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Abstract. Clustering has become an increasingly important task in modern applica-
tion domains such as marketing and purchasing assistance, multimedia, molecular bi-
ology as well as many others. In most of these areas, the data are originally collected
at different sites. In order to extract information from these data, they are merged at
a central site and then clustered. In this paper, we propose a different approach. We
cluster the data locally and extract suitable representatives from these clusters. These
representatives are sent to a global server site where we restore the complete cluster-
ing based on the local representatives. This approach is very efficient, because the lo-
cal clustering can be carried out quickly and independently from each other.
Furthermore, we have low transmission cost, as the number of transmitted represent-
atives is much smaller than the cardinality of the complete data set. Based on this
small number of representatives, the global clustering can be done very efficiently.
For both the local and the global clustering, we use a density based clustering algo-
rithm. The combination of both the local and the global clustering forms our new
DBDC (Density Based Distributed Clustering) algorithm. Furthermore, we discuss
the complex problem of finding a suitable quality measure for evaluating distributed
clusterings. We introduce two quality criteria which are compared to each other and
which allow us to evaluate the quality of our DBDC algorithm. In our experimental
evaluation, we will show that we do not have to sacrifice clustering quality in order
to gain an efficiency advantage when using our distributed clustering approach.

1 Introduction

Knowledge Discovery in Databases (KDD) tries to identify valid, novel, potentially useful,
and ultimately understandable patterns in data. Traditional KDD applications require full
access to the data which is going to be analyzed. All data has to be located at that site where
it is scrutinized. Nowadays, large amounts of heterogeneous, complex data reside on differ-
ent, independently working computers which are connected to each other via local or wide
area networks (LANs or WANs). Examples comprise distributed mobile networks, sensor
networks or supermarket chains where check-out scanners, located at different stores, gather
data unremittingly. Furthermore, international companies such as DaimlerChrysler have
some data which is located in Europe and some data in the US. Those companies have var-
ious reasons why the data cannot be transmitted to a central site, e.g. limited bandwidth or
security aspects. 

The transmission of huge amounts of data from one site to another central site is in some
application areas almost impossible. In astronomy, for instance, there exist several highly
sophisticated space telescopes spread all over the world. These telescopes gather data un-
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ceasingly. Each of them is able to collect 1GB of data per hour [10] which can only, with
great difficulty, be transmitted to a central site to be analyzed centrally there. On the other
hand, it is possible to analyze the data locally where it has been generated and stored. Ag-
gregated information of this locally analyzed data can then be sent to a central site where
the information of different local sites are combined and analyzed. The result of the central
analysis may be returned to the local sites, so that the local sites are able to put their data
into a global context. 

The requirement to extract knowledge from distributed data, without a prior unification
of the data, created the rather new research area of Distributed Knowledge Discovery in Da-
tabases (DKDD). In this paper, we will present an approach where we first cluster the data
locally. Then we extract aggregated information about the locally created clusters and send
this information to a central site. The transmission costs are minimal as the representatives
are only a fraction of the original data. On the central site we “reconstruct” a global cluster-
ing based on the representatives and send the result back to the local sites. The local sites
update their clustering based on the global model, e.g. merge two local clusters to one or
assign local noise to global clusters.

The paper is organized as follows, in Section 2, we shortly review related work in the
area of clustering. In Section 3, we present a general overview of our distributed clustering
algorithm, before we go into more detail in the following sections. In Section 4, we describe
our local density based clustering algorithm. In Section 5, we discuss how we can represent
a local clustering by relatively little information. In Section 6, we describe how we can re-
store a global clustering based on the information transmitted from the local sites. Section 7
covers the problem how the local sites update their clustering based on the global clustering
information. In Section 8, we introduce two quality criteria which allow us to evaluate our
new efficient DBDC (Density Based Distributed Clustering) approach. In Section 9, we
present the experimental evaluation of the DBDC approach and show that its use does not
suffer from a deterioration of quality. We conclude the paper in Section 10.

2  Related Work

In this section, we first review and classify the most common clustering algorithms. In
Section 2.2, we shortly look at parallel clustering which has some affinity to distributed
clustering.

2.1 Clustering

Given a set of objects with a distance function on them (i.e. a feature database), an interest-
ing data mining question is, whether these objects naturally form groups (called clusters)
and what these groups look like. Data mining algorithms that try to answer this question are
called clustering algorithms. In this section, we classify well-known clustering algorithms
according to different categorization schemes. 

Clustering algorithms can be classified along different, independent dimensions. One
well-known dimension categorizes clustering methods according to the result they produce.
Here, we can distinguish between hierarchical and partitioning clustering algorithms [13,
15]. Partitioning algorithms construct a flat (single level) partition of a database D of n ob-
jects into a set of k clusters such that the objects in a cluster are more similar to each other



than to objects in different clusters. Hierarchical algorithms decompose the database into
several levels of nested partitionings (clusterings), represented for example by a dendro-
gram, i.e. a tree that iteratively splits D into smaller subsets until each subset consists of only
one object. In such a hierarchy, each node of the tree represents a cluster of D. 

Another dimension according to which we can classify clustering algorithms is from an
algorithmic point of view. Here we can distinguish between optimization based or distance
based algorithms and density based algorithms. Distance based methods use the distances
between the objects directly in order to optimize a global cluster criterion. In contrast, den-
sity based algorithms apply a local cluster criterion. Clusters are regarded as regions in the
data space in which the objects are dense, and which are separated by regions of low object
density (noise).

An overview of this classification scheme together with a number of important clustering
algorithms is given in Figure 1. As we do not have the space to cover them here, we refer
the interested reader to [15] were an excellent overview and further references can be found.

2.2 Parallel Clustering and Distributed Clustering

Distributed Data Mining (DDM) is a dynamically growing area within the broader field
of KDD. Generally, many algorithms for distributed data mining are based on algorithms
which were originally developed for parallel data mining. In [16] some state-of-the-art re-
search results related to DDM are resumed.

Whereas there already exist algorithms for distributed and parallel classification and as-
sociation rules [2, 12, 17, 18, 20, 22], there do not exist many algorithms for parallel and
distributed clustering.

In [9] the authors sketched a technique for parallelizing a family of center-based data
clustering algorithms. They indicated that it can be more cost effective to cluster the data
in-place using an exact distributed algorithm than to collect the data in one central location
for clustering. In [14] the “collective hierarchical clustering algorithm” for vertically dis-
tributed data sets was proposed which applies single link clustering. In contrast to this ap-
proach, we concentrate in this paper on horizontally distributed data sets and apply a

Fig. 1. Classification scheme for clustering algorithms

partitioning hierarchical

density based

optimization/
distance based

k-means
k-modes
k-medoid
PAM
CLARA
CLARANS

single link
CURE
BIRCH

WaveCluster
DenClue
Clique
DBSCAN

Grid Clustering
Bang Clustering
OPTICS
Chameleon

classification according to the result

classification
according
to the
algorithm



partitioning clustering. In [19] the authors focus on the reduction of the communication cost
by using traditional hierarchical clustering algorithms for  massive distributed data sets.
They developed a technique for centroid-based hierarchical clustering for high dimensional,
horizontally distributed data sets by merging clustering hierarchies generated locally. In
contrast, this paper concentrates on density based partitioning clustering.

In [21] a parallel version of DBSCAN [7] and in [5] a parallel version of k-means [11]
were introduced. Both algorithms start with the complete data set residing on one central
server and then distribute the data among the different clients. 

The algorithm presented in [5] distributes N objects onto P processors. Furthermore, k
initial centroids are determined which are distributed onto the P processors. Each processor
assigns each of its objects to one of the k centroids. Afterwards, the global centroids are up-
dated (reduction operation). This process is carried out repeatedly until the centroids do not
change any more. Furthermore, this approach suffers from the general shortcoming of
k-means, where the number of clusters has to be defined by the user and is not determined
automatically. 

The authors in [21] tackled these problems and presented a parallel version of DBDSAN.
They used a ’shared nothing’-architecture, where several processors where connected to
each other. The basic data-structure was the dR*-tree, a modification of the R*-tree [3]. The
dR*-tree is a distributed index-structure where the objects reside on various machines. By
using the information stored in the dR*-tree, each local site has access to the data residing
on different computers. Similar, to parallel k-means, the different computers communicate
via message-passing. 

In this paper, we propose a different approach for distributed clustering assuming we
cannot carry out a preprocessing step on the server site as the data is not centrally available.
Furthermore, we abstain from an additional communication between the various client sites
as we assume that they are independent from each other. 

3 Density Based Distributed Clustering

Distributed Clustering assumes that the objects to be clustered reside on different sites. In-
stead of transmitting all objects to a central site (also denoted as server) where we can apply
standard clustering algorithms to analyze the data, the data are clustered independently on
the different local sites (also denoted as clients). In a subsequent step, the central site tries
to establish a global clustering based on the local models, i.e. the representatives. This is a
very difficult step as there might exist dependencies between objects located on different
sites which are not taken into consideration by the creation of the local models. In contrast
to a central clustering of the complete dataset, the central clustering of the local models can
be carried out much faster.

Distributed Clustering is carried out on two different levels, i.e. the local level and the
global level (cf. Figure 2). On the local level, all sites carry out a clustering independently
from each other. After having completed the clustering, a local model is determined which
should reflect an optimum trade-off between complexity and accuracy. Our proposed local
models consist of a set of representatives for each locally found cluster. Each representative
is a concrete object from the objects stored on the local site. Furthermore, we augment each
representative with a suitable ε−range value. Thus, a representative is a good approximation



for all objects residing on the corresponding local site which are contained in the ε−range
around this representative. 

Next the local model is transferred to a central site, where the local models are merged
in order to form a global model. The global model is created by analyzing the local repre-
sentatives. This analysis is similar to a new clustering of the representatives with suitable
global clustering parameters. To each local representative a global cluster-identifier is as-
signed. This resulting global clustering is sent to all local sites.

If a local object belongs to the ε-neighborhood of a global representative, the clus-
ter-identifier from this representative is assigned to the local object. Thus, we can achieve
that each site has the same information as if their data were clustered on a global site, to-
gether with the data of all the other sites. 

To sum up, distributed clustering consists of four different steps (cf. Figure 2):

• Local clustering
• Determination of a local model 
• Determination of a global model, which is based on all local models
• Updating of all local models

4 Local Clustering 

As the data are created and located at local sites we cluster them there. The remaining
question is “which clustering algorithm should we apply”. K-means [11] is one of the most
commonly used clustering algorithms, but it does not perform well on data with outliers or
with clusters of different sizes or non-globular shapes [8]. The single link agglomerative
clustering method is suitable for capturing clusters with non-globular shapes, but this ap-
proach is very sensitive to noise and cannot handle clusters of varying density [8]. We used
the density-based clustering algorithm DBSCAN [7], because it yields the following advan-
tages:

• DBSCAN is rather robust concerning outliers.
• DBSCAN can be used for all kinds of metric data spaces and is not confined to vector

spaces. 
• DBSCAN is a very efficient and effective clustering algorithm. 

Fig. 2. Distributed Clustering



• There exists an efficient incremental version, which would allow incremental cluster-
ings on the local sites. Thus, only if the local clustering changes “considerably”, we
have to transmit a new local model to the central site [6].

We slightly enhanced DBSCAN so that we can easily determine the local model after we
have finished the local clustering. All information which is comprised within the local mod-
el, i.e. the representatives and their corresponding ε−ranges, is computed on-the-fly during
the DBSCAN run.

In the following, we describe DBSCAN in a level of detail which is indispensable for
understanding the process of extracting suitable representatives (cf. Section 5).

4.1 The Density-Based Partitioning Clustering-Algorithm DBSCAN

The key idea of density-based clustering is that for each object of a cluster the neighbor-
hood of a given radius (Eps) has to contain at least a minimum number of objects (MinPts),
i.e. the cardinality of the neighborhood has to exceed some threshold. Density-based clus-
ters can also be significantly generalized to density-connected sets. Density-connected sets
are defined along the same lines as density-based clusters. 

We will first give a short introduction to DBSCAN. For a detailed presentation of
DBSCAN see [7]. 

Definition 1 (directly density-reachable).  An object p is directly density-reachable from
an object q wrt. Eps and MinPts in the set of objects D if 
• p ∈ NEps(q) (NEps(q) is the subset of D contained in the Eps-neighborhood of q) 

• | NEps(q) | ≥ MinPts (core-object condition)

Definition 2 (density-reachable).  An object p is density-reachable from an object q wrt.
Eps and MinPts in the set of objects D, denoted as p >D q, if there is a chain of objects
p1, ..., pn, p1 = q, pn = p such that pi ∈D and pi+1 is directly density-reachable from pi wrt.
Eps and MinPts.

Density-reachability is a canonical extension of direct density-reachability. This relation
is transitive, but it is not symmetric. Although not symmetric in general, it is obvious that
density-reachability is symmetric for objects o with |NEps(o)| ≥ MinPts. Two “border ob-
jects” of a cluster are possibly not density-reachable from each other because there are not
enough objects in their Eps-neighborhoods. However, there must be a third object in the
cluster from which both “border objects” are density-reachable. Therefore, we introduce the
notion of density-connectivity. 

Definition 3 (density-connected).  An object p is density-connected to an object q wrt. Eps
and MinPts in the set of objects D if there is an object o ∈D such that both, p and q are
density-reachable from o wrt. Eps and MinPts in D.

Density-connectivity is a symmetric relation. A cluster is defined as a set of density-
connected objects which is maximal wrt. density-reachability and the noise is the set of ob-
jects not contained in any cluster.

Definition 4 (cluster).  Let D be a set of objects. A cluster C wrt. Eps and MinPts in D is a
non-empty subset of D satisfying the following conditions:
• Maximality: ∀p,q ∈D: if p ∈C and q >D p wrt. Eps and MinPts, then also q ∈C. 

• Connectivity: ∀p,q ∈ C: p is density-connected to q wrt. Eps and MinPts in D.



Definition 5 (noise). Let C1,..., Ck be the clusters wrt. Eps and MinPts in D. Then, we define
the noise as the set of objects in the database D not belonging to any cluster Ci, i.e.
noise = {p ∈D | ∀ i: p ∉Ci}.

We omit the term “wrt. Eps and MinPts” in the following whenever it is clear from the
context. There are different kinds of objects in a clustering: core objects (satisfying condi-
tion 2 of definition 1) or non-core objects otherwise. In the following, we will refer to this
characteristic of an object as the core object property of the object. The non-core objects in
turn are either border objects (no core object but density-reachable from another core ob-
ject) or noise objects (no core object and not density-reachable from other objects).

The algorithm DBSCAN was designed to efficiently discover the clusters and the noise
in a database according to the above definitions. The procedure for finding a cluster is based
on the fact that a cluster as defined is uniquely determined by any of its core objects: first,
given an arbitrary object p for which the core object condition holds, the set {o | o >D p} of
all objects o density-reachable from p in D forms a complete cluster C. Second, given a clus-
ter C and an arbitrary core object p ∈ C, C in turn equals the set {o | o >D p} (c.f. lemma 1
and 2 in [7]).

To find a cluster, DBSCAN starts with an arbitrary core object p which is not yet clus-
tered and retrieves all objects density-reachable from p. The retrieval of density-reachable
objects is performed by successive region queries which are supported efficiently by spatial
access methods such as R*-trees [3] for data from a vector space or M-trees [4] for data from
a metric space. 

5 Determination of a Local Model 

After having clustered the data locally, we need a small number of representatives which
describe the local clustering result accurately. We have to find an optimum trade-off be-
tween the following two opposite requirements:

• We would like to have a small number of representatives. 
• We would like to have an accurate description of a local cluster. 

As the core points computed during the DBSCAN run contain in its Eps-neighborhood
at least MinPts other objects, they might serve as good representatives. Unfortunately, their
number can become very high, especially in very dense areas of clusters. In the following,
we will introduce two different approaches for determining suitable representatives which
are both based on the concept of specific core-points. 

Definition 6 (specific core points). Let D be a set of objects and let  be a cluster
wrt. Eps and MinPts. Furthermore, let CorC ⊆ C be the set of core-points belonging to this
cluster. Then ScorC ⊆ C is called a complete set of specific core points of C iff the following
conditions are true. 
• ScorC ⊆ CorC 

• ∀si,sj ∈ ScorC: si≠si ⇒ si ∉NEps(sj)

• ∀c ∈ CorC ∃s ∈ ScorC: c ∈NEps(s)

There might exist several different sets ScorC which fulfil Definition 6. Each of these
sets ScorC usually consists of several specific core points which can be used to describe the
cluster C. 

C 2
D∈



The small example in Figure 3a shows that if A is an element of the set of specific
core-points Scor, object B can not be included in Scor as it is located within the Eps-
neighborhood of A. C might be contained in Scor as it is not in the Eps-neighborhood of A.
On the other hand, if B is within Scor, A and C are not contained in Scor as they are both in
the Eps-neighborhood of B. The actual processing order of the objects during the DBSCAN
run determines a concrete set of specific core points. For instance, if the core-point B is vis-
ited first during the DBSCAN run, the core-points A and C are not included in Scor.

In the following, we introduce two local models called, REPScor (cf. Section 5.1) and
REPk-Means (cf. Section 5.2) which both create a local model based on the complete set of
specific core points.

5.1 Local Model: REPScor

In this model, we represent each local cluster Ci by a complete set of specific core points
ScorCi

. If we assume that we have found n clusters C1,..,Cn on a local site k, the local model
LocalModelk is formed by the union of the different sets ScorCi

.
In the case of density-based clustering, very often several core points are in the

Eps-neighborhood of another core point. This is especially true, if we have dense clusters
and a large Eps-value. In Figure 3a, for instance, the two core points A and B are within the
Eps-range of each other as dist(A, B) is smaller than Eps.

Assuming core point A is a specific core point, i.e. A ∈ Scor, than B ∉ Scor because of
condition 2 in Definition 6. In this case, object A should not only represent the objects in its
own neighborhood, but also the objects in the neighborhood of B, i.e. A should represent all
objects of NEps(A) ∪ NEps(B). In order for A to be a representative for the objects
NEps(A) ∪ NEps(B), we have to assign a new specific εΑ−range to A with εΑ = Eps + dist(A,B)
(cf. Figure 3a). Of course we have to assign such a specific ε−range to all specific core
points, which motivates the following definition: 

Definition 7 (specific ε−ranges). Let C ⊆ D be a cluster wrt. Eps and MinPts. Furthermore,
let Scor ⊆ C be a complete set of specific core-points. Then we assign to each s ∈ Scor an
εs−range indicating the represented area of s:

εs:= Eps + max{dist(s,si)|si∈Cor ∧ si ∈NEps(s)} .

This specific ε−range value is part of the local model and is evaluated on the server site
to develop an accurate global model. Furthermore, it is very important for the updating proc-
ess of the local objects. The specific ε−range value is integrated into the local model of site
k as follows: 

LocalModelk := .

5.2 Local Model: REPk-Means

This approach is also based on the complete set of specific core-points. In contrast to the
previous approach, the specific core points are not directly used to describe a cluster. In-
stead, we use the number |ScorC| and the elements of ScorC as input parameters for a further
“clustering step” with an adapted version of k-means. For each cluster C, found by
DBSCAN, k-means yields |ScorC| centroids within C. These centroids are used as represen-
tatives. The small example in Figure 3b shows that if object A is a specific core point, and

s εs( , ) s S∈ corCi
{ }

i 1..n∈
∪



we apply an additional clustering step by using k-means, we get a more appropriate repre-
sentative A’.

K-means is a partitioning based clustering method which needs as input parameters the
number m of clusters which should be detected within a set M of objects. Furthermore, we
have to provide m starting points for this algorithm, if we want to find m clusters. We use
k-means as follows: 

• Each local cluster C which was found throughout the original DBSCAN run on the
local site forms a set M of objects which is again clustered with k-means.

• We ask k-means to find |ScorC| (sub)clusters within C, as all specific core points

together yield a suitable number of representatives. Each of the centroids found by
k-means within cluster C is then used as a new representative. Thus the number of rep-
resentatives for each cluster is the same as in the previous approach. 

• As initial starting points for the clustering of C with k-means, we use the set of com-
plete specific core points ScorC. 

Again, let us assume that there are n clusters C1,..,Cn on a local site k. Furthermore, let
ci,1..ci,|ScorCi

| be the |ScorCi| centroids found by the clustering of Ci with k-means. Let
Oi,j ⊆ Ci be the set of objects which are assigned to the centroid ci,j. Then we assign to each
centroid ci,j an εci,j

−range, indicating the represented area by ci,j, as follows: 

εci,j
 := max{dist(o,ci,j)|o ∈ Oi,j }. 

Finally, the local model, describing the n clusters on site k, can be generated analogously
to the previous section as follows: 

LocalModelk := . 

6 Determination of a Global Model

Each local model LocalModelk consists of a set of mk pairs, consisting of a representative
r and an ε−range value εr. The number m of pairs transmitted from each site k is determined
by the number n of clusters Ci found on site k and the number |ScorCi| of specific core-points
for each cluster Ci as follows:

.

Fig. 3. Local models 
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Each of these pairs (r, εr) represent several objects which are all located in Nεr
(r), i.e. the

εr-neighborhood of r. All objects contained in Nεr
(r) belongs to the same cluster. To put it an-

other way, each specific local representative forms a cluster on its own. Obviously, we have
to check whether it is possible to merge two or more of these clusters. These merged local rep-
resentatives together with the unmerged local representatives form the global model. Thus, the
global model consist of clusters consisting of one or of several local representatives. 

To find such a global model, we use the density based clustering algorithm DBSCAN
again. We would like to create a clustering similar to the one produced by DBSCAN if ap-
plied to the complete dataset with the local parameter settings. As we have only access to
the set of all local representatives, the global parameter setting has to be adapted to this ag-
gregated local information. 

As we assume that all local representatives form a cluster on their own it is enough to use
a Min-Ptsglobal-parameter of 2. If 2 representatives, stemming from the same or different lo-
cal sites, are density connected to each other wrt. MinPtsglobal and Epsglobal, then they be-
long to the same global cluster.

The question for a suitable Epsglobal value, is much more difficult. Obviously, Epsglobal
should be greater than the Eps-parameter Epslocal used for the clustering on the local sites.
For high Epsglobal values, we run the risk of merging clusters together which do not belong
together. On the other hand, if we use small Epsglobal values, we might not be able to detect
clusters belonging together. Therefore, we suggest that the Epsglobal parameter should be
tunable by the user dependent on the εR values of all local representatives R. If these εR val-
ues are generally high it is advisable to use a high Epsglobal value. On the other hand, if the
εR values are low, a small Epsglobal value is better. The default value which we propose is

Fig. 4. Determination of a global model a) local clusters b) local representatives 
c) determination of a global model with Epsglobal = 2•Epslocal

a)

b)

c)



equal to the maximum value of all εR values of all local representatives R. This default
Epsglobal value is generally close to 2•Epslocal (cf. Section 9).

In Figure 4, an example for Epsglobal=2•Epslocal is depicted. In Figure 4a the independ-
ently detected clusters on site 1,2 and 3 are depicted. The cluster on site 1 is characterized
by two representatives R1 and R2, whereas the clusters on site 2 and site 3 are only charac-
terized by one representative as shown in Figure 4b. Figure 4c (VII) illustrates that all 4
clusters from the different sites belong to one large cluster. Figure 4c (VIII) illustrates that
an Epsglobal equal to Epslocal is insufficient to detect this global cluster. On the other hand,
if we use an Epsglobal parameter equal to 2•Epslocal the 4 representatives are merged together
to one large cluster (cf. Figure 4c (IX)).

Instead of a user defined Epsglobal parameter, we could also use a hierarchical density
based clustering algorithm, e.g. OPTICS [1], for the creation of the global model. This ap-
proach would enable the user to visually analyze the hierarchical clustering structure for
several Epsglobal-parameters without running the clustering algorithm again and again. We
refine from this approach because of several reasons. First, the relabeling process discussed
in the next section would become very tedious. Second, a quantitative evaluation (cf.
Section 9) of our DBDC algorithm is almost impossible. Third, the incremental version of
DBSCAN allows us to start with the construction of the global model after the first repre-
sentatives of any local model come in. Thus we do not have to wait for all clients to have
transmitted their complete local models. 

7 Updating of the Local Clustering based on the Global Model

After having created a global clustering, we send the complete global model to all client
sites. The client sites relabel all objects located on their site independently from each other.
On the client site, two former independent clusters may be merged due to this new relabe-
ling. Furthermore, objects which were formerly assigned to local noise are now part of a glo-
bal cluster. If a local object o is in the εr−range of a representative r, o is assigned to the
same global cluster as r. 

Figure 5 depicts an example for this relabeling process. The objects R1 and R2 are the
local representatives. Each of them forms a cluster on its own. Objects A and B have been
classified as noise. Representative R3 is a representative stemming from another site. As R1,
R2 and R3 belong to the same global cluster all Objects from the local clusters Cluster 1 and
Cluster 2 are assigned to this global cluster. Furthermore, the objects A and B are assigned
to this global cluster as they are within the εR3−neighborhood of R3, i.e. A, B ∈NεR3(R3). On
the other hand, object C still belongs to noise as C∉NεR3(R3).

These updated local client clusterings help the clients to answer server questions effi-
ciently, e.g. questions such as “give me all objects on your site which belong to the global
cluster 4711”. 

8 Quality of Distributed Clustering

There exist no general quality measure which helps to evaluate the quality of a distribut-
ed clustering. If we want to evaluate our new DBDC approach, we first have to tackle the
problem of finding a suitable quality criterion. Such a suitable quality criterion should yield
a high quality value if we compare a “good” distributed clustering to a central clustering,



i.e. reference clustering. On the other hand, it should yield a low value if we compare a
“bad” distributed clustering to a central clustering. Needless to say, if we compare a refer-
ence clustering to itself, the quality should be 100%. Let us first formally introduce the no-
tion of a clustering. 

Definition 8 (clustering ). Let  be a database consisting of n objects.
Then, we call any set  a clustering of D w.r.t. MinPts, if it fulfils the following proper-
ties: 

•

•

•

In the following we denote by  a clustering resulting from our distributed ap-
proach and by  our central reference clustering. We will define two different qual-
ity criterions which measure the similarity between   and . We compare
the two introduced quality criterions to each other by discussing a small example. 

Let us assume that we have n objects, distributed over k sites. Our DBDC-algorithm, as-
signs each object x, either to a cluster or to noise. We compare the result of our DBDC-
algorithm to a central clustering of the n objects using DBSCAN. Then we assign to each
object x a numerical value P (x) indicating the quality for this specific object. The overall
quality of the distributed clustering is the mean of the qualities assigned to each object. 

Definition 9 (distributed clustering quality QDBDC). Let  be a database
consisting of n objects. Let P be an object quality function . Then the quality
QDBDC of our distributed clustering w.r.t. P is computed as follows:

The crucial question is “what is a suitable object quality function?”. In the following two
subsections, we will discuss two different object functions P.

Fig. 5.Relabeling of the local clustering
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8.1 First Object Quality Function PI

Obviously, P(x) should yield a rather high value, if an object x together with many other
objects is contained in a distributed cluster Cd and a central cluster Cc. In the case of density-
based partitioning clustering, a cluster might consist of only MinPts elements. Therefore,
the number of objects contained in two identical clusters might be not higher than MinPts.
On the other hand, each cluster consists of at least MinPts elements. Therefore, asking for
less than MinPts elements in both clusters would weakening the quality criterion unneces-
sarily. 

If x is included in a distributed cluster Cd but is assigned to noise by the central cluster-
ing, the value of P(x) should be 0. If x is not contained in any distributed cluster, i.e. it is
assigned to noise, a high object quality value requires that it is also not contained in a central
cluster. In the following, we will define a discrete object quality function PI which assigns
either 0 or 1 to an object x, i.e. PI(x) = 0 or PI(x) = 1. 

Definition 10 (discrete object quality PI). Let  and let ,  be two cluster. Then
we can define an object quality function  w.r.t. to a quality parameter qp as
follows:

The main advantage of the object quality function PI is that it is rather simple because it
yields only a boolean return value, i.e. it tells whether an object was clustered correctly or
falsely. Nevertheless, sometimes a more subtle quality measure is required which does not
only assign a binary quality value to an object. In the following section, we will introduce a
new object quality function which is not confined to the two binary quality values 0 and 1.
This more sophisticated quality function can compute any value in between 0 and 1 which
much better reflects the notion of “correctly clustered”. 

8.2 Second Object Quality Function PII

The main idea of our new quality function is to take the number of elements which were
clustered together with the object x during the distributed and the central clustering into con-
sideration. Furthermore, we decrease the quality of x if there are objects which have been
clustered together with x in only one of the two clusterings.

Definition 11 (continuous object quality PII). Let  and let ,  be a central and
a distributed cluster. Then we define an object quality function  as follows:
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9 Experimental Evaluation

We evaluated our DBDC-approach based on three different 2-dimensional point sets
where we varied both the number of points and the characteristics of the point sets. Figure
6 depicts the three used test data sets A (8700 objects, randomly generated data/cluster), B
(4000 objects, very noisy data) and C (1021 objects, 3 clusters) on the central site. In order
to evaluate our DBDC-approach, we equally distributed the data set onto the different client
sites and then compared DBDC to a single run of DBSCAN on all data points. We carried
out all local clusterings sequentially. Then, we collected all representatives of all local runs,
and applied a global clustering on these representatives. For all these steps, we always used
the same computer. The overall runtime was formed by adding the time needed for the glo-
bal clustering to the maximum time needed for the local clusterings. All experiments were
performed on a Pentium III/700 machine. 

In a first set of experiments, we consider efficiency aspects, whereas in the following
sections we concentrate on quality aspects.

9.1 Efficiency

In Figure 7, we used test data sets with varying cardinalities to compare the
overall runtime of our DBDC-algorithm to the runtime of a central clustering. Furthermore,
we compared our two local models w.r.t. efficiency to each other. Figure 7a shows that our
DBDC-approach outperforms a central clustering by far for large data sets. For instance, for
a point set consisting of 100,000 points, both DBDC approaches, i.e. DBDC(RepSCor) and
DBDC(RepK-Means), outperform the central DBSCAN algorithm by more than one order of
magnitude independent of the used local clustering. Furthermore, Figure 7a shows that the
local model for REPScor can more efficiently be computed than the local model for
REPk-Means.

Figure 7b shows that for small data sets our DBDC-approach is slightly slower than the
central clustering approach. Nevertheless, the additional overhead for distributed clustering
is almost negligible even for small data sets.

In Figure 8 it is depicted in what way the overall runtime depends on the number of used
sites. We compared DBDC based on REPScor to a central clustering with DBSCAN.
Our experiments show that we obtain a speed-up factor which is somewhere between O(n)
and O(n2). This high speed-up factor is due to the fact that DBSCAN has a runtime com-
plexity somewhere between O(nlogn) and O(n2) when using a suitable index structure, e.g.
an R*-tree [3].
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9.2 Quality 

In the next set of experiments we evaluated the quality of our two introduced object qual-
ity functions PI and PII together with the quality of our DBDC-approach. Figure 9a shows
that the quality according to PI of both local models is very high and does not change if we
vary the Epsglobal parameter during global clustering. On the other hand, if we look at Figure
9b, we can clearly see that for Epsglobal parameters equal to 2•Epslocal, we get the best qual-
ity for both local models. This is equal to the default value for the server site clustering
which we derived in Section 6. Furthermore, the quality worsens for very high and very
small Epsglobal parameters, which is in accordance to the quality which an experienced user
would assign to those clusterings. 

To sum up, these experiments yield two basic insights:

• The object quality function PII is more suitable than PI.
• A good Epsglobal parameter is around 2•Epslocal 

Furthermore, the experiments indicate that the local model REPk-Means yields slightly
higher quality.  

For the following experiments, we used an Epsglobal parameter of 2•Epslocal.

Fig. 7. Overall runtime for central and distributed clustering dependent on the cardinality of 
the data set A. a) high number of data objects b) small number of data objects. 
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Figure 10 shows how the quality of our DBDC-approach depends on the number of
client-sites. We can see that the quality according to PI is independent of the number of cli-
ent sites which indicates again that this quality measure is unsuitable. On the other hand, the
quality computed by PII is in accordance with the intuitive quality which an experienced
user would assign to the distributed clusterings on the varying number of sites. Although,
we have a slight decreasing quality for an increasing number of sites, the overall quality for
both local models REPk-Means and REPScor  is very high. 

Figure 11 shows that for the three different data sets A, B and C our DBDC-approach
yields good results for both local models. The more accurate quality measure PII indicates
that the DBDC-approach based on REPk-Means yields a quality which reflects more ade-
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quately the user’s expectations. This is especially true for the rather noisy data set B, where
PII yields the lower quality corresponding to the user’s intuition.

To sum up, our new DBDC-approach based on REPk-Means efficiently yields a very high
quality even for a rather high number of local sites and data sets of various cardinalities and
characteristics. 

10 Conclusions

In this paper, we first motivated the need of distributed clustering algorithms. Due to
technical, economical or security reasons, it is often not possible to transmit all data from
different local sites to one central server site and then cluster the data there. Therefore, we
have to apply an efficient and effective distributed clustering algorithm from which a lot of
application ranges will benefit. We developed a partitioning distributed clustering algorithm
which is based on the density-based clustering algorithm DBSCAN. We clustered the data
locally and independently from each other and transmitted only aggregated information
about the local data to a central server. This aggregated information consists of a set of pairs,
comprising a representative r and an ε−range value εr, indicating the validity area of the rep-
resentative. Based on these local models, we reconstruct a global clustering. This global
clustering was carried out by means of standard DBSCAN where the two input-parameters
Epsglobal and MinPtsglobal were chosen such that the information contained in the local
models are processed in the best possible way. The created global model is sent to all clients,
which use this information to relable their own objects.

As there exists no general quality measures which helps to evaluate the quality of a dis-
tributed clustering, we introduced suitable quality criteria on our own. In the experimental
evaluation, we discussed the suitability of our quality criteria and our density-based distrib-
uted clustering approach. Based on the quality criteria, we showed that our new distributed
clustering approach yields almost the same clustering quality as a central clustering on all
data. On the other hand, we showed that we have an enormous efficiency advantage com-
pared to a central clustering carried out on all data. 
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