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Abstract. Clustering has become an increasingly important task in modern applica-
tion domains such as marketing and purchasing assi stance, multimedia, molecular bi-
ology aswell as many others. In most of these areas, the data are originally collected
at different sites. In order to extract information from these data, they are merged at
acentral site and then clustered. In this paper, we propose a different approach. We
cluster the datalocally and extract suitable representatives from these clusters. These
representatives are sent to a global server site where we restore the complete cluster-
ing based on thelocal representatives. This approach isvery efficient, becausethelo-
cal clustering can be carried out quickly and independently from each other.
Furthermore, we have low transmission cost, as the number of transmitted represent-
atives is much smaller than the cardinality of the complete data set. Based on this
small number of representatives, the globa clustering can be done very efficiently.
For both the local and the global clustering, we use a density based clustering algo-
rithm. The combination of both the local and the globa clustering forms our new
DBDC (Density Based Distributed Clustering) algorithm. Furthermore, we discuss
the complex problem of finding a suitable quality measure for evaluating distributed
clusterings. We introduce two quality criteria which are compared to each other and
which alow usto evauate the quality of our DBDC algorithm. In our experimental
evaluation, we will show that we do not have to sacrifice clustering quality in order
to gain an efficiency advantage when using our distributed clustering approach.

1 Introduction

Knowledge Discovery in Databases (KDD) triesto identify valid, novel, potentially useful,
and ultimately understandable patterns in data. Traditional KDD applications require full
accessto the datawhich is going to be analyzed. All data hasto be located at that site where
it is scrutinized. Nowadays, large amounts of heterogeneous, complex data reside on differ-
ent, independently working computers which are connected to each other vialocal or wide
area networks (LANs or WANS). Examples comprise distributed mobile networks, sensor
networksor supermarket chainswhere check-out scanners, located at different stores, gather
data unremittingly. Furthermore, international companies such as DaimlerChrysler have
some datawhich is located in Europe and some datain the US. Those companies have var-
ious reasons why the data cannot be transmitted to a central site, e.g. limited bandwidth or
security aspects.

Thetransmission of huge amounts of data from one site to another central siteisin some
application areas almost impossible. In astronomy, for instance, there exist severa highly
sophisticated space telescopes spread al over the world. These telescopes gather data un-



ceasingly. Each of them is able to collect 1GB of data per hour [10] which can only, with
great difficulty, be transmitted to a central site to be analyzed centrally there. On the other
hand, it is possible to analyze the data locally where it has been generated and stored. Ag-
gregated information of this locally analyzed data can then be sent to a central site where
the information of different local sites are combined and analyzed. The result of the central
analysis may be returned to the loca sites, so that the local sites are able to put their data
into aglobal context.

The reguirement to extract knowledge from distributed data, without a prior unification
of the data, created the rather new research area of Distributed Knowledge Discovery in Da-
tabases (DKDD). In this paper, we will present an approach where we first cluster the data
locally. Then we extract aggregated information about the locally created clusters and send
this information to a central site. The transmission costs are minimal as the representatives
are only afraction of the origina data. On the central site we “reconstruct” aglobal cluster-
ing based on the representatives and send the result back to the local sites. The local sites
update their clustering based on the global model, e.g. merge two local clusters to one or
assign local noiseto global clusters.

The paper is organized as follows, in Section 2, we shortly review related work in the
area of clustering. In Section 3, we present ageneral overview of our distributed clustering
algorithm, beforewe go into more detail in the following sections. In Section 4, we describe
our local density based clustering algorithm. In Section 5, we discuss how we can represent
alocal clustering by relatively little information. In Section 6, we describe how we can re-
storeaglobal clustering based on the information transmitted from the local sites. Section 7
coversthe problem how thelocal sites update their clustering based on the global clustering
information. In Section 8, we introduce two quality criteria which allow usto evaluate our
new efficient DBDC (Density Based Distributed Clustering) approach. In Section 9, we
present the experimental evaluation of the DBDC approach and show that its use does not
suffer from adeterioration of quality. We conclude the paper in Section 10.

2 Related Work

In this section, we first review and classify the most common clustering algorithms. In
Section 2.2, we shortly look at parallel clustering which has some affinity to distributed
clustering.

2.1 Clustering

Given a set of objectswith a distance function on them (i.e. afeature database), an interest-
ing data mining question is, whether these objects naturally form groups (called clusters)
and what these groupslook like. Data mining algorithms that try to answer this question are
called clustering algorithms. In this section, we classify well-known clustering algorithms
according to different categorization schemes.

Clustering algorithms can be classified along different, independent dimensions. One
well-known dimension categorizes clustering methods according to the result they produce.
Here, we can distinguish between hierarchical and partitioning clustering algorithms [13,
15]. Partitioning algorithms construct a flat (single level) partition of a database D of n ob-
jectsinto a set of k clusters such that the objects in a cluster are more similar to each other



. WaveCluster Grid Clustering
ﬁenﬂ tybased | penciue Bang Clustering
Clique OPTICS
classification DBSCAN Chameleon
according k-means singlelink
to the < k-modes CURE
algorithm optimization/ | k-medoid BIRCH
distancebased | PAM
CLARA
\ CLARANS

\partiti oning hierarchical /
hd
classification according to the result

Fig. 1. Classification scheme for clustering algorithms

than to objects in different clusters. Hierarchica algorithms decompose the database into
several levels of nested partitionings (clusterings), represented for example by a dendro-
gram, i.e. atreethat iteratively splits D into smaller subsets until each subset consists of only
one object. In such a hierarchy, each node of the tree represents a cluster of D.

Another dimension according to which we can classify clustering algorithmsis from an
algorithmic point of view. Here we can distinguish between optimization based or distance
based algorithms and density based algorithms. Distance based methods use the distances
between the objects directly in order to optimize aglobal cluster criterion. In contrast, den-
sity based algorithms apply aloca cluster criterion. Clusters are regarded as regionsin the
data space in which the objects are dense, and which are separated by regions of low object
density (noise).

Anoverview of thisclassification schemetogether with anumber of important clustering
algorithmsis given in Figure 1. As we do not have the space to cover them here, we refer
theinterested reader to [15] were an excellent overview and further references can befound.

2.2 Paralld Clustering and Distributed Clustering

Distributed Data Mining (DDM) is adynamically growing area within the broader field
of KDD. Generally, many algorithms for distributed data mining are based on algorithms
which were originally developed for parallel data mining. In [16] some state-of-the-art re-
search results related to DDM are resumed.

Whereas there already exist algorithms for distributed and parallel classification and as-
sociation rules [2, 12, 17, 18, 20, 22], there do not exist many algorithms for parallel and
distributed clustering.

In [9] the authors sketched a technique for parallelizing a family of center-based data
clustering algorithms. They indicated that it can be more cost effective to cluster the data
in-place using an exact distributed algorithm than to collect the datain one central location
for clustering. In [14] the “collective hierarchical clustering algorithm” for verticaly dis-
tributed data sets was proposed which applies single link clustering. In contrast to this ap-
proach, we concentrate in this paper on horizontally distributed data sets and apply a



partitioning clustering. In[19] the authorsfocus on the reduction of the communication cost
by using traditional hierarchical clustering algorithms for massive distributed data sets.
They developed atechnique for centroid-based hierarchical clustering for high dimensional,
horizontally distributed data sets by merging clustering hierarchies generated locally. In
contrast, this paper concentrates on density based partitioning clustering.

In[21] a parallel version of DBSCAN [7] and in [5] a parallel version of k-means [11]
were introduced. Both algorithms start with the complete data set residing on one centra
server and then distribute the data among the different clients.

The algorithm presented in [5] distributes N objects onto P processors. Furthermore, k
initial centroids are determined which are distributed onto the P processors. Each processor
assigns each of its objectsto one of the k centroids. Afterwards, the global centroids are up-
dated (reduction operation). This processis carried out repeatedly until the centroids do not
change any more. Furthermore, this approach suffers from the general shortcoming of
k-means, where the number of clusters has to be defined by the user and is not determined
automatically.

Theauthorsin[21] tackled these problems and presented a parallel version of DBDSAN.
They used a ’'shared nothing’-architecture, where several processors where connected to
each other. The basic data-structure was the dR* -tree, amodification of the R*-tree [3]. The
dR*-tree is a distributed index-structure where the objects reside on various machines. By
using the information stored in the dR*-tree, each local site has access to the data residing
on different computers. Similar, to parallel k-means, the different computers communicate
via message-passing.

In this paper, we propose a different approach for distributed clustering assuming we
cannot carry out a preprocessing step on the server site as the datais not centrally available.
Furthermore, we abstain from an additional communication between the various client sites
aswe assume that they are independent from each other.

3 Density Based Distributed Clustering

Distributed Clustering assumes that the objects to be clustered reside on different sites. In-
stead of transmitting all objectsto acentral site (also denoted as server) where we can apply
standard clustering algorithms to analyze the data, the data are clustered independently on
the different local sites (also denoted as clients). In a subsequent step, the central site tries
to establish aglobal clustering based on the local models, i.e. the representatives. Thisisa
very difficult step as there might exist dependencies between objects located on different
sites which are not taken into consideration by the creation of the local models. In contrast
to acentral clustering of the complete dataset, the central clustering of the local models can
be carried out much faster.

Distributed Clustering is carried out on two different levels, i.e. the local level and the
global level (cf. Figure 2). On the local level, all sites carry out a clustering independently
from each other. After having completed the clustering, alocal model is determined which
should reflect an optimum trade-off between complexity and accuracy. Our proposed local
models consist of a set of representatives for each locally found cluster. Each representative
isaconcrete object from the objects stored on the local site. Furthermore, we augment each
representative with a suitable e-range value. Thus, arepresentativeisagood approximation
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Fig. 2. Distributed Clustering

for al objects residing on the corresponding local site which are contained in the e-range
around this representative.

Next the local model is transferred to a central site, where the local models are merged
in order to form a global model. The global model is created by analyzing the local repre-
sentatives. This analysisis similar to a new clustering of the representatives with suitable
global clustering parameters. To each local representative a globa cluster-identifier is as-
signed. Thisresulting global clustering is sent to all local sites.

If alocal object belongs to the e-neighborhood of a globa representative, the clus-
ter-identifier from this representative is assigned to the local object. Thus, we can achieve
that each site has the same information as if their data were clustered on a global site, to-
gether with the data of all the other sites.

To sum up, distributed clustering consists of four different steps (cf. Figure 2):

* Loca clustering

e Determination of aloca model

» Determination of agloba model, which is based on all local models
e Updating of al local models

4 Local Clustering

As the data are created and located at local sites we cluster them there. The remaining
question is “which clustering a gorithm should we apply”. K-means [11] is one of the most
commonly used clustering algorithms, but it does not perform well on data with outliers or
with clusters of different sizes or non-globular shapes [8]. The single link agglomerative
clustering method is suitable for capturing clusters with non-globular shapes, but this ap-
proach isvery sensitive to noise and cannot handle clusters of varying density [8]. We used
the density-based clustering algorithm DBSCAN [7], becauseit yields the following advan-
tages:

» DBSCAN israther robust concerning outliers.

»  DBSCAN can be used for all kinds of metric data spaces and is not confined to vector
spaces.

« DBSCAN isavery efficient and effective clustering algorithm.



* There exists an efficient incremental version, which would allow incrementa cluster-
ings on the local sites. Thus, only if the loca clustering changes “considerably”, we
have to transmit anew local modd to the central site [6].

Wedightly enhanced DBSCAN so that we can easily determinethelocal model after we
havefinished thelocal clustering. All information which is comprised within thelocal mod-
€, i.e. therepresentatives and their corresponding e-ranges, is computed on-the-fly during
the DBSCAN run.

In the following, we describe DBSCAN in alevel of detail which is indispensable for
understanding the process of extracting suitable representatives (cf. Section 5).

4.1 The Density-Based Partitioning Clustering-Algorithm DBSCAN

Thekey idea of density-based clustering is that for each object of a cluster the neighbor-
hood of a given radius (Eps) hasto contain at least a minimum number of objects (MinPts),
i.e. the cardinality of the neighborhood has to exceed some threshold. Density-based clus-
ters can also be significantly generalized to density-connected sets. Density-connected sets
are defined along the same lines as density-based clusters.

We will first give a short introduction to DBSCAN. For a detailed presentation of
DBSCAN see[7].

Definition 1 (directly density-reachable). An object p isdirectly density-reachable from
an object g wrt. Eps and MinPts in the set of objectsD if
*  pe Ngps(d) (Ngpg(0) isthe subset of D contained in the Eps-neighborhood of )

* | Ngps(@) [ = MinPts (core-object condition)

Definition 2 (density-reachable). An object p is density-reachable from an object q wrt.
Eps and MinPts in the set of objects D, denoted as p > q, if there is a chain of objects
P1, - Pny P1 = G, Py = p such that p; € D and p;4q isdirectly density-reachable from p; wrt.
Eps and MinPts.

Density-reachability isacanonical extension of direct density-reachability. Thisrelation
istransitive, but it is not symmetric. Although not symmetric in general, it is obvious that
density-reachability is symmetric for objects o with [Ng,5(0)| =2 MinPts. Two “border ob-
jects’ of acluster are possibly not density-reachable from each other because there are not
enough objects in their Eps-neighborhoods. However, there must be a third object in the
cluster from which both “border objects’ are density-reachable. Therefore, we introduce the
notion of density-connectivity.

Definition 3 (density-connected). An object p is density-connected to an object g wrt. Eps
and MinPts in the set of objects D if there is an object 0 € D such that both, p and g are
density-reachable from o wrt. Eps and MinPtsin D.

Density-connectivity is a symmetric relation. A cluster is defined as a set of density-
connected objects which is maximal wrt. density-reachability and the noiseisthe set of ob-
jects not contained in any cluster.

Definition 4 (cluster). Let D be a set of objects. A cluster C wrt. Epsand MinPtsinD isa
non-empty subset of D satisfying the following conditions:

+  Maximality: Vp,qeD:if peCand q>p pwrt. Epsand MinPts, then dlso q € C.

» Connectivity: ¥p,q e C: p isdensity-connected to q wrt. Eps and MinPtsin D.



Definition 5 (noise). Let C,..., C betheclusterswrt. Epsand MinPtsin D. Then, we define
the noise as the set of objects in the database D not belonging to any cluster G, i.e.
noise={peD|Vi:peC}.

We omit the term “wrt. Eps and MinPts" in the following whenever it is clear from the
context. There are different kinds of objectsin a clustering: core objects (satisfying condi-
tion 2 of definition 1) or non-cor e objects otherwise. In the following, we will refer to this
characteritic of an object asthe core object property of the object. The non-core abjectsin
turn are either border objects (no core object but density-reachable from another core ob-
ject) or noise abjects (no core object and not density-reachable from other objects).

The algorithm DBSCAN was designed to efficiently discover the clusters and the noise
in a database according to the above definitions. The procedurefor finding acluster is based
on the fact that a cluster as defined is uniquely determined by any of its core objects: first,
given an arbitrary object p for which the core object condition holds, theset {o|o > p} of
all objects o density-reachablefrom pin D formsacomplete cluster C. Second, givenaclus-
ter C and an arhitrary coreobjectpe C, Cinturnequastheset {o|o>p p} (cf.lemmal
and 2in[7]).

To find a cluster, DBSCAN starts with an arbitrary core object p which is not yet clus-
tered and retrieves all objects density-reachable from p. The retrieval of density-reachable
objectsis performed by successive region queries which are supported efficiently by spatial
access methods such as R* -trees[ 3] for datafrom avector space or M-trees[4] for datafrom
ametric space.

5 Determination of a Local M odel

After having clustered the datalocally, we need asmall number of representatives which
describe the local clustering result accurately. We have to find an optimum trade-off be-
tween the following two opposite requirements:

*  Wewould like to have a small number of representatives.
*  Wewould like to have an accurate description of alocal cluster.

As the core points computed during the DBSCAN run contain in its Eps-neighborhood
at least MinPtsother objects, they might serve as good representatives. Unfortunately, their
number can become very high, especialy in very dense areas of clusters. In the following,
we will introduce two different approaches for determining suitable representatives which
are both based on the concept of specific core-points.

Definition 6 (specific core points). Let D be a set of objectsand let C e 2° beacluster
wrt. Eps and MinPts. Furthermore, let Cor < C bethe set of core-points belonging to this
cluster. Then Scor - < Ciscalled acomplete set of specific core points of Ciff the following
conditions are true.
* Sorec < Core
. Vs,q € SOrc:S#5 = 5 ¢ NEpS(q)
* Vce CorgcIse Scorc: ¢ eNgpg(9)

There might exist several different sets Scor which fulfil Definition 6. Each of these

sets Scor ¢ usually consists of several specific core points which can be used to describe the
cluster C.



The small example in Figure 3a shows that if A is an element of the set of specific
core-points Scor, object B can not be included in Scor as it is located within the Eps-
neighborhood of A. C might be contained in Scor asit is not in the Eps-neighborhood of A.
On the other hand, if B iswithin Scor, A and C are not contained in Scor asthey arebothin
the Eps-neighborhood of B. The actual processing order of the objects during the DBSCAN
run determines a concrete set of specific core points. For instance, if the core-point Bisvis-
ited first during the DBSCAN run, the core-points A and C are not included in Scor.

In the following, we introduce two local models called, REPg., (cf. Section 5.1) and
REP}_means (cf. Section 5.2) which both create a local model based on the compl ete set of
specific core points.

5.1 Local Model: REPgy,

Inthismodel, we represent each local cluster C; by a complete set of specific core points
Scorc_. If we assume that we have found n clusters C,,..,C,, onalocal site k, thelocal model
Local l\'/IodeIk isformed by the union of the different sets Scor - .

In the case of density-based clustering, very often severa core points are in the
Eps-neighborhood of another core point. This is especially true, if we have dense clusters
and alarge Eps-value. In Figure 3a, for instance, the two core points A and B are within the
Eps-range of each other as dist(A, B) is smaller than Eps.

Assuming core point A is a specific core point, i.e. A e Scor, than B ¢ Scor because of
condition 2 in Definition 6. In this case, object A should not only represent the objectsin its
own neighborhood, but also the objectsin the neighborhood of B, i.e. A should represent all
objects of Neps(A) W Nggg(B). In order for A to be a representative for the objects
Neps(A) U Neps(B), wehaveto assign anew specificep—range to Awithe, = Eps + dist(A,B)
(cf. Figure 3a). Of course we have to assign such a specific e-range to all specific core
points, which motivates the following definition:

Definition 7 (specifice—ranges). Let C < D be acluster wrt. Eps and MinPts. Furthermore,
let Scor < C be a complete set of specific core-points. Then we assign to each se Scor an
es-range indicating the represented area of s:

es= Eps+ max{dist(s,s)[se Cor A s € Ngpg(9)} -

This specific e-range value is part of the local model and is evaluated on the server site
to develop an accurate globa model. Furthermore, it isvery important for the updating proc-
essof thelocal objects. The specific e-range value isintegrated into the local model of site
k asfollows:

LocalModel:= U {(sgg|se Scorc }.

iel.n

5.2 Local Model: REPy_means

This approach is also based on the complete set of specific core-points. In contrast to the
previous approach, the specific core points are not directly used to describe a cluster. In-
stead, we use the number |Scor | and the elements of Scor ¢ asinput parameters for afurther
“clustering step” with an adapted version of k-means. For each cluster C, found by
DBSCAN, k-meansyields |Scor | centroids within C. These centroids are used as represen-
tatives. The small example in Figure 3b shows that if object A is a specific core point, and
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we apply an additional clustering step by using k-means, we get a more appropriate repre-

sentative A’ .

K-means is a partitioning based clustering method which needs as input parameters the
number m of clusters which should be detected within a set M of objects. Furthermore, we
have to provide m starting points for this algorithm, if we want to find m clusters. We use
k-means as follows:

e Each loca cluster C which was found throughout the original DBSCAN run on the
local site formsaset M of objects which is again clustered with k-means.

*  We ask k-means to find |Scor| (sub)clusters within C, as &l specific core points
together yield a suitable number of representatives. Each of the centroids found by
k-means within cluster C isthen used as a new representative. Thus the number of rep-
resentatives for each cluster is the same as in the previous approach.

* Asinitia starting points for the clustering of C with k-means, we use the set of com-
plete specific core points Scor .

Again, let us assume that there are n clusters Cy,..,C,, on alocal site k. Furthermore, let
Ci 1--Gi,|Scor | be the |Scor¢;| centroids found by the clustering of C; with k-means. Let
0;; = Cibe the set of objects which are assigned to the centroid Cij- Thenweassignto each
centroid ¢;; an &g ’j—range, indicating the represented area by ¢ ;, as follows:

& 1= max{ dist(o,c; )loe O;;}.

Finally, thelocal model, describing the n clusters on site k, can be generated anal ogously
to the previous section as follows:

LocalModel,:= U U (¢ )8 ).
iel.n je 1..‘Scorcl‘ o

6 Determination of a Global Model

Each local model LocalModel, consists of aset of my pairs, consisting of arepresentative
r and an e-range value g,. The number mof pairs transmitted from each site kis determined
by the number n of clusters C; found on site k and the number [Scor ;| of specific core-points
for each cluster C; asfollows: <
- or
m= 3 [scorg

i=1.n
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Each of these pairs (r, €,) represent several objectswhich areall located in N, (r), i.e. the
g,-neighborhood of r. All objectscontained in Nsr(r) belongsto the samecluster. To put it an-
other way, each specific local representative forms a cluster on its own. Obviously, we have
to check whether it is possible to merge two or more of these clusters. These merged local rep-
resentativestogether with theunmerged local representativesform the global model. Thus, the
global model consist of clusters consisting of one or of several local representatives.

To find such a global model, we use the density based clustering algorithm DBSCAN
again. We would like to create a clustering similar to the one produced by DBSCAN if ap-
plied to the complete dataset with the local parameter settings. As we have only access to
the set of all local representatives, the global parameter setting has to be adapted to this ag-
gregated local information.

Aswe assumethat al local representativesform acluster ontheir own it isenough to use
aMin-Ptsy goq-parameter of 2. If 2 representatives, stemming from the same or different lo-
cal sites, are density connected to each other wrt. MinPtsy|oha and Epsyional, then they be-
long to the same global cluster.

The question for a suitable Eps oy Value, is much more difficult. Obviously, Epsyional
should be greater than the Eps-parameter Eps,,, Used for the clustering on the local sites.
For high Epsyjgnal Values, we run the risk of merging clusters together which do not belong
together. On the other hand, if we use small Epsg g Values, we might not be able to detect
clusters belonging together. Therefore, we suggest that the Epsg o Parameter should be
tunable by the user dependent on the eg values of &l local representatives R. If these eg val-
ues are generally high it is advisable to use ahigh Epsyjona value. On the other hand, if the
er values are low, a small Epsyjqpng Value is better. The default value which we propose is



equal to the maximum value of all eg values of al local representatives R. This default
Epsyiobal Valueis generally closeto 2-Epsioc, (cf. Section 9).

In Figure 4, an example for Epsyjgna=2EPSacq i depicted. In Figure 4athe independ-
ently detected clusters on site 1,2 and 3 are depicted. The cluster on site 1 is characterized
by two representatives R1 and R2, whereas the clusters on site 2 and site 3 are only charac-
terized by one representative as shown in Figure 4b. Figure 4c (V11) illustrates that all 4
clusters from the different sites belong to one large cluster. Figure 4c (VI11) illustrates that
an Epsyjonal €qual to Epsiocy is insufficient to detect this global cluster. On the other hand,
if we use an Epsyjona) Parameter equal to 2Eps; ¢, the 4 representatives are merged together
to one large cluster (cf. Figure 4c (1X)).

Instead of a user defined Epsyjona Parameter, we could also use a hierarchical density
based clustering algorithm, e.g. OPTICS [1], for the creation of the global model. This ap-
proach would enable the user to visually analyze the hierarchical clustering structure for
several Epsyopg-Pparameters without running the clustering algorithm again and again. We
refine from this approach because of several reasons. First, the relabeling process discussed
in the next section would become very tedious. Second, a quantitative evaluation (cf.
Section 9) of our DBDC agorithm is almost impossible. Third, the incremental version of
DBSCAN allows us to start with the construction of the global model after the first repre-
sentatives of any local model come in. Thus we do not have to wait for all clients to have
transmitted their complete local models.

7 Updating of the Local Clustering based on the Global Model

After having created a global clustering, we send the complete global model to all client
sites. Theclient sitesrelabel al objectslocated on their site independently from each other.
On the client site, two former independent clusters may be merged due to this new relabe-
ling. Furthermore, objects which were formerly assigned to local noise are now part of aglo-
bal cluster. If alocal object o is in the g,—range of arepresentative r, o is assigned to the
same global cluster asr.

Figure 5 depicts an example for this relabeling process. The objects R1 and R2 are the
local representatives. Each of them forms a cluster on its own. Objects A and B have been
classified as noise. Representative R3 isarepresentative stemming from another site. AsR1,
R2 and R3 belong to the same global cluster all Objectsfrom the local clusters Cluster 1 and
Cluster 2 are assigned to thisglobal cluster. Furthermore, the objects A and B are assigned
to thisglobal cluster asthey are within the egz—neighborhood of R3,i.e. A, B e Nam(RS). On
the other hand, object C still belongs to noise as Ce Nam(RS).

These updated local client clusterings help the clients to answer server questions effi-
ciently, e.g. questions such as “give me all objects on your site which belong to the global
cluster 4711".

8 Quality of Distributed Clustering

There exist no general quality measure which helpsto evaluate the quality of adistribut-
ed clustering. If we want to evaluate our new DBDC approach, we first have to tackle the
problem of finding a suitable quality criterion. Such asuitable quality criterion should yield
a high quality value if we compare a “good” distributed clustering to a central clustering,
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i.e. reference clustering. On the other hand, it should yield a low value if we compare a
“bad” distributed clustering to a central clustering. Needless to say, if we compare a refer-
ence clustering to itself, the quality should be 100%. Let usfirst formally introduce the no-
tion of a clustering.

Definition 8 (clustering CL ). Let D = {x,..., X} beadatabase consisting of n objects.
Then, we call any set CL aclustering of D w.r.t. MinPts, if it fulfils the following proper-
ties:

. cLc2”
« VCe CL: (|C| =MinPts)
+ VC,,C,eCL:C;#C,=C NC, = D

In the following we denote by CL 4, a clustering resulting from our distributed ap-
proachand by CL .., OUr central reference clustering. Wewill definetwo different qual-
ity criterions which measure the similarity between CL . and CL ., - We compare
the two introduced quality criterions to each other by discussing a small example.

Let usassume that we have n objects, distributed over k sites. Our DBDC-algorithm, as-
signs each object X, either to a cluster or to noise. We compare the result of our DBDC-
algorithm to a central clustering of the n objects using DBSCAN. Then we assign to each
object x a numerical value P (X) indicating the quality for this specific object. The overall
quality of the distributed clustering is the mean of the qualities assigned to each object.

Definition 9 (distributed clustering quality Qpgpc). Let D = {X, ..., X} be adatabase
consisting of n objects. Let P bean object quality function P: D — [0, 1] . Then the quality
Qpgpc of our distributed clustering w.r.t. P is computed as follows:

> Px)

_ i=1l...n
Qpeoc = n

The crucial questionis“what is asuitable object quality function?’. In the following two
subsections, we will discuss two different object functions P.



8.1 First Object Quality Function p!

Obviously, P(x) should yield arather high value, if an object x together with many other
objectsiscontained in adistributed cluster C4 and acentral cluster C.. Inthe case of density-
based partitioning clustering, a cluster might consist of only MinPts elements. Therefore,
the number of objects contained in two identical clusters might be not higher than MinPts.
On the other hand, each cluster consists of at least MinPts elements. Therefore, asking for
less than MinPts elements in both clusters would weakening the quality criterion unneces-
sarily.

If x isincluded in a distributed cluster Cy but is assigned to noise by the central cluster-
ing, the value of P(x) should be 0. If x is not contained in any distributed cluster, i.e. it is
assigned to noise, a high object quality value requiresthat it isa so not contained in acentral
cluster. In the following, we will define a discrete object quality function P' which assigns
either O or 1to an object x, i.e. P'(x) =0or P'(x) =1
Definition 10 (discrete object quality P'). Let xe D andlet C, C. betwo cluster. Then
we can define an object quality function P': D — {0, 1} w.r.t. to aquality parameter gp as
follows:

0, x e Noise gigir A X & Noise central
0, x ¢ Noise gistr A X € Noise central
p! (x) =41, xe Noise gisir A X € NoiSe ¢central

1, xe Noise gigyy A X NOiS€ central A (Cq NCc|=ap)

0, x¢ Noise gisyr A X & Noise central A ((Cqg NCe|<ap)

The main advantage of the object quality function P'isthat it israther si mple because it
yields only a boolean return value, i.e. it tells whether an object was clustered correctly or
falsely. Nevertheless, sometimes a more subtle quality measure is required which does not
only assign abinary quality valueto an object. In the following section, we will introduce a
new object quality function which is not confined to the two binary quality values 0 and 1.
This more sophisticated quality function can compute any value in between 0 and 1 which
much better reflects the notion of “correctly clustered”.

8.2 Second Object Quality Function p!!

The mainidea of our new quality function isto take the number of elementswhich were
clustered together with the object x during the distributed and the central clustering into con-
sideration. Furthermore, we decrease the quality of x if there are objects which have been
clustered together with x in only one of the two clusterings.

Definition 11 (continuous object quality P”) Letxe D and IetI Cqy. C; beacentra and
adistributed cluster. Then we define an object quality function P : D — [O 1] asfollows:

1, x € Noise gistr A X & NOiSe central
0, x ¢ Noise gistr A X € NOiSe central
1 ; i
P (x) =11, x € Noise gistr A X € NOiSe central
CqnC .
1Cq NCe | otherwise

[Cq wCc |’
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9 Experimental Evaluation

We evaluated our DBDC-approach based on three different 2-dimensional point sets
where we varied both the number of points and the characteristics of the point sets. Figure
6 depicts the three used test data sets A (8700 objects, randomly generated data/cluster), B
(4000 objects, very noisy data) and C (1021 objects, 3 clusters) on the central site. In order
to evaluate our DBDC-approach, we equally distributed the data set onto the different client
sites and then compared DBDC to a single run of DBSCAN on all data points. We carried
out all local clusterings sequentially. Then, we collected all representatives of al local runs,
and applied a glabal clustering on these representatives. For all these steps, we always used
the same computer. The overall runtime was formed by adding the time needed for the glo-
bal clustering to the maximum time needed for the local clusterings. All experiments were
performed on a Pentium [11/700 machine.

In afirst set of experiments, we consider efficiency aspects, whereas in the following
sections we concentrate on quality aspects.

9.1 Efficiency

In Figure 7, we used test data sets with varying cardinalities to compare the
overall runtime of our DBDC-algorithm to the runtime of acentral clustering. Furthermore,
we compared our two local modelsw.r.t. efficiency to each other. Figure 7a shows that our
DBD C-approach outperforms acentral clustering by far for large data sets. For instance, for
apoint set consisting of 100,000 points, both DBDC approaches, i.e. DBDC(Repg,,) and
DBDC(Repk_-means)» outperform the central DBSCAN algorithm by more than one order of
magnitude independent of the used local clustering. Furthermore, Figure 7a shows that the
local model for REPg.,, can more efficiently be computed than the local model for
REPy Mmeans:

Figure 7b shows that for small data sets our DBD C-approach is slightly slower than the
central clustering approach. Nevertheless, the additional overhead for distributed clustering
isamost negligible even for small data sets.

InFigure 8it isdepicted in what way the overall runtime depends on the number of used
sites. We compared DBDC based on REPg,, to a central clustering with DBSCAN.
Our experiments show that we obtain a speed-up factor which is somewhere between O(n)
and O(nz). This high speed-up factor is due to the fact that DBSCAN has a runtime com-
plexity somewhere between O(nlogn) and O(nz) when using a suitable index structure, e.g.
an R*-tree [3].
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Fig. 7. Overal runtime for central and distributed clustering dependent on the cardinality of
the data set A. a) high number of data objects b) small number of data objects.

9.2 Quality

Inthe next set of experimentswe evaluated the quality of our two introduced object qual-
ity functions P' and P"! together with the quality of our DBDC-approach. Figure 9a shows
that the quality according to P' of both local models isvery high and does not changeif we
vary the Epsyona Parameter during global clustering. On the other hand, if welook at Figure
9b, we can clearly seethat for Epsyjong parameters equal to 2.Eps;qc,, We get the best qual-
ity for both local models. This is equal to the default value for the server site clustering
which we derived in Section 6. Furthermore, the quality worsens for very high and very
small Epsyiohal Parameters, which isin accordance to the quality which an experienced user
would assign to those clusterings.

To sum up, these experimentsyield two basic insights:

« Theobject quality function P'! is more suitable than P'.
A good Epsyiohal Parameter is around 2-Epgacq

Furthermore, the experiments indicate that the local model REPy_yjeans Yi€lds dightly
higher quality.

For the following experiments, we used an Epsyjgna Parameter of 2Epsjqcq).

b) 40 - speed-up between
10000 DBDC(Repgc,y) and central DBSCAN
| 30 A
= 0 ~ — _ DBDCRePscy) 2
S 6000 . central clustering S 20 -
9, . @
£ 4000 : g
‘é .~ “ 10 4
5 200
0+ ‘ : i Free 0 | ‘ ‘ ‘ :
0 3 6 9 12 15 0 3 6 9 12 15
number of sites number of sites

Fig. 8. Overall runtimefor central and distributed clustering DBDC(Repg~,)

for adata set of 203,000 points. a) dependent on the number of sites
b) speed-up of DBDC compared to central DBSCAN
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Fig. 9. Evaluation of object quality functions for varying Epsgqpa parameters for data set A on 4
local sites. a) object quality function P! b) object quality function p'!

Figure 10 shows how the quality of our DBDC-approach depends on the number of
client-sites. We can see that the quality according to Plisi ndependent of the number of cli-
ent siteswhich indicates again that this quality measureis unsuitable. On the other hand, the
quality computed by P" is in accordance with the intuitive quality which an experienced
user would assign to the distributed clusterings on the varying number of sites. Although,
we have aslight decreasing quality for an increasing number of sites, the overall quality for
both local models REP,_peans @d REPg.; is very high.

Figure 11 shows that for the three different data sets A, B and C our DBDC-approach
yields good results for both local models. The more accurate quality measure P" indicates
that the DBDC-approach based on REP y1eans Yi€lds a quality which reflects more ade-

number of number of local DBDC(REPy means) DBDC(REP )
sites repr.[%)] p! pll pl pll
2 16 99 98 99 97

4 16 98 97 98 96

5 17 98 97 98 96

8 17 98 96 98 96

10 17 98 97 98 96

14 17 98 89 98 89

20 17 98 91 98 91

Fig. 10. Quality Qpgpc dependent on the number of client sites, the local models

REP}_means 8d REPg,, and the object quality functions P'and P for test
data set A and Epsyjonal = 2EPSiocal



REPScor REPK Means REPScor REPK Means REPScor REPK Means

T T S

I PII I PII PI PII I PII PI PII
100 4 _ -
L I
90 3__:'
s 3
o 80 '|'.'*-'i"
O} ] .|_‘
> For kS
£ 70 - _Il:;j
© e
S i
60 1 ]
.'_:;-_'j
50 - £ v
data set A data set B datasetC
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quately the user’ s expectations. Thisisespecially true for the rather noisy data set B, where
p'l yields the lower quality corresponding to the user’s intuition.

To sum up, our new DBDC-approach based on REP}_yeans Efficiently yieldsa very high
quality even for arather high number of local sites and data sets of various cardinalities and
characteristics.

10 Conclusions

In this paper, we first motivated the need of distributed clustering agorithms. Due to
technical, economical or security reasons, it is often not possible to transmit al data from
different local sitesto one central server site and then cluster the data there. Therefore, we
haveto apply an efficient and effective distributed clustering algorithm from which alot of
application rangeswill benefit. We devel oped a partitioning distributed clustering algorithm
which is based on the density-based clustering algorithm DBSCAN. We clustered the data
locally and independently from each other and transmitted only aggregated information
about the local datato acentral server. Thisaggregated information consists of aset of pairs,
comprising arepresentativer and an e-range valueeg,, indicating the validity areaof therep-
resentative. Based on these loca models, we reconstruct a global clustering. This global
clustering was carried out by means of standard DBSCAN where the two input-parameters
Epsgiobar and MinPtsy gy, Were chosen such that the information contained in the local
models are processed in the best possible way. The created global model issent to al clients,
which use thisinformation to relable their own objects.

Asthere exists no general quality measures which helpsto evaluate the quality of adis-
tributed clustering, we introduced suitable quality criteria on our own. In the experimental
evaluation, we discussed the suitability of our quality criteria and our density-based distrib-
uted clustering approach. Based on the quality criteria, we showed that our new distributed
clustering approach yields almost the same clustering quality as a central clustering on all
data. On the other hand, we showed that we have an enormous efficiency advantage com-
pared to a central clustering carried out on all data.
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