
Spiral Recurrent Neural Network

for Online Learning

Huaien Gao1, Rudolf Sollacher2, Hans-Peter Kriegel1

1- University of Munich, Germany

2- Siemens AG, Corporate Technology, Germany

Abstract. Autonomous, self* sensor networks require sensor nodes
with a certain degree of “intelligence”. An elementary component of such
an “intelligence” is the ability to learn online predicting sensor values. We
consider recurrent neural network (RNN) models trained with an extended
Kalman filter algorithm based on real time recurrent learning (RTRL) with
teacher forcing. We compared the performance of conventional neural
network architectures with that of spiral recurrent neural networks (Spiral
RNN) - a novel RNN architecture combining a trainable hidden recurrent
layer with the “echo state” property of echo state neural networks (ESN).
We found that this novel RNN architecture shows more stable performance
and faster convergence.

1 Introduction

Sensor networks are going to be deployed in many control and diagnosis ap-
plications where one expects solutions with low effort for installation, config-
uration and operational maintenance. Those “plug&play” requirements imply
autonomous behavior and forbid extensive parameter tuning. This also requires
a certain degree of self-organization with little or no a priori knowledge of the
environment. Such kind of “intelligence” can be achieved with self-learning sys-
tems. One important component of such a self-learning system are prediction
models for sensor values with the following properties: (1) They are able to learn
in an online manner, (2) they have low computational complexity such that low
price embedded systems can be used and (3) they are stable. The predicted
values and associated errors are basic ingredients for diagnostic solutions and
efficient energy management of battery powered sensor nodes.

The use of recurrent networks (RNN) is motivated by their successful applica-
tion in many offline learning tasks [1]. Time delay neural networks (TDNN)[2],
which basically are feed-forward neural networks, have the disadvantage of a
prefixed number of historic inputs. Unlike a shift register in TDNN, recurrent
neural network (RNN) models have recurrent couplings. These enable RNNs
to embed - at least theoretically - an infinite history within its recurrent hid-
den layer. Examples are simple recurrent networks (SRN) by Elman [3], echo
state neural networks (ESN) [4], long-short time memory networks (LSTM) [5],
and block-diagonal recurrent neural network (BDRNN) [6]. SRNs sometimes
show stability problems, mainly due to an unconstrained hidden matrix; ESNs
require large recurrent network layers [4] increasing the computational complex-
ity; they also tend to generalize not very well as shown in our result. To our
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best knowledge we are not aware of investigations involving LSTM networks in
online learning tasks as the one we are considering here; moreover we met sta-
bility problems in online learning LSTM networks. In order to overcome the
aforementioned deficiencies, a novel architecture called spiral recurrent neural
network (Spiral RNN) is introduced.

This paper is organized as follows: in section 2 we consider the environment
model in question and the generic online learning algorithm. Spiral RNNs will
be introduced in section 3. Section 4 and 5 describe the simulation experiments
and results. Finally, we draw a conclusion in section 6.

2 Online learning

The aforementioned requirements imply a generic online learning rule. Such a
rule can be derived from Bayes’ rule and leads to an extended Kalman filter.
The learning system has to maintain and update a model of its environment
allowing it to predict future observations. A typical ansatz for such a model
describing a generic dynamical system is the following:

wt = wt−1 + μt (1)
st = G(st−1,wt,xt−1) (2)
xt = H(st,wt) + νt (3)

Eq.(1) holds as we assume a stationary dynamics of environment, i.e. static
model parameters wt with random fluctuations μt obeying Gaussian statistics
with a p.d.f. fμt = N (μt|0, Qt) and covariance matrix Qt. Eq.(2) describes
the dynamic evolution of the hidden state vector which depends on the previous
state st−1, as well as previous observation xt−1 and wt. In eq.(3), we assume
that the current observation is based on st and wt. νt is the measurement noise,
satisfying a p.d.f. fνt = N (νt|0, Rt) where Rt is the covariance matrix.

Following the extended Kalman filter (EKF) algorithm [7], we obtain the
following update scheme for model parameters:

s̄t = G(s̄t−1, w̄t, x̂t−1) (4)
Ot = H(s̄t, w̄t)

Pt = P †
t − P †

t HT
t (HtP

†
t HT

t + Rt)−1HtP
†
t

w̄t = w̄t−1 + PtH
T
t R−1

t (x̂t − Ot)

where Pt represents the covariance matrix of wt, P †
t is the a priori covariance

matrix of wt satisfying P †
t = Pt−1 +Qt, Ht represents the gradient of the output

w.r.t. wt−1 (notice the indexing):
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(5)
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Using the data x̂t−1 as input in eq.(4) corresponds to teacher forcing. The latter
expression (multiplication term) in eq.(5) is the gradient calculated in real time
recurrent learning (RTRL) [8] with teacher forcing. Instability problems may
occur, if the norm of some eigenvalues of the Jacobian matrix ∂st/∂st−1 exceeds
one; this may lead to an unlimited amplification of gradient components. In a
recurrent neural network, this Jacobian matrix is closely related to the hidden
weight matrix.

3 The Spiral Recurrent Neural Network

Similar as other RNN models, Spiral RNNs satisfy the following model equations:

st = g(Whidst−1 + Winx̂t−1 + b1)
xt = h(Woutst + b2)

Here, b1 and b2 are bias vectors, matrices Win, Whid, Wout represent synaptic
connections between layers and g and h are activation functions.

In order to avoid instability problems during online learning, we parametrize
the recurrent hidden matrix such that its eigenvalue spectrum is bounded. A
suitable choice for one-dimensional data is shown in (6). With all neurons lying
on a circle as in Fig.1(a), all clockwise nearest-neighbor links have the same
weight β1. Similarly, all clockwise next-to-nearest-neighbor links share the same
weight β2, and so on for longer range links.

⎛
⎜⎜⎜⎜⎝

0 βl−1 . . . β1

β1 0
. . .

...
...

. . . . . . βl−1
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(b) Spiral RNN for 3-dimensional data

Fig. 1: (a) Sample structure of hidden layer of 1-dimensional data where only part
of connections coming out from nodes A and Y are shown. (b) Spiral RNN for 3-
dimensional data with isolated but similar structure groups of hidden nodes.

Thus, for a hidden layer with l neurons, in the hidden weight matrix Whid ∈
R

2
l×l in (6) we use a representation βk = γ tanh(ξk), k ∈ [1, l − 1], where γ ∈ R

+
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is a given fixed value. This representation introduces the unconstrained param-
eters ξk. Such hidden matrix can realize the fading memory feature because the
maximum absolute eigenvalue is bounded:

|λ�β | ≤
l−1∑
k=1

|βk| = γ
l−1∑
k=1

tanh(|ξk|) ≤ γ(l − 1) (7)

For d-dimensional data, the recurrent hidden layer is repeated d times, but in-
put and output neurons are fully connected to all hidden neurons, as in Fig.1(b).
Thus the hidden weight matrix of Spiral RNNs in the multi-dimensional case is
a block diagonal matrix and the maximum absolute eigenvalue of Whid of d-
dimensional data will be one of the d maximum absolute eigenvalues in eq.(7)
for each dimension: |λmax| = max{|λβ(:,i)|}, i ∈ [1, d].

With this parametrization, Spiral RNNs have a trainable hidden weight ma-
trix but with a pre-definable bound on the eigenvalue spectrum.

4 Experimental Settings

To examine the generalization ability of networks, comparisons were run among
BDRNN, SRN, ESN and Spiral RNN with two time series: spike time series
with period 21 (each period contains 20 zeros and 1 spike of value 1) and chaotic
Lorentz time series (with parameters s=16, r=40, b=6, x0 = y0 = 0.1, z0 = −0.1,
data was scaled down by factor of 20 after being generated). Both time series are
corrupted by uniformly distributed noise in the range [0, 0.01]. Training of all
networks was based on teacher forcing RTRL-based EKF algorithm introduced
in section 2. Note that, in ESN model which has fixed hidden weights, ds̄t

dw̄t−1

in eq.(5) equals to zero and thus no RTRL gradient calculation is applied. The
covariance matrix Rt for the measurement noise νt is the filtered estimate of
model error with filter coefficient 0.1. We choose the size of the different RNN
models such that they have roughly the same number of model parameters,
determining the computational cost (mainly due to EKF training). We randomly
initialized the weights of the networks because of lack of a priori information.

In each network, hidden and output activation functions are set to hyperbolic
tangent function “tanh” and linear map respectively. For ESN, the hidden ma-
trix Whid is scaled such that the maximum absolute eigenvalue |λmax| is equal
to 0.95; the sparsity of Whid is set to 0.9. For Spiral RNNs, setting γ = 1

l−1 can
theoretically ensure |λmax| ≤ 1, but experiments have shown better performance
by setting γ = 1. This is due to the nonlinear “tanh” activation function and
also the fact that the limit in eq.(7) holds only if ξk = ∞, ∀k ∈ [1, l − 1].

Within time intervals [1000:1500], [5000:5500] and [9000:9500], long-term pre-
diction tests were performed using the previous output as the input for the next
step. Maximum prediction step n = 45 for spike time series, and n = 15 for
Lorentz time series. The normalized square error ετ |x̂t was calculated for each
τ -step prediction, given the target x̂t and variance of data: ετ |x̂t = (xτ−x̂τ )2/σ2.
The n-step iterative prediction error (IPE) is defined as: E

(n)
t = 1

n

∑n
τ=1 ετ |x̂t.

486

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



For multidimensional data, IPE value is averaged over all dimensions. In the
next section, we will take IPE as the criterion for the comparisons.

5 Result and Discussion

The following tables show the averaged IPE values and respective standard de-
viation over 30 simulations for different prediction steps n (2nd column) in each
time interval. The best solution of each condition/row is marked in bold font.

5.1 Test with spike time series

The comparison results of networks with 100 trainable synaptic weights are
listed in Table-1. ESN shows good performance for short-term prediction, but
falls back for long-term prediction. This already indicates poor generalization
behavior. BDRNN cannot recognize any of the spike even in 1-step prediction.
The Spiral RNN shows good performance also for long-term prediction, even
for a 45-step prediction. The Spiral RNN requires less than 50 spike periods to
converge. Note that, due to instability problems, SRN model failed to provide
useful output in 8 out of 30 simulations.

# pred.
Spiral ESN SRN BDRNN

mean std. mean std. mean std. mean std.

E
(n)
t1000

n=1 3e-2 6e-2 2e-3 2e-2 3e-2 8e-2 5e-2 8e-3
n=15 3e-2 9e-3 0.55 0.46 3e-2 1e-2 5e-2 2e-2
n=30 3e-2 5e-3 1.2 0.49 3e-2 6e-3 5e-2 2e-2
n=45 4e-2 1e-2 1.6 0.42 3e-2 3e-3 5e-2 2e-3

E
(n)
t5000

n=1 2e-2 7e-2 5e-4 5e-3 3e-2 8e-2 5e-2 2e-2
n=15 2e-2 1e-2 0.46 0.7 3e-2 2e-2 5e-2 3e-3
n=30 2e-2 8e-3 1.1 0.51 3e-2 1e-2 5e-2 2e-3
n=45 2e-2 8e-3 1.6 0.41 3e-2 8e-3 5e-2 6e-4

E
(n)
t9000

n=1 1e-2 7e-2 2e-4 1e-3 2e-2 8e-2 5e-2 2e-2
n=15 2e-2 9e-2 0.49 1.1 3e-2 2e-2 5e-2 4e-3
n=30 2e-2 1e-2 1.3 1 3e-2 1e-2 5e-2 4e-3
n=45 2e-2 2e-2 1.9 0.93 3e-2 9e-3 5e-2 4e-3

Table- 1: IPE comparisons on spike time series with 100 weights. Note that IPE

values tend to be small because of the characteristics of spike time series.

5.2 Test with Lorentz time series

Chaotic time series like the Lorentz time series are excellent examples for test-
ing the models’ ability of generalization. Results shown in Table-2 confirm the
impression from the tests with spike time series: Spiral RNNs converge fast, gen-
eralize well and show excellent performance in long-term prediction tasks. SRN
and BDRNN improve from test interval to test interval although it converges
not as fast as Spiral RNN. ESN is unable to make accurate predictions, at least
for this small network size with 100 trainable weights. Similar results have been
achieved in simulations with 200 and 300 trainable parameters.

Comparisons were also performed on a 4-dimensional chaotic time series (ex-
tension of Lorentz data). Again, the Spiral RNN has achieved better results
than the other models.
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Besides these benchmark experiments, Spiral RNN has been successfully em-
ployed in predicting quasi-periodical trajectories of computer mouse moved by
user.

# pred.
Spiral ESN SRN BDRNN

mean std. mean std. mean std. mean std.

E
(n)
t1000

n=1 5e-3 3e-3 0.4 4e-2 8e-2 0.15 8e-2 3e-2
n=5 5e-2 2e-2 2.3 0.26 0.23 0.14 0.88 0.3
n=10 0.16 4e-2 4.5 0.72 0.69 0.36 2.7 0.84
n=15 0.33 0.17 6.2 1 1.5 0.83 4.9 1.2

E
(n)
t5000

n=1 6e-4 5e-4 3e-1 8e-2 6e-3 2e-2 9e-3 6e-3
n=5 7e-3 6e-3 1.6 0.2 3e-2 2e-2 0.11 0.11
n=10 2e-2 2e-2 4.2 0.53 0.16 0.17 0.53 0.64
n=15 4e-2 3e-2 6 0.68 0.57 0.66 1 1.2

E
(n)
t9000

n=1 2e-4 4e-5 0.19 6e-2 1e-3 2e-3 1e-3 1e-3
n=5 1e-3 4e-4 1 0.21 1e-2 6e-3 2e-2 1e-2
n=10 3e-3 1e-3 3 0.42 5e-2 3e-2 7e-2 8e-2
n=15 8e-3 3e-3 5 0.6 0.15 0.12 0.2 0.43

Table- 2: IPE comparisons on Lorentz time series with 100 weights

6 Conclusion

In this paper, we considered the use of RNNs in applications like self-organizing
sensor networks. Our focus is on autonomous online-learning required to be
stable in performance, fast in convergence and cheap in computation.

We introduced the Spiral RNN model in order to overcome several drawbacks
of traditional models and to combine advantageous features: trainable recurrent
hidden layer as in SRNs together with a constraint on the eigenvalue spectrum
of the recurrent weight matrix as in ESNs. This novel architecture has been
proven to provide stable and accurate results with fast convergence. Thus, it is
a suitable candidate for online learning tasks in embedded systems.
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