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Abstract

In high dimensional data, clusters often only exist in ar-
bitrarily oriented subspaces of the feature space. In addi-
tion, these so-called correlation clusters may have complex
relationships between each other. For example, a correla-
tion cluster in a 1-D subspace (forming a line) may be en-
closed within one or even several correlation clusters in 2-
D superspaces (forming planes). In general, such relation-
ships can be seen as a complex hierarchy that allows mul-
tiple inclusions, i.e. clusters may be embedded in several
super-clusters rather than only in one. Obviously, uncover-
ing the hierarchical relationships between the detected cor-
relation clusters is an important information gain. Since ex-
isting approaches cannot detect such complex hierarchical
relationships among correlation clusters, we propose the al-
gorithm ERiC to tackle this problem and to visualize the
result by means of a graph-based representation. In our ex-
perimental evaluation, we show that ERiC finds more infor-
mation than state-of-the-art correlation clustering methods
and outperforms existing competitors in terms of efficiency.

1. Introduction

In high-dimensional data, meaningful clusters are usu-

ally based only on a subset of all dimensions. Subspace

clustering (or projected clustering) is a well known ap-

proach to find λ-dimensional subspaces of a d-dimensional

data space (λ < d), where certain sets of points cluster

well. Despite great efforts in developing subspace clus-

tering methods, all existing approaches suffer from certain

drawbacks. Each approach is based on certain heuristics

because the optimal solution would require at least a time

complexity exponential in the number of dimensions d. An

even more challenging problem is to find clusters in arbi-

trarily oriented subspaces. Such clusters appear as sets of

points located near a common hyperplane (of arbitrary di-

mension λ) in a d-dimensional data space. Since these hy-

perplanes correspond to linear dependencies among several

attributes (and thus the corresponding attributes are cor-

related), the concept of knowledge discovery in databases

addressing this problem is known as correlation clustering

[10]. Correlation clustering groups the data sets into sub-

sets called correlation clusters such that the objects in the

same correlation cluster are all associated to a common hy-

perplane of arbitrary dimensionality. A correlation cluster

associated to a λ-dimensional hyperplane is referred to as a

λ-dimensional correlation cluster. The dimensionality of a

hyperplane associated to a correlation cluster is called the

correlation dimensionality.

A good example of a successful application of correla-

tion clustering are recommendation systems. In target mar-

keting, it is important to find homogeneous groups of users

with similar ratings in subsets of the attributes. In addi-

tion, it is interesting to find groups of users with correlated

affinities. This knowledge can help companies to predict

customer behavior and thus develop future marketing plans.

A second application of correlation clustering is metabolic

screening. The collected data usually contain the concentra-

tions of certain metabolites in blood samples of thousands

of patients. In such data sets, it is important to find homoge-

neous groups of patients with correlated metabolite concen-

trations indicating a common metabolic disease. This is an

important step towards understanding metabolic or genetic

disorders and designing individual drugs. Another promi-

nent application for correlation clustering is the analysis of

gene expression data. Gene expression data contain the ex-

pression levels of thousands of genes, indicating how active
the genes are, according to a set of samples. A common

task is to find clusters of co-regulated genes, i.e. clusters of

genes that share a common linear dependency within a set

of their features.

The first approach that can detect correlation clusters is

ORCLUS [6] that integrates PCA into k-means clustering.

The algorithm 4C [10] integrates PCA into a density-based

clustering algorithm. These approaches can be seen as “flat”

approaches in the following sense. A correlation cluster C1

with dimensionality λ1 may be embedded in (and therefore
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(a) Sample data set 1

(b) Sample data set 2

Figure 1. Simple (a) and complex (b) hierar-
chical relationships among correlation clus-
ters

may be part of) another correlation cluster C2 with dimen-

sionality λ2 > λ1. In general, there may be a kind of hi-

erarchy among correlation clusters that are embedded into

higher dimensional correlation clusters. Since ORCLUS

and 4C cannot detect such hierarchies, the algorithm HiCO

[4] was proposed tackling correlation clustering as a hier-

archical problem, i.e. exploring the information of corre-

lation clusters of lower correlation dimensionality that to-

gether form a larger correlation cluster of higher correla-

tion dimensionality. Although it is represented by the same

models (dendrogram/reachability diagram), the resulting hi-

erarchy is different from the hierarchies computed by tra-

ditional hierarchical clustering algorithms such as Single-

Link or OPTICS [8]. The hierarchy among correlation clus-

ters reflects the relationships among the subspaces in which

these correlation clusters are embedded rather than spatial

vicinity or density. As a simple illustration consider the data

set depicted in Figure 1(a): Two lines, i.e. 1-D correlation

clusters, are embedded within a plane, i.e. a 2-D correla-

tion cluster. The resulting hierarchy consists of the two 1-D

clusters as leaf-nodes of the hierarchy-tree both having the

2-D correlation cluster as parent node. HiCO aims at gen-

erating a tree-based representation of the correlation cluster

hierarchy.

However, it may not always be appropriate to reflect the

hierarchy of correlation clusters as a tree. A correlation

cluster may be embedded in several correlation clusters of

higher dimensionality, resulting in a hierarchy with multi-
ple inclusions (similar to the concept of “multiple inheri-

tance” in software engineering). Consider e.g. the data set

depicted in Figure 1(b): One of the 1-D correlation clus-

ters is the intersection of two 2-D correlation clusters, i.e.

it is embedded within two clusters of higher dimensional-

ity. Those multiple inclusions can only be represented by

a graph-based visualization approach which is beyond the

capabilities of previous methods such as HiCO.

In this paper, we propose a new algorithm called ERiC

(Exploring Relationships among Correlation clusters) to

completely uncover any complex hierarchical relationships

of correlation clusters in high dimensional data sets includ-

ing not only single inclusions (like HiCO) but also multiple

inclusions. In addition, ERiC provides a clear visualization

of these complex relationships by means of a graph-based

representation.

The remainder of the paper is organized as follows. We

discuss the related work in Section 2. In Section 3, we de-

scribe the notion of correlation clusters based on PCA in

more detail in preparation to handle correlation clusters for-

mally. Section 4 describes our new approach. An experi-

mental evaluation is presented in Section 5. Section 6 con-

cludes the paper.

2. Related Work

In recent years, several subspace clustering algorithms

have been proposed [7, 5, 19, 16, 9] to uncover clusters in

axis parallel projections of the original data set. Some ap-

proaches even provide information regarding the hierarchi-

cal relationships among different subspace clusters [1, 2].

However, subspace clustering algorithms are not able to

capture local data correlations and find clusters of corre-

lated objects since the principal axes of correlated data are

arbitrarily oriented.

Pattern-based clustering methods [21, 22, 17, 18] aim

at grouping objects that exhibit a similar trend in a sub-

set of attributes into clusters rather than grouping objects

with low distance. This problem is also known as co-

clustering or biclustering [15]. In contrast to correlation

clustering, pattern-based clustering limits itself to a very

special form of correlation where all attributes are positively

correlated. It does not include negative correlations or cor-

relations where one attribute is determined by a linear com-

bination of two or more other attributes. Thus, biclustering

or pattern-based clustering could be regarded as a special

case of correlation clustering, as more extensively discussed

in [10].

The expectation maximization (EM) algorithm [12] is

one of the first clustering algorithms that can generally de-



tect correlation clusters. The EM algorithm tries to model

the data distribution of a data set using a mixture of non-

axis parallel Gaussian distributions. However, the EM al-

gorithm cannot distinguish between correlation clusters and

full-dimensional clusters without any correlation. In addi-

tion, it favors clusters of spherical shape and requires the

user to specify the number of clusters in advance. As a main

drawback, the EM clustering is very sensitive to noise.

ORCLUS [6] is a k-means style correlation clustering al-

gorithm and, thus, can be seen as a specialization of EM that

detects only correlation clusters. The correlation clusters

are allowed to exist in arbitrarily oriented subspaces repre-

sented by a set of Eigenvectors. Like most k-means based

approaches, ORCLUS favors correlation clusters of spher-

ical shape and requires the user to specify the number of

clusters in advance. If the user’s guess does not correspond

to the actual number of clusters, the results of ORCLUS

deteriorate considerably. A second problematic parameter

of ORCLUS is the dimensionality l of the correlation clus-

ters ORCLUS is desired to uncover. ORCLUS usually has

problems with correlation clusters of very different dimen-

sionalities because the resulting clusters must have dimen-

sionalities near l. Furthermore, ORCLUS is in general very

sensitive to noise similar to EM and its derivatives. A very

similar method is presented in [11] for the purpose of en-

hancing indexing of high dimensional data.

In [10] the algorithm 4C is presented to find clusters

of correlation-connected objects. 4C is a combination of

DBSCAN [13] and PCA and searches for arbitrary linear

correlations of fixed dimensionality. The user must specify

several parameters, including: ε and μ, defining minimum

density of a cluster, a threshold δ to decide which princi-

pal axes of a cluster are relevant for the correlation, and the

dimensionality λ of the computed correlation clusters. 4C

may also miss important clusters for similar reasons as OR-

CLUS. A variation of 4C is the algorithm COPAC [3] that

uses a different similarity measure.

In [20] the method CURLER to detect arbitrary, non-

linear correlations has been proposed. CURLER uses the

concept of micro-clusters that are generated using an EM

variant and then are merged to discover correlation clus-

ters. CURLER improves over ORCLUS and 4C as the cor-

relations underlying the clusters are not necessarily linear.

Furthermore, as a fuzzy approach, CURLER assumes each

data object to belong to all clusters simultaneously, but with

different probabilities for each cluster assigned. By merg-

ing several clusters according to their co-sharing level, the

algorithm on the one hand becomes less sensitive to the pre-

defined number k of clusters, thus also overcoming a severe

limitation of any k-means related approach. On the other

hand, the user cannot directly derive a model describing the

correlations, since the original k models are no longer per-

sistent in the resulting clustering. However, we focus on

(a)

(b)

(c)

Figure 2. Results of HiCO on the data sets
shown in Figure 1

strong, linear correlations between features. Thus, the non-

linear correlations discovered by CURLER are of no inter-

est for our approach.

Recently, the method DIC [14] has been proposed. DIC

uses the concept of the fractal dimension in order to mea-

sure and model the correlation within the clusters. In partic-

ular, DIC represents each data object as a tuple containing

the fractal dimension and the local density of the given ob-

ject. Afterwards, the EM algorithm is applied to a data set

containing these tuples of each data object. As a conse-

quence, DIC suffers from the problem that the number of

clusters must be estimated in advance and specified as an

input parameter. In addition, DIC does not distinguish be-

tween usual (full-dimensional) clusters and correlation clus-

ters that form a hyperplane in the data space.

The first and to our knowledge only approach deriving

information regarding the hierarchical relationships among

correlation clusters is HiCO [4]. HiCO incorporates a dis-



tance measure taking into account local correlation dimen-

sionalities into the hierarchical clustering algorithm OP-

TICS [8]. The resulting reachability-plot allows to derive

a simple hierarchy of correlation clusters. Let us consider

two main drawbacks of HiCO: Firstly, HiCO uses a rela-

tively complex distance measure for every distance query

in the clustering step. This results in considerable computa-

tional efforts. Secondly, HiCO assumes a relatively simple

hierarchy of correlation clusters. Multiple inclusions cannot

be derived from the resulting plot. Thus, the detected hier-

archical structure of correlation clusters can be misleading

or even simply wrong. This limitation is illustrated in Fig-

ure 2 depicting the resulting reachability plot when apply-

ing HiCO on the sample datasets from Figure 1. As it can be

observed, the resulting plots look almost identical for both,

sample data set 1 (cf. Figure 2(a)) and sample data set 2 (cf.

Figure 2(b)). Since valleys in the plot indicate clusters, both

plots reveal the same information of two 1-D clusters em-

bedded within one 2-D cluster. In fact, in data set 2 the two

2-D clusters cannot be separated and the complex hierarchy

consisting of the multiple inclusion cannot be detected by

HiCO. The true hierarchy hidden in sample data set 2 can

only be represented by a graph model. Figure 2(c) envisions

such a visualization of the complete hierarchy allowing for

multiple inclusions. In fact, our method ERiC will produce

such a visualization.

To summarize, we find HiCO as only competitor able to

detect hierarchical structures of correlation clusters (albeit

simplified by excluding multiple inclusions). As a baseline,

ORCLUS and 4C can be of use for comparison with general

correlation clustering methods without providing informa-

tion w.r.t. hierarchical relationships among correlation clus-

ters.

3. A Notion of Correlation Clusters

In this section, we prepare the introduction of our ap-

proach by formalizing the notion of correlation clusters. In

the following, we assume D to be a database of n feature

vectors in a d-dimensional feature space, i.e. D ⊆ R
d. A

correlation cluster is a set of feature vectors that are close to

a common, arbitrarily oriented subspace of a given dimen-

sionality λ (1 ≤ λ < d). In the data space, the correlation

cluster appears as a hyperplane of dimensionality λ.

In general, one way to formalize the concept of correla-

tion clusters is to use PCA. Formally, let C be a correlation

cluster, i.e. C ⊆ D, and let X̄ denote the centroid of all

points in C. The d× d covariance matrix ΣC of C is defined

as:

ΣC =
1
|C| ·

∑
X∈C

(X − X̄) · (X − X̄)T.

Since the covariance matrix ΣC of C is a positive semi-

definite square matrix, it can be decomposed into the eigen-

value matrix EC of ΣC and the eigenvector matrix VC of ΣC
such that ΣC = VC · EC · V T

C . The eigenvalue matrix EC
is a diagonal matrix storing the d non-negative eigenvalues

of ΣC in decreasing order. The eigenvector matrix VC is an

orthonormal matrix with the corresponding d eigenvectors

of ΣC .

Now we define the correlation dimensionality of C as

the number of dimensions of the (arbitrarily oriented) sub-

space which is spanned by the major axes in VC . Let us

note that the correlation dimensionality is closely related

to the intrinsic dimensionality of the data distribution. If,

for instance, the points in C are located near by a common

line, the correlation dimensionality of these points will be 1.

That means we have to determine the principal components

(eigenvectors) of ΣC . The eigenvector associated with the

largest eigenvalue has the same direction as the first princi-

pal component, the eigenvector associated with the second

largest eigenvalue determines the direction of the second

principal component and so on. The sum of the eigenvalues

equals the trace of the square matrix ΣC which is the total

variance of the points in C. Thus, the obtained eigenvalues

are equal to the variance explained by each of the principal

components, in decreasing order of importance. The corre-

lation dimensionality of a set of points C is now defined as

the smallest number of eigenvectors explaining a portion of

at least α ∈ ]0, 1[ of the total variance of C.

In the following, we call the λC-dimensional subspace

which is spanned by the major axes of C the correlation
hyperplane of C. Since we follow the convention that the

eigenvalues are ordered decreasingly in the eigenvalue ma-

trix EC , the major axes correspond to the λC first eigenvec-

tors of ΣC .

Thus, the correlation dimensionality λC is the dimen-

sionality of the subspace containing all points of the set C
allowing a small deviation corresponding to the remaining

portion of variance of 1−α. The remaining, neglected vari-

ance scatters along the eigenvectors vλC+1, . . . , vd.

4. Algorithm ERiC

As discussed above, hierarchical clustering schemata

such as the agglomerative schema (e.g. used by Single-

Link), the divisive schema, or the density-based schema

(e.g. used by OPTICS) cannot uncover complex hierarchies

that exhibit multiple inclusions. The reason for this is that

the resulting complex hierarchy of an algorithm implement-

ing any of the traditional schemata is only capable of pro-

ducing a tree-like hierarchy rather than producing a graph-

like hierarchy. Thus, approaches like HiCO, that integrate

a suitable “correlation distance measure” into traditional hi-

erarchical clustering schemata cannot be used to handle hi-

erarchies with multiple inclusions.

As a consequence, ERiC follows a different strategy. The



basic idea of ERiC is to first generate all correlation clus-

ters and, second, to determine the hierarchy from this result.

Obviously, during the computation of the clusters it would

be very helpful to aggregate information that can be used to

explore the hierarchical relationships among these clusters.

In addition, it is required to compute all correlation clusters

for all possible correlation dimensions simultaneously.

Since none of the existing correlation clustering algo-

rithms meets both requirements we propose a novel ap-

proach to determine the complete set of correlation clus-

ters and additional information for the hierarchy generation

process. In particular, our algorithm ERiC consists of the

following three steps: First, the objects of the database are

partitioned w.r.t. their “correlation dimensionality” (cf. Sec-

tion 4.1). This correlation dimensionality of a point p ∈ D
will reflect the dimensionality of the correlation cluster in

which p fits best. In a second step, the points within each

partition are clustered using a “flat” correlation clustering

algorithm (cf. Section 4.2). The result of these two steps is

the complete set of correlation clusters with the additional

information regarding their dimensionality. To explore the

relationships among the correlation clusters found during

step 2, we follow a bottom-up strategy. For any cluster Ci

with correlation dimensionality λi, we consider those clus-

ters Cj with correlation dimensionality λj > λi as possible

parents. A cluster Cj is a parent of Ci, if Ci is embedded

in (and therefore part of) Cj . Using this information, ERiC

creates the final result (i.e. a hierarchy of correlation clus-

ters with multiple inclusions) in the third step (cf. Section

4.3).

4.1. Partitioning w.r.t. Correlation Dimen-
sionality

In the first step of ERiC, we partition the database

according to the local correlation dimensionality of the

database objects reflecting the correlation dimensionality of

the local neighborhood of each point.

Definition 1 (local correlation dimensionality)
Let α ∈ ]0, 1[ , p ∈ D, and let Np denote the set of points

in the local neighborhood of p. Then the local correlation

dimensionality λp of the point p is the smallest number of
eigenvalues ei in the eigenvalue matrix ENp

explaining a
portion of at least α of the total variance, i.e.

λp = min
r∈{1,...,d}

{
r

∣∣∣∣∣
∑r

i=1 ei∑d
i=1 ei

≥ α

}

Let us note that ENp
is the eigenvalue matrix of ΣNp

which

is the covariance matrix of Np. Typically, values for α are

chosen between 0.8 and 0.9. For example, α = 0.85 de-

notes that the obtained principal components explain 85%
of the total variance. The set of points Np of p should well

reflect the correlation in the local neighborhood of p. Thus,

one may e.g. choose the k-nearest neighbors of p as the

neighborhood Np of p. This way, one can ensure to con-

sider a set of points large enough to derive a meaningful

covariance matrix ΣNp
. Obviously, k should considerably

exceed d. On the other hand, k should not be too large, as

otherwise too many noise points may influence the deriva-

tion of the local correlation structure.

Based on Definition 1, the first step of ERiC partitions

the database objects according to their local correlation di-

mensionality, derived from the k-nearest neighbors of each

object. A point p ∈ D with λp = i is assigned to a parti-

tion Di of the database D. This results in a set of d disjoint

subsets D1, . . . ,Dd of D. Some of these subsets may re-

main empty. In terms of correlation clustering, Dd contains

noise, since there is no linear dependency of features within

the neighborhood of p, if λp = d.

This first step of ERiC yields an appropriate correlation

dimensionality for each point in advance. Furthermore, the

number n of data points to process in the clustering step for

each partition is reduced to n
d on the average.

4.2. Computing Correlation Clusters within
each Partition

Having performed the partitioning of the database D in

step 1, a clustering step is performed for each partition sep-

arately. For the clustering procedure, we can utilize the fact

that all points within a given partition Di share a common

local correlation dimensionality i. Based on the local cor-

relation dimensionality of a point p, we distinguish strong
eigenvectors that span the hyperplane associated with a pos-

sible correlation cluster containing p, and weak eigenvectors
that are perpendicular to this hyperplane.

Definition 2 (strong and weak eigenvectors)
Let p ∈ D, λp be the local correlation dimensionality of p,

and let Vp be the corresponding eigenvectors of the point p
based on the local neighborhood Np of p. We call the first
λp eigenvectors of Vp strong eigenvectors, the remaining
eigenvectors are called weak.

To easily describe some matrix computations in the fol-

lowing, we define a selection matrix for weak eigenvectors

as follows.

Definition 3 (selection matrix for weak eigenvectors)
Let p ∈ D, λp be the local correlation dimensionality of p,

and let Ep be the corresponding eigenvectors and eigenval-
ues of the point p based on the local neighborhood Np of p.
The selection matrix Êp for weak eigenvectors with entries
êij ∈ {0, 1}, i, j = 1, . . . , d, is constructed according to
the following rule:

êij =
{

1 if i = j > λp

0 otherwise



Based on this definition, the weak eigenvectors of p are

given by Vp · Êp.

For the clustering, we will associate two points, p, q ∈
Di, to the same cluster, if their strong eigenvectors span ap-

proximately the same hyperplane. This will not be the case,

if any strong eigenvector of p is linearly independent from

the strong eigenvectors of q or vice versa. The number i
of strong eigenvectors is the same for p and q as both are

placed in the same partition Di. But we can even define

this condition more general for a different number of strong

eigenvectors. However, we need to consider linear depen-

dency in a weakened sense to allow a certain degree, say

Δ, of deviation. In real world data, it is unlikely to find a

correlation cluster that perfectly fits to a hyperplane. We

therefore define an approximate linear dependency among

the strong eigenvectors of two points.

Definition 4 (approximate linear dependency)
Let Δ ∈ ]0, 1[ , p, q ∈ D, and w.l.o.g. λp ≤ λq. Then the

strong eigenvectors of p are approximately linear dependent

from the strong eigenvectors of q if the following condition
holds for all strong eigenvectors vi of p:√

vT
i · Vq · Êq · V T

q · vi ≤ Δ

If the strong eigenvectors of p are approximately linear de-

pendent from the strong eigenvectors of q, we write

SPAN(p) ⊆Δ
aff SPAN(q)

As indicated above, Δ specifies the degree of deviation of a

straight plane a correlation cluster may exhibit.

Definition 4 does not take into account any affinity.

Thus, we consider the strong eigenvectors of p approxi-

mately linear dependent from the strong eigenvectors of q
(SPAN(p) ⊆Δ

aff SPAN(q)), although possibly p /∈ SPAN(q),
i.e., the space spanned by the strong eigenvectors of p is

(approximately) parallel to the space spanned by the strong

eigenvectors of q. To exclude affine subspaces, we addi-

tionally assess the distance between p and q along the weak

eigenvectors of q, i.e., perpendicular to the hyperplane de-

fined by the strong eigenvectors of q. This distance which

we call affine distance is defined as follows.

Definition 5 (affine distance)
Let p, q ∈ D, w.l.o.g. λp ≤ λq, and SPAN(p) ⊆Δ

aff SPAN(q).
The affine distance between p and q is given by

DISTaff(p, q) =
√

(p − q)T · Vq · Êq · V T
q · (p − q)

Combining approximate linear dependency (Definition

4) and the affine distance (Definition 5) yields the definition

of a correlation distance between two points.

Definition 6 (correlation distance)
Let δ∈R

+
0 , Δ∈ ]0, 1[ , p, q∈D, and w.l.o.g. λp ≤ λq. Then

the correlation distance CORRDIST δ
Δ between two points

p, q ∈ D, denoted by CORRDIST δ
Δ(p, q), is defined as fol-

lows

CORRDIST δ
Δ(p, q) =

⎧⎨
⎩

0 if SPAN(p) ⊆Δ
aff SPAN(q)

∧ DISTaff(p, q) ≤ δ
1 otherwise

The parameter δ specifies a certain degree of jitter. Two

parallel subspaces M , N are considered distinct, if the

affine distances DISTaff(m, n) and DISTaff(n, m) exceed δ
for any two points m ∈ M and n ∈ N , otherwise the

subspaces are considered to be equal. Since the relations

SPAN(p) ⊆Δ
aff SPAN(q) and DISTaff(p, q) are based on the

local neighborhood of q, they are not symmetric. For

λp < λq, these measurements yield the notion of a sub-

space SPAN(p) embedded in another subspace SPAN(q) of

higher dimensionality as required to deduct a hierarchy of

subspaces. However, as a distance function for clustering

within one partition, all clusters are supposed to exhibit

equal dimensionality. We therefore construct a symmetric

distance function as

dist(p, q) = max
(
CORRDIST δ

Δ(p, q), CORRDIST δ
Δ(q, p)

)
.

In each partition, we perform a density-based clustering us-

ing DBSCAN with dist as distance function. DBSCAN is

chosen due to its efficiency, effectivity, and usability: The

input parameter ε determining the range of neighborhood

is set to 0 since the distance d is binary. The parameter

minPts determines the minimum size of a cluster. This

parameter can be intuitively set according to the nature of a

given problem. As a result, we get a set of clusters for each

partition Di.

4.3. Aggregating the Hierarchy of Correla-
tion Clusters

As mentioned above, the parent of a cluster Ci with cor-

relation dimensionality λi can be any cluster Cj with cor-

relation dimensionality λj > λi. Each cluster Ci derived

in step 2 gets assigned a centroid xi as mean value over all

cluster members. Then the cluster centroid xi gets assigned

a set of strong and weak eigenvectors using all cluster mem-

bers as neighborhood Nxi as specified in Definitions 1 and

3. Assuming the clusters sorted in ascending order w.r.t.

their correlation dimensionality (as already given by the

partitions D1, . . . ,Dd), ERiC starts with the first cluster Cm

and checks for each cluster Cn with λn > λm whether

SPAN(xm) ⊆Δ
aff SPAN(xn) and DISTaff(xm, xn) ≤ δ ac-

cording to Definitions 4–5, i.e. the CORRDIST δ
Δ(xm, xn) is

derived (Definition 6). If CORRDIST δ
Δ(xm, xn) = 0, clus-

ter Cn is treated as parent of cluster Cm, unless Cn is a parent



method buildHierarchy(ClusterList cl)
// cl = 〈Ci〉 is sorted w.r.t. λCi

λmax := d; // d = dimensionality of data space

for each Ci ∈ cl do

for each Cj ∈ cl with λCi < λCj do

if λCj = λmax ∧ Ci.parents=∅ then
Ci.addParent(Cj);

else
if CORRDIST

δ
Δ(Ci, Cj) = 0 ∧

(Ci.parents=∅ ∨
¬ isParent(Cj , Ci.parents)) then

Ci.addParent(Cj);
end if

end if

end for

end for

Figure 3. The method to build the hierarchy
of correlation clusters.

of any cluster Co that in turn is already a parent of Cm, be-

cause in that case the relationship between Cn and Cm is

that of a grandparent. The pseudocode of this procedure is

depicted in Figure 3.

The resulting hierarchy is visualized using a graph-like

representation. An example is depicted in Figure 2(c) show-

ing the hierarchy of correlation clusters in sample data set

2 (cf. Figure 1). In general, the representation is organized

top-down w.r.t. the correlation dimensionality similar to a

tree but allows multiple inclusions. The “root” of the graph

contains all objects in partition Dd. All correlation clus-

ters with equal correlation dimensionality are placed at the

same level below the root. Thus, 1D correlation clusters are

placed at the bottom level. Each object is placed in that cor-

relation cluster with the smallest correlation dimensionality.

An edge between two nodes indicates a (containment) rela-

tionship. In fact, a node N represents a cluster of all objects

assigned to N as well as all objects assigned to child nodes

of N .

5. Evaluation

5.1. Efficiency

Runtime Complexity. The preprocessing step of ERiC

works for each point as follows: First a k-nearest neighbor

query is performed, which has a complexity of O(n) since

the data set is scanned sequentially. Based on the result of

the k-nearest neighbor query, the d × d covariance matrix

is determined. This can be done in O(k · d2) time. Then
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Figure 4. Scalability results.



(a) Data set DS1 (b) Clusters found by ERiC (c) Hierarchy generated by ERiC

(d) Clusters found by 4C (e) Clusters found by ORCLUS (f) Hierarchy generated by HiCO

Figure 5. Comparative evaluation of different algorithms on 3D synthetic data set DS1.

the covariance matrix is decomposed using PCA which re-

quires O(d3) time. Thus, for all points together we have a

time complexity of O(n2 + k · d2 · n) in the first step of

ERiC, since d << k as discussed above.

Applying DBSCAN to the data set in the second step of

ERiC results in a time complexity of O(d3 · n2
i ), where ni

is the number of points in partition i. This is due to the fact,

that the original DBSCAN has a worst case complexity of

O(n2) on top of the sequential scan. Applying the correla-

tion distance as given in Definition 7, the overall time com-

plexity of DBSCAN is O(d3 · n2
i ). Assuming on average a

uniform distribution of the points over all possible correla-

tion dimensionalities, all partitions contain n
d points. Thus,

for d partitions, the required runtime reduces to O(d2 · n2).

The hierarchy aggregation considers all pairs of clusters

(Ci, Cj) associated to different partitions (i.e., λi < λj) and

determines the CORRDIST δ
Δ for the corresponding cluster

representatives. Let |C| be the number of clusters. Then the

complexity of this method corresponds to O(|C|2·d3). How-

ever, in the experimental evaluation, we show the hierarchy

aggregation to require only a marginal runtime compared

to the overall runtime of ERiC. This is due to the fact that

|C| << n.

Thus, the overall runtime complexity of ERiC can be

considered as O(n2 · d2).

Experimental Evaluation. The scalability of the compet-

ing methods is depicted in Figure 4. Please note the loga-

rithmic scale of the runtime-axis in Figure 4(a). As it can be

seen, ERiC scales better than the compared methods w.r.t.

the dimensionality. ERiC clearly outperforms 4C and HiCO

w.r.t. the size of the data set showing a runtime comparative

to ORCLUS. The runtime of HiCO w.r.t. the size of the data

set is far above the others and therefore omitted in the chart

for clearness. In these both experiments, the objects are uni-

formly distributed over 9 correlation clusters and noise.

In a third experiment we investigated the impact of the

number of clusters on the runtime behaviour using data sets

in a 10-dimensional data space containing 10,000 objects

uniformly distributed over an increasing number of clus-

ters. As shown in Figure 4(c), the runtime of ERiC, 4C,

and HiCO is quite robust w.r.t. the number of correlation

clusters, while the runtime of ORCLUS increases consid-

erably. Again, ERiC gains a significant speed-up over its

competitors.

Finally, we analyzed the impact of the hierarchy aggre-

gation on the overall runtime of ERiC w.r.t. the number of

correlation clusters (see Figure 4(d)). This experiment is

based on the data sets of the third experiment.

Overall, the experiments confirm the theoretical consid-

erations presented above.



5.2. Accuracy

Synthetic Data. We evaluated the accuracy of ERiC in

comparison to ORCLUS, 4C, and HiCO on several syn-

thetic data sets. In all experiments, we optimized the input

parameters of all methods in terms of cluster quality and

report the best results in order to achieve a fair compari-

son. Figure 5 illustrates the results of the competitors on

a synthetic 3D data set (cf. Figure 5(a)) containing several

1D and 2D correlation clusters with complex hierarchical

relationships. The result of ERiC (cf. Figure 5(c)) illus-

trates the correct and complete hierarchy. One can see at a

glance that the data set contains two 1D clusters (lines “1 1”

and “1 3”) embedded within a 2D cluster (plane “2 0”), one

separate 1D cluster (line “1 2”), and a multiple inclusion of

one 1D cluster (line “1 0”) embedded within two 2D clus-

ters (planes “2 1” and “2 2”). None of the existing state-of-

the-art correlation clustering approaches performs equally

well. 4C (cf. Figure 5(d)) has problems to separate several

clusters (‘1 1”, “1 3”, “2 0”, and parts of “1 2”) from each

other and, on the other hand, splits compact clusters into

several parts (e.g. clusters “1 2”, “2 1”, “2 2”, and “1 0”).

A similar observation can be made when looking at the re-

sults of ORCLUS (cf. Figure 5(e)). Since both 4C and OR-

CLUS produce a flat clustering, no hierarchy can be derived

from their results. Last but not least, the result of HiCO is

depicted in Figure 5(f). The obtained reachability plot sug-

gests one big 2D correlation cluster (the valley at level 2)

having four 1D correlation clusters embedded (the valleys

at level 1). Thus, the three 2D clusters are not visible in

the resulting plot. In summary, while ERiC has no prob-

lems to reveal the complete hierarchy of correlation clusters

and produce all correct clusters, the competitors all fail to

produce the true clusters and the proper hierarchy.

We made further experiments on higher dimensional data

sets containing correlation clusters with complex hierarchi-

cal relationships. In all experiments we made observations

similar to those made with data set DS1. While ERiC

perfectly discovered the complete hierarchy and produced

100% correct clusters, 4C, ORCLUS, and HiCO had prob-

lems to find pure and complete clusters. In addition, HiCO

always failed to detect the complete hierarchical relation-

ships.

Real World Data. We evaluated ERiC on the Wages

data set1 consisting of 534 4-dimensional observations from

the 1985 Current Population Survey (dimensions include

A=age, YE=years of education, YW=years of work expe-

rience, and W=wage). The results are shown in Figure 6(a).

ERiC found seven clusters. The contents of the clusters are

summarized in Figure 6(b). As it can be seen, the derived

clusters are rather meaningful.

1http://lib.stat.cmu.edu/datasets/CPS_85_Wages

(a) Hierarchy generated by ERiC

cluster description

1 0 YE = 12, A = 22, YW = 4

1 1 YE = 12, A = 22, YW = 20

2 0 YE = 14, A = YW + 20

2 1 YE = 12, A = YW+18

2 2 YE = 16, A = YW + 22

2 3 YE = 13, A = YW+19

3 0 YE = A - YW - 6
(b) Contents of found clusters

Figure 6. Results of ERiC on the wages data
set.

A second data set used for evaluating ERiC is the

pendigits data set2 containing approximately 7,500 16-

dimensional points representing certain features of hand-

written digits. The objects are labeled according the digit.

The resulting hierarchy computed by ERiC is depicted in

Figure 7. Interestingly, all clusters found by ERiC are pure,

i.e. contain only objects from one class. The clusters form-

ing the observed multiple inclusion also contain objects

from the same class.

In summary, our experiments confirmed that ERiC finds

meaningful cluster hierarchies allowing for multiple inclu-

sions in real world data sets.

6. Conclusions

Correlation clustering is a data mining task important

for many applications. In this paper, we have motivated

to search for complex hierarchies of correlation clusters,

including the information that lower dimensional correla-

tion clusters are embedded within higher dimensional ones.

Since none of the existing algorithms for correlation cluster-

ing can reveal the complete hierarchical structure, we pro-

2http://www.ics.uci.edu/˜mlearn/databases/
pendigits/



Figure 7. Hierarchy generated by ERiC on pendigits data set.

posed ERiC, a novel clustering algorithm to detect complex

hierarchical relationships between correlation clusters also

allowing for multiple inclusions. The resulting cluster hi-

erarchy is visualized by means of a clear graph model. We

showed theoretically and experimentally that ERiC outper-

forms existing state-of-the-art correlation clustering algo-

rithms in terms of runtime and accuracy.
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sity connected clustering with local subspace preferences.

In Proc. ICDM, 2004.
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