes the relative frequency of ps. Since we only distinguish
two cases, we can calculate pd as 1− ps.

In case of relevance feedback, directly determining the relative portion of
similarity in the training objects is also easily possible. However, depending on
the selection of the object pairs to be labeled it is often very unlikely that the
label distribution is representative for the distribution on the complete database.
Thus, it is often more useful to manually assign a value for the occurrence of
each class.

4 Optimizing the Feature Space for BEs

Employing BED on the original dimensions ensures that neither similarity nor
dissimilarity can be decided based on the difference value in a single dimension.
Additionally, the importance of each dimension is indicated by the distinction
of both distribution functions. However, correlated features still pose a problem
for the performance of BED. First of all, the advantage of using an ensemble
of learners strongly depends on their statistical independence. Additionally, it
might occur that the single BEs in the original dimension might be very infor-
mative. However, there often exist dimensions in the data space allowing a good
separation of the distribution function. An example is illustrated in Fig. 2. In the
displayed case, the distributions of similar and dissimilar objects are modeled as
multivariate Gaussians. If we consider the projection of both distributions onto
the x-axis, we cannot decide between the two distributions at all. Projecting the
Gaussians onto the main diagonal enables a clear separation. In this example, it
can be assumed that the BE on the main diagonal has a much stronger predic-
tive quality. To conclude, analogously to the Euclidean distance, BED can be
improved by a linear transformation of the input space which decreases feature
dependency and provides features allowing meaningful similarity estimation.

Formally, we want to find a set of base vectors W = [w1, . . . , wd] for trans-
forming each original vector x ∈ Rd′

into another d-dimensional feature space
where each new dimension allows to build a better BE. Since we want to have
independent learners, we additionally require that wi ⊥ wj for i 6= j.

To determine the suitability of a dimension to train a useful BE, we need
to find a criterion that is independent of the used type of distribution function.
A certain dimension in the feature space is useful in the case that the distance
values between similar objects are in average smaller than the distance values
of dissimilar objects. Let us note that the mean value for both distributions has
to be zero regardless of the underlying density function. Since distance values
always occur in pairs of negative and positive values, the mean is always zero
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Fig. 2. Distributions of similar (green) and dissimilar (red) objects. Top view of mul-
tivariate Gaussians (left) and projections onto different dimensions (right).

in each dimension. Now, a direction is well-suited if the distance values being
observed for similar objects are grouped closer to the origin than the values
being observed for dissimilar objects. To quantify this intuition, we calculate the
variance of the samples for both distributions sim and dis in dimension i and
build the difference between both values:

qi =
1
n
·

(
n∑

xd∈dis

(
x2

d,i − 0
)
−

n∑
xs∈sim

(
x2

s,i − 0
))

=
1
n
·

(
n∑

xd∈dis

x2
d,i −

n∑
xs∈sim

x2
s,i

)

If qi is large, the difference values between similar objects are generally
grouped more closely around zero than the difference values between dissimi-
lar objects in dimension i. If qi converges to zero, dimension i will usually not
allow the training of a useful BE.

To describe the variance along all possible dimensions in the space of distance
values, we can build the covariance matrix for similar and dissimilar difference
vectors.

(Σsim)i,j =
∑

xs∈sim

(xs,i − 0) · (xs,j − 0) =
∑

xs∈sim

xs,i · xs,j

Σdis is built correspondingly on the difference vectors of dissimilar objects.
Our task is to find a set of orthogonal dimensions for which the difference

between the variance of the dissimilar distribution and the variance of the sim-
ilar distribution is as large as possible. Formally, we can define the following
optimization problem:

Maximize L(wi) = wT
i Σdiswi − wT

i Σsimwi = wT
i · (Σdis −Σsim)wi

s.t. wi ⊥ wj

The following eigenvalue equation solves this problem:



λw = (Σdis −Σsim) · w .

To integrate the learned affine transformation into the training of BED,
we can either transform all feature vectors before training and testing by W
or integrate the transformation directly into the BE distance by rotating each
difference vector before it is processed. To conclude, the training of a BED is
performed as follows:

1. Determine Σsim and Σdis from the labeled data.
2. Calculate W by solving the corresponding eigenvalue problem.
3. Rotate Σsim and Σdis by W .
4. Derive the variance values of the similarity and dissimilarity distributions

for each wi ∈W .

Let us note that it is necessary to rotate the compared objects or their
distance vector using W before calculating BED.

A final aspect of this space transformation is that it allows to reduce the
number of considered dimensions. This can be done by selecting a fixed number
of features and keep only the top k dimensions w.r.t. the quality qi. Another
alternative is to determine a threshold τ and keep only those dimensions offering
a quality qi which is better than τ .

5 Related Work

5.1 Metric Distance Learning

Most distance learning methods use the Mahalanobis distance, represented by a
semi-definite matrix. The shared principle among all of those approaches is to
ensure that the relations among a dataset’s objects are transformed such that
they best represent an underlying characteristic of the data.

In the following, we give a short summary of existing metric learning ap-
proaches. For detailed surveys, see [24, 23]. The main idea of unsupervised ap-
proaches is to reduce the feature space to a lower-dimensional space in order to
eliminate noise and enable a more efficient object comparison. The criteria for se-
lecting such a subspace are manifold. Principal Component Analysis (PCA) [10]
builds an orthogonal basis aimed at best preserving the data’s variance, Mul-
tidimensional Scaling (MDS) [6] seeks the transformation which best preserves
the geodesic distances and Independent Component Analysis (ICA) [5] targets
a subspace that guarantees maximal statistical independence. ISOMAP [19] by
Tenenbaum et al. is a non-linear enhancement of the MDS principle, in iden-
tifying the geodesic manifold of the data and preserving its intrinsic geometry.
Other unsupervised approaches (e.g. [16, 3]) try to fulfill the above criteria on a
local scale.

Among supervised approaches, the first to be named is Fisher’s Linear Dis-
criminant (FLD) [8]. It maximizes the ratio of the between-class variance and the



within-class variance using a generalized eigenvalue decomposition. This method
has been extended by Belhumeur et al. [2] to the Fisherfaces approach. It pre-
cedes FLD with a reduction of the input space to its principal components and
can thus filter unreliable input dimensions. BED and especially the target func-
tion L share several important ideas with Fisherfaces. However, FLD assumes
that the data is partitioned into classes which are modeled using the Gaussian
distribution function, whereas BED does not require explicit object classes. Fur-
thermore, the BED is not determined to the use of Gaussian functions. Instead
BEDs employ the difference vectors and always try to distinguish the two basic
statements of object similarity and object dissimilarity which can be modeled
by an arbitrary symmetric density function. Both methods generate covariance
matrices of difference vectors representing similarity (in FLD: the within-class
scatter matrix) and dissimilarity (in FLD: the between-class scatter matrix).
However, in FLD the matrices are built based on the difference vectors w.r.t. a
mean value whereas BED directly employs object-to-object comparisons. Where
FLD tries to find dimensions where the ratio between the variances of dissimilar-
ity and similarity are as large as possible, BED maximizes the difference between
the variances of the dissimilarity and the similarity distributions.

With RCA [1], Bar-Hillel et al. focus on the problem of minimizing within-
chunklet variance. They argue that between-class differences are less informative
than within-class differences and that class assignments frequently occur in such
a way that only pairs of equally-labelled objects can be extracted. These pairs
are extended into chunklets (sets) of equivalent objects. The inverse chunklet
covariance matrix is used for calculating the Mahalanobis distance. This step
should usually be preceded by dimensionality reduction. The main difference
between BED and RCA is that RCA does not build a distribution function for
object comparison corresponding to dissimilarity. Correspondingly, RCA only
requires examples for comparison between the objects of the same class. As a
result, the optimization which is provided by RCA is not aimed at distinguishing
both classes of difference vectors. Instead, RCA is mostly based on a whitening
transformation of the matrix which is similar to the within-class-scatter-matrix
of FLD.

NCA [9] proposed by Goldberger et al. optimizes an objective function based
on a soft neighborhood assignment evaluated via the leave-one-out error. This
setting makes it more resistant against multi-modal distributions. The result of
this optimization is a Mahalanobis distance directly aimed at improving nearest-
neighbor classification. The objective function is, however, not guaranteed to be
convex.

With Information-Theoretic Metric Learning (ITML) [7], Davis et al. pro-
pose a low-rank kernel learning problem which generates a Mahalanobis ma-
trix subject to an upper bound for inner-class distances and a lower bound to
between-class distances. They regularize by choosing the matrix closest to the
identity matrix and introduce a way to reduce the rank of the learning problem.

LMNN (Large Margin Nearest Neighbor) [21] by Weinberger et al. is based
on a semi-definite program for directly learning a Mahalanobis matrix. They



require k-target neighbors for each input object x, specifying a list of objects,
usually of the same class as x, which should always be mapped closer to x than
any object of another class. These k-target neighbors are the within-class k-
nearest neighbors. Hence, the loss function consists of two terms for all data
points x: the first penalizes the distance of x to its k-target neighbors and the
second penalizes close objects being closer to x than any of its target neighbors.
In [22], they propose several extensions, involving a more flexible handling of the
k-target neighbors, a multiple-metric variant, a kernelized version for datasets of
larger dimension than size and they deal with efficiency issues arising from the
repeated computation of close objects. Nonetheless, LMNN requires a specialized
solver in order to be run on larger data sets.

5.2 Non-Metric Distance Learning

In order to be metric, a distance has to fulfill the metric axioms (i.e. self-
similarity, symmetry, triangle inequality). In fact, several recent studies have
shown that these axioms (triangle inequality above all) are often not conform
with the perceptual distance of human beings [17, 20] and thus not suitable for
robust pattern recognition [12]. Most of the approaches learning a non-metric
function as distance function only use fragments of the objects for the similarity
calculation between them (e.g. [18, 12]). This can be useful for image retrieval
and classification, where only small parts (not a subset of features) of two images
can yield to perception of similarity, but is not applicable for object represen-
tations in general. Another class of non-metrical distance learners are Bayesian
Learners as used in [13], which are also designed for the special case of object
recognition in images. In this work, we do not want to restrict similarity to im-
ages, but rather present a more general view applicable for a broad range of
applications.

6 Experimental Evaluation

In this section, we present the results of our experimental evaluation. As compar-
ison partner we selected the methods that are closest to our approach: Relevant
Component Analysis (RCA) and Fisher Faces (FF). Let us note that RCA re-
quires only chunks of data objects having the same class and no explicit class
set. However, since we used datasets having class labels, we provided RCA the
complete set of training objects for each class as a chunk. Furthermore, we com-
pared Bayes Estimate Distance (BED) to the standard Euclidean distance to
have baseline method. We evaluated all methods on several real-world datasets
to test their performance for classification and retrieval tasks. All methods were
implemented in Java 1.6 and tests were run on a dual core (3.0 Ghz) workstation
with 2 GB main memory.
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Fig. 3. NN-Classification results on several UCI datasets.

6.1 Nearest Neighbor Classification

As mentioned before, our similarity learner can be applied for different applica-
tions. A first, well-established method is improving the quality of nearest neigh-
bor classification. For the classification task, we used several datasets from the
UCI Machine Learning Repository [14]. Evaluation on the datasets was per-
formed using 10-fold cross-validation and all 4 distance measures were used for
basic nearest neighbor classification. To train BED, we employed sampling based
on the target neighbors. In other words, we took the difference vectors of all train-
ing objects to the k-nearest neighbors within the same class and the k-nearest
neighbors in all other classes. To find out a suitable value for k, we screened over
a small set of suitable values between 5 and 20.

Table 1. Image Retrieval Data Sets

Dataset Instances Attributes Classes

Conf-hsv 183 32 35

Conf-facet 183 24 35

Conf-har 183 65 35

Flowers-hsv 1360 32 17

Flowers-facet 1360 24 17

Flowers-har 1360 65 17

The results for NN classification are shown in Fig. 3. BED displays the largest
accuracy in all 9 datasets. Though RCA achieves the same result on the labor
dataset, it impairs the Euclidean distance on data sets like waveform or balance
scale. The same observation can be made for FF. Though the accuracy is com-
parably good in all data sets, there also exist datasets where FF does not yield
an advantage even against Euclidean distance (breast-w). On the labor dataset,
it was not possible to learn a distance using FF due to a matrix singularity. To
conclude, BED leads to an up to 8% better classification of objects on the tested



datasets compared to the best of Eucl, FF and RCA. Thus, we can state that
BED can be employed to improve the results of instance-based learners.
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Fig. 4. Precision-Recall Graphs on the Conf and Flowers dataset

6.2 Precision and Recall Graphs

We employed two image datasets for testing the performance of our new distance
measures for retrieval applications. The Conf dataset was created by ourselves



and contains 183 images of 35 different motives. The Flowers dataset was in-
troduced in [15] and consists of 1360 images of 17 different types of flowers.
From these two datasets, we extracted color histograms (based on the HSV
color space), facet features [4] and haralick features [11]. The characteristics of
the resulting feature datasets can be seen in Table 1. On these datasets, we
measured the retrieval performance using precision-recall-graphs. We posed a
ranking query for each image and measured the precision of the answer resulting
from the remaining database for several levels of recall. In the retrieval task, we
employed very large numbers of difference vectors for training, to adjust BED
to achieving reasonable precision values for large levels of recall.

On the Conf dataset, BED shows an impressive boost of the retrieval qual-
ity using hsv-color-histograms (Fig. 4(a)), while it still leads to slightly better
results using facet or Haralick features (see Figures 4(b) and 4(c)) in contrast
to RCA. FF does not appear to be well-suited for these datasets, as it per-
forms even worse than the Euclidean Distance. On the Flowers dataset, retrieval
quality can again be improved by BED when using Facet and Haralick features
respectively (see Figures 4(e) and 4(f)). On the feature dataset consisting of the
hsv-color-histograms of Flowers, Fisherfaces lead to a better Precision-Recall-
Graph (Fig. 4(d)) than the other approaches, but note that this is the only
retrieval experiment where FF performed better than the Euclidean distance.
Thus, we can state the BED is suitable for retrieval tasks as well as for data
mining tasks.

0,5

0,6

0,7

0,8

0,9 Eucl

only Rotation

only BE

BED

re
ci
si
on

0

0,1

0,2

0,3

0,4

0,25 0,5 0,75 1
Recall

Pr

Fig. 5. Different versions of BE on Conf-hsv

6.3 Comparison to its Components

In our last experiment, we examine the performance of BEDs compared to their
separated components. We trained BEs on the original dimensions (only BE)
of the feature space. Furthermore, we wanted to find out whether the learned
eigenvalue decomposition can be used for learning a Mahalanobis distance im-
proving classification results. To create such a transformation, we additionally
multiplied each eigenvector w by its inverse eigenvalue. The comparison was



performed for several retrieval datasets which all displayed similar results. An
example precision-recall graph of the Conf-hsv data set is presented in Fig. 5.
Using the BED without the rotation still increases the retrieval performance
compared to the plain Euclidean distance on the same feature space. Thus, even
without an affine transformation, the BED is capable of improving the retrieval
quality. A second very interesting result is that the rotation component of BEDs
does not yield any performance advantage when used as Mahalanobis learner.
Though the learned directions do optimize the BEs being observed in the new
dimensions, they seem to be unsuitable for improving the results obtained by
the Euclidean distance.

7 Conclusion

In this paper, we have introduced Bayes Ensemble Distance (BED) as new
adaptable dissimilarity measure. BED is applied to the difference vector of two
feature vectors. For each dimension, BED independently determines the likeli-
hood that both objects are dissimilar employing a simple Bayesian learner called
Bayes Estimate (BE). The results of the BEs are combined by computing the
average prediction. Thus, the derived similarity score is less dependent on out-
lier values in some of the dimensions. Since BED is dependent on the spatial
rotation of the data space, it is possible to optimize the vector space in order to
derive a feature space allowing the training of more descriptive and independent
BEs. In our experimental evaluation, we have demonstrated that BEDs can
largely increase the classification accuracy of instance-based learning. Addition-
ally, we have demonstrated the suitability of BED for retrieval tasks. For future
work, we plan to investigate efficiency issues when using BED for information
retrieval. Furthermore, we plan to apply the idea of BEs to structured objects
like graphs.
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