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ABSTRACT
In many routing applications, it is unclear whether driving to a cer-
tain destination yields the wanted success. For example, consider
driving to an appointment and looking for a parking spot. If there
are generally few parking spots in the area or if occupancy of spots
is currently high, the search may not be successful. In this case, the
search is continued, possibly into a different area, where chances
of success are higher. We generalize this problem and introduce
a probabilistic formalization to model the availability of resources
at certain locations. Our probabilistic model considers short term
observations (e.g., vacant parking spots) as well as long term ob-
servations (e.g., average occupancy time) to adapt to the level of
information currently available. In contrast to previous models,
we allow resources to reappear after a probabilistically modeled
amount of time (e.g., a car leaves a spot). Based on this model, we
propose the so-called probabilistic resource route query with reap-
pearance. In order to compute feasible solutions to this query in
interactive time, we propose two greedy approaches. Furthermore,
we examine backtracking for computing exact solutions and extend
the proposed method into a significantly more efficient branch and
bound algorithm. In our experiments, we investigate two realistic
applications, examine the benefit of our model, and compare algo-
rithmic solutions w.r.t. result quality and computational efficiency.

1. INTRODUCTION
With increasing gas prices, escalating greenhouse gas emissions

and heavy traffic congestion in metropolitan areas, optimizing traf-
fic is of great ecological and social importance. While the basic
routing task of finding a path from start to target is a well-explored
research area, there are other routing tasks common in everyday life
which have drawn less attention so far. An example are trip plan-
ning queries (TPQ) which are specified by a start location, a target
location and a number of resource types which have to be visited
along the trip. For instance, the user might provide the resource
types “ATM”, “gas station”, and “department store”. The result of
such a query is the shortest path from start to target visiting exactly
one instance of each resource type. There are several variants to
this kind of problem which will be reviewed in Section 2.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

A problem relevant to everyday life is guiding a user through a
road network to enable them to find a resource for which the avail-
ability at certain locations is uncertain. There are several exam-
ples for this task. For instance, consider parking spots: although it
might be known that certain streets allow parking, it is generally not
known whether there will be any vacant spots upon arrival. Another
example are drivers of electric cars looking for public charging sta-
tions. In some developing countries hospitals with emergency ca-
pacities are scarce. Thus, ambulances often visit more than one
hospital before being able to hospitalize their patient. In all of
these cases, it holds that if the resource is not available upon ar-
rival, the search must be continued to other resource locations until
an available resource is found. Hence, guiding a user to the clos-
est resource does not yield a satisfactory solution. Instead, in order
to yield a sufficiently large probability of success, a route visiting
several resource locations is required. A general problem of finding
such routes is that there are two contrary characteristics describing
the quality of a route. The first quality measure is the overall like-
lihood of finding an available resource when following the route.
The second quality measure is the cost, e.g., the expected travel
time or distance, until the respective resource is found. These two
measures are complementary, because continuing the search to an-
other resource location will always increase the success probability
but also – without exception – the cost. Thus, it is not possible to
minimize the cost while maximizing the probability of success.

In order to compute the success probability of a route, it is nec-
essary to employ information about the availability of resources at
all known resource locations. In this paper, we assume a system
which collects observations on the availability (and conversely the
consumption) of resources over time. These so-called long term ob-
servations are then used to compute probability distributions mod-
eling general resource availability. Furthermore, the system pro-
vides current information about resource status at query time. We
refer to this kind of information as short term observations. For
example, long term observations correspond to the average time
a parking spot remains vacant or occupied. Short term observa-
tions, on the other hand, provide information about currently vacant
spots. Depending on the scenario the amount of short term observa-
tions might be limited, e.g., only a limited number of parking spots
are equipped with occupancy sensors while the rest is detected and
reported by other roaming cars. At first glance, short term obser-
vations might seem sufficient for a successful search. However,
knowing that a resource is available at the moment, does not mean
that it still will be upon arrival. Thus, as time progresses, the in-
fluence of short term observations on the probability of finding a
resource decays. Long term observations address this problem in
three ways. First, if there is no short term observation available for
a resource, the expected vacancy time of a resource can compen-



sate for the lack of current information. Furthermore, long term
observations can be used to predict the probability that a currently
available resource will still be vacant upon arrival. And, finally,
long term observations can serve as an estimate for the expected
occupancy time, i.e., the expected time until a consumed resource
becomes available again. For example, in the parking spot scenario
this corresponds to the expected parking duration.

In this paper, we present a statistical model describing a road net-
work comprising resource locations of a specific resource type. Our
model incorporates both types of information described above, i.e.,
long term as well as short term observations. From a formal point of
view, our model describes each resource location as a continuous-
time Markov chain with two states, available and consumed.
Based on this model, we introduce the following query: For a given
query location, compute a route for which the probability of finding
an available resource exceeds a given probability threshold (e.g.,
90 %) while minimizing the (expected) cost, e.g., travel time or
distance. A route may be extended infinitely, and each extension
adds to the success probability but also to its cost. Thus, in order
to optimize one measure, we have to bound the other. More pre-
cisely, the best route may be the one with the least cost among
all routes exceeding the probability threshold. Or, converesely,
the best route may be the one with the highest success probabil-
ity among all routes not exceeding a cost threshold.

Since our model allows for reapparance of resources, the search
space of possible solutions is unlimited. However, in many appli-
cations the time frame of finding a suitable answer is rather small
as users only tolerate limited answering time. Therefore, we inves-
tigate two greedy search heuristics which promise admissible re-
sults in efficient time. To allow the computation of optimal results,
we examine a recursive backtracking approach to avoid exhaustive
search. Furthermore, we propose a lower bound for the remaining
increase in cost used in a highly efficient branch and bound so-
lution providing optimal results. We evaluate our approach within
real world road networks on the application of finding parking spots
and on the application of finding charging stations for electric ve-
hicles. To conclude, the contributions of this paper are as follows:

• A novel probabilistc model describing the availability of re-
sources in road networks. We model resources as continuous-
time Markov chains which are parametrized by long term as
well as short term observations and allow to model the reap-
parance of previously consumed resources.

• A new type of query, the Probabilistic Resource Route Query
with Reappearance (PRRQR).

• An approximate solution to the PRRQR employing two dif-
ferent search heuristics, as well as optimal solutions based
on backtracking and branch and bound.

The rest of the paper is organized as follows: Section 2 sum-
marizes related work about similar types of queries. In Section 3,
our probabilistic model is described, followed by the formal def-
inition of the PRRQR. Section 5 describes the heuristics, bounds
and query algorithms introduced to process PRRQRs. The results
of our experimental evaluation are presented in Section 6. The pa-
per is concluded with a summary and an outlook for future work in
Section 7.

2. RELATED WORK
In this section, we survey existing work on similar tasks. First,

we will give a review of basic query types related to the one in-
troduced in this paper. Then, we address works which model the

existence of resources in a probabilistic way. All of the following
query types have the same meta-task, namely, guiding a user to a
certain resource. In all of these scenarios, a database which stores
the resources and their respective locations is assumed. Although
this task may also be carried out in Euclidean space, we restrict
ourselves to road networks, as most of the applications are traffic-
related.

The simplest type of query guiding a user to the next available
resource is the nearest neighbor query (NNQ). In this setting, the
user specifies a location – typically his current location – as well
as some type of resource. The result of the NNQ is the optimal
path (fastest, shortest, etc.) to the closest location providing the
resource. As NNQ are a well-explored research area, we will not
go into detail on their solutions. An extension of this query are
trip planning queries (TPQ) [2] (also referred to as route planning
queries [1] or route search queries [10]). In this problem setting,
the user specifies a selection of different resources, e.g., “ATM”,
“restaurant”, “florist”, “cinema”. Additionally to his start location
the user may specify a target location. The result of a TPQ is the
optimal path from start to target visiting at least one instance of
each resource. Computing TPQs is NP-complete because in the
case that each specified resource type occurs exactly once the TPQ
degenerates to the Traveling Salesman Problem (TSP).

In another variation of the problem, the order in which resources
are visited may be constrained, as described in [9] or [7]. For in-
stance, if planning a date, the order of resources might be restricted
by the constraints that the ATM has to be visited first and the florist
should be visited before the restaurant and the cinema. However,
since the task usually maintains an NP-hard subproblem, solutions
to any of these problems typically employ heuristics ([1], [9]).

In the settings presented so far, the existence of a resource at its
location is considered to be guaranteed. In many real world ap-
plications, however, a resource will only be available with a certain
probability. If no table or seats have been reserved, not all locations
of type “restaurant” or “cinema” might have the resource available.
The same holds for the resource type “florist” if looking for specific
flowers. In all of these cases, the requested resource is available
with a certain probability (and consumed with the converse prob-
ability), i.e., prior to arrival it is not known with certainty whether
the resource is available or consumed. At first glance, these kinds
of uncertainty may seem congruent. However, there are significant
differences which require specific modeling. We distinguish the
following types of uncertainty.

Assume a surfer is looking for good waves and is considering
different beaches. At every beach, the waves might be sufficient
with a certain probability. If available, the resource “waves” cannot
be consumed by the presence of other surfers. Thus, we refer to the
probability of finding waves as static (resource) uncertainty. This
uncertainty is independent from the time of arrival and the presence
of competitors.

Now, consider a cinema where seats are a limited resource. If
no seats have been reserved, the probability of finding seats for
a particular show decays as screening time approaches. Since in
this case a limited quantity of the resource is consumed over time,
we refer to this type of uncertainty as time-decaying (resource)
uncertainty. Contrastingly, while all tables at a certain restaurant
might be occupied now, there might be one available later the same
evening. In this case, the quantity of the resource might decay (or
more generally: change) over time but regenerate at a later point in
time. This is a significant difference to the other scenarios where
revisiting resources does not yield any benefit. However, in this
scenario, although the resource might have been consumed upon ar-
rival, it might make sense to revisit after an adequate waiting time.



We refer to this kind of uncertainty as time-dependent (resource)
uncertainty with reappearance.

To the best of our knowledge, there is no previous work support-
ing short term observations or taking time-dependent uncertainty
with reappearance into account. Therefore, we shall now review
works which incorporate static as well as time-decaying resource
uncertainty. While we provide an abstract problem definition (cf.
Section 3) and applications based upon this definition, some works
focus on their application and adapt their problem definition to the
respective use case. Nevertheless, these works can – with some
restrictions – in many cases be extended to incorporate general re-
sources.

The authors of [10], for example, compute paths which guide
the user along certain resources. In their follow-up work, [7], this
problem is extended by ordering constraints (as in some of the ex-
amples above). Both papers present algorithms based on greedy
search heuristics as well as on heuristics which minimize the ex-
pected distance until search success. In both papers, resources
may have assigned success probabilities. However, these proba-
bilities reflect static uncertainty, i.e., non-time-dependent and non-
reappearing. The same holds for [4] and its follow-up work [8]
where probabilistic k-route queries are introduced and examined.
Here, the authors introduce a confidence value which corresponds
to the existence probability of a resource at each location, also re-
flecting static uncertainty. Employing different heuristics, the pre-
sented algorithms find approximate solutions by clustering resource
locations that maximize the expected success.

In contrast, the authors of [3] take time-dependency into account
and assume a linear decay for the vacancy of parking spots. Al-
though this model is aimed at a specific application, it may be gen-
eralized to abstract resources. Note, however, that this model does
not allow reappearance of resources which is a significant short-
coming, especially in this application. This is because a typical
strategy looking for a parking spot is roaming the target area un-
til someone vacates a spot, i.e., a resource reappears. The authors
propose two approaches to maximizing the probability of finding a
parking spot. The first approach finds the optimal result, however,
this is done employing full enumeration on the time-varying TSP.
Due to the brute force nature of this algorithm, query processing
quickly becomes infeasible with increasing number of resource lo-
cations. The second approach is an algorithm that clusters resource
locations before solving a TSP on the clusters. Subsequently, the
optimal solution within each cluster is searched. Based on a heuris-
tic, this algorithm yields an approximation of the optimal result,
while providing a considerable speed-up.

There are various methods, focusing on the application of taxi
pickups as well as ridesharing, such as [12], [14],[11] and [5]. In
[12], the task is equivalent to solving a classic TSP, i.e., ordering
different but fixed pickup locations such that the total distance is
minimized. The authors rely on a genetic algorithm approach to
solve this problem. In [14],[5] and [11] the task is more compli-
cated. Here, the task is first of all to assign cabs to a set of currently
available customers. After this assignment is done, a route for pick-
ing up and dropping off the customers has to be found. Thus, only
the last part of the query is related to our work. Furthermore, none
of the works considers uncertainty w.r.t. customer availability.

3. PROBLEM SETTING
In this section, we formalize our problem setting. First, we define

the graph which represents the underlying road network. Then, we
introduce the probabilistic model which describes resource avail-
ability and consumption.

3.1 Road Network Graph
For a given road network, we let G = (V,E) denote the corre-

sponding graph, i.e., the vertices (or nodes) v ∈ V correspond to
crossings, dead ends, etc., and the edges e ∈ E ⊆ V × V rep-
resent directed road segments connecting the vertices. We refer to
this graph as Road Network Graph. Furthermore, let c : E → R+

0

denote the function which maps every edge onto its respective cost,
e.g., travel time or distance. If the employed cost function is not
travel time, we additionally assume the travel time to be known
and given by a function t : E → R+

0 (as resource availability is
dependent on the time of arrival). By route, we mean a consec-
utive set of edges (possibly with cycles), i.e., r = (e1, . . . , en)
where all ei are taken from the corresponding set of edges and for
all 1 ≤ j ≤ n − 1 : ei = (u, v) ⇒ ei+1 = (v, w). The cost
of a route r = (e1, . . . , en) is defined as the accumulated cost of
its edges, i.e., c(r) =

∑n
i=1 c(ei). By path, we mean a cycle-free

route.

3.2 Probabilistic Model
In the following, we introduce our probabilistic model. As men-

tioned before, at every resource location the respective resource
may either be available or consumed. However, prior to ar-
rival at the location, it is not known which of the two is the case.
Our probabilistic model has to be able to reflect all three kinds of
uncertainty: static, time-decaying, and time-dependent uncertainty
with reappearance. While the former two kinds of uncertainty are
rather straightforward, the latter requires more work and a novel
approach.

The static uncertainty of a resource is easily expressed by a ran-
dom variable X which takes the values 0 or 1, representing the
states available and consumed, respectively, where the prob-
abilities of X are P(X = 0) = p and P(X = 1) = 1− p for some
p ∈ [0, 1]. For illustration, recall the example of a surfer looking
for waves at a beach. Independent of the time of their arrival there
will be waves with probability p.

In the case of time-decaying uncertainty, we propose modeling
the probability that a resource X is available at time t > 0 as e−λt

for some λ > 0. Consequently, at time t = 0, the resource is
available with probability 1, but it decreases as time progresses and
asymptotically approaches 0. Or, in other words, the probability
that X is consumed is the cumulative distribution function of an
λ-exponentially distributed random variable. This coincides with
the intuition of modeling waiting times as exponentially distributed
random processes. For illustration, recall the example of buying
tickets to the movies, where the probability of available seats is 1
at t = 0 but decreases as screening time approaches.

Now, let us turn to the case of time-dependent uncertainty with
reappearance which is the core of this work, as it is the only con-
cept that can model the use cases of our experiments (parking spots,
charging stations). As before, resource availability has two states,
but now, there may occur multiple state transitions at arbitrary points
in time. Therefore, we propose modeling each resource as a stochas-
tic process. The most common type of stochastic processes are
Markov chains which model the transition probabilities within a
system with a given number of states. When a system transitions
from one state into another, the future state is only dependent on
the present state. This property is central to Markov chains and re-
ferred to as memorylessness or Markov property. Markov chains
can either assume discrete or – as in our case – continuous time.
In a discrete model, there exist equal time steps, and for each step,
the probability of transitioning into another state can be computed.
In a continuous-time model, the sojourn time in each state, i.e., the
time until the next state transition, is perceived as a random vari-



able itself. The notion of memorylessness extends naturally to the
case of continuous time.

Thus, we model time-dependent resource availability with reap-
pearance at each resource location as a continuous-time Markov
chain (CTMC). More precisely, each resource location ri is now
represented by a family of random variables {Xi

t , t ≥ 0} with
values in the state set {0, 1}. Note that there exists a one-to-one
relationship between each resource location, and its resource mod-
eled by the respective CTMC. Thus, we denote the CTMC of each
resource location ri by Xi and denote the set of all CTMCs by X ,
where |X | = |R|. We may use the term resource for the geolo-
cation associated with a resource as well as for the corresponding
CTMC. When not clear from the context, we will state explicitly
which of the two is referred to. Also, we assume the resources,
more specifically their CTMCs, to be mutually independent. The
independence assumption keeps the model general and applicable
even if the available observations are limited.

Besides its state space, a CTMC is (under the reasonable assump-
tion of time-homogeneity) defined by the family of transition matri-
ces {Pt, t ≥ 0} and the (infinitesimal) generator matrix Q. Using
the Kolmogorow equations, each may be computed from the other
by solving the first order differential equation P ′(t) = P (t)Q. For
more mathematical details, we refer the reader to [13]. We omit the
explicit calculations here and restrict ourselves to explaining the
connection between P (t), Q and the states of a resource.

In our case, Q is a 2 × 2-matrix. Its diagonal entries reflect the
parameters of the random variables modeling the sojourn time of
each state while the non-diagonal entries reflect the rate of transi-
tion into another state. Q has the following form:

Q =

(
−λ λ
µ −µ

)
The family of transition matrices P (t) for t ≥ 0 is defined as

follows:

P (t) =

(
µ

λ+µ
+ λ

λ+µ
e−(λ+µ)t λ

λ+µ
− λ

λ+µ
e−(λ+µ)t

µ
λ+µ
− µ

λ+µ
e−(λ+µ)t λ

λ+µ
+ µ

λ+µ
e−(λ+µ)t

)
(1)

For each resource, the sojourn times of its states available
and consumed are modeled as exponentially distributed random
variables with parameters λ and µ, respectively. This, again, coin-
cides with the convention of modeling waiting times as exponen-
tially distributed. The expected value of an exponential distributed
random variable exp(φ) is 1/φ. Thus, the expected sojourn time in
the state of availability is 1/λ, and the expected sojourn time in the
state of consumption is 1/µ. One application on which we evaluate
our model in Section 6 is finding vacant parking spots. In this use
case, 1/λ would be the expected vacancy time, analoguously, 1/µ
would be the time until an occupied spot becomes vacant again. Of
course, these parameters may be different for each resource loca-
tion if enough observations for an individual estimation are avail-
able. Therefore, it is possible for each resource to have distinctly
parametrized Q and P (t).

Let us shortly explain how the assumed observations are used
for parameter estimation. As mentioned before, our model allows
to incorporate short term as well as long term observations. The
latter are used for parameter estimation in the following way: Con-
sider a resource X , which has an unknown expected sojourn time
in the state available but is assumed to be exponentially dis-
tributed with parameter λ. Given a number of observations x =

(x1, . . . , xr), i.e., exemplary measurements of the time span dur-
ing which X stays available, we can easily estimate λ using the
maximum likelihood estimator. The according likelihood function
is given by:

L(λ) =

r∏
i=1

λ exp(λxi) = λr exp(−λrx̄)

where x̄ = 1/r
∑
xi denotes the mean of all measurements. Dif-

ferentiating the logarithmized likelihood function yields the max-
imum likelihood estimator λ̂ = 1/x̄, which is simply the inverse
of the mean value. The parameter µ may of course be estimated
analoguously.

Now, let us review some properties of the transition matrices
{P (t), t ≥ 0} central to the model. Given a resource X and its
sojourn time parameters λ and µ, we can compute P (t) as in Equa-
tion 1. If we also have an initial probability distribution based on
short term observations of the states of X at time t0 = 0 (denoted
as π0), we can compute the according probability distribution after
an arbitrary point in time t ≥ 0 (denoted as πt) as follows:

πt = π0P (t)

Note that P (0) = I is the identity matrix (cf. Equation 1) which
means that if no time has passed, the probability distribution of
t0 is still active. For example, if there is an observation at t0 of
X being in state consumed, then π0 = (0, 1). The consump-
tion of resource X is certain – but only at this particular point in
time. As time progresses, it becomes more likely that the state
changes. Therefore, the original probability distribution π0 (given
by the observation) changes. Note that this reflects the notion of
reappearance of previously consumed resources. This is expressed
in the (exponentially) decaying influence of the second summands
in every entry of P (t) (cf. Equation 1). Eventually, the original ob-
servation becomes obsolete. This can be seen from the convergence
of P (t) as t→∞:

lim
t→∞

P (t) =

(
µ

λ+µ
λ

λ+µ
µ

λ+µ
λ

λ+µ

)
Asymptotically both rows of P (t) are equal. This implies the

initial observation has no more influence on the probability distri-
bution of X as t → ∞. For example, whether the initial obser-
vation was consumed, i.e., π0 = (0, 1), or available, i.e.,
π0 = (1, 0) is without significance. In any case, limt→∞ πt is the
so-called stationary distribution as introduced below.

In our case, a resourceX is a finite-state Markov chain where all
states communicate and thusX has a unique stationary distribution
π [13]. By definition: πP (t) = π,∀t ≥ 0. Solving this system of
equations, we get:

π = (π1, π2) =
(

µ
λ+µ

λ
λ+µ

)
This is equal to the rows of limt→∞ P (t) which supports the intu-
ition of t having no more influence on the probability distribution.
For example, if no observation for X is available, the only unbi-
ased assumption is the stationary distribution since it assumes the
respective share of both states w.r.t. λ and µ.

Let us use all of the above in an example related to one of our
applications: Let X be a CTMC modeling the vacancy of a park-
ing spot at a certain location. We make the following assumptions
on the model: If available (meaning vacant), we expect X to
be occupied within 5 minutes. This means, the sojourn time of
state available is a 1/5-exponentially distributed random vari-
able. If X is occupied, we expect the occupant to leave within 20



minutes. Hence, the sojourn time of state consumed (meaning
occupied) is a 1/20-exponentially distributed random variable. As
mentioned before, P (0) = I . Let us investigate how P (t) changes
as time (non-infinitely) progresses. For instance, after 1 and after
3.5 minutes:

P (1) ≈
(

0.8 0.2
0.05 0.95

)
P (3.5) ≈

(
0.52 0.48
0.12 0.88

)
Assume that at t0 = 0 X has been observed as available, i.e.,
P(X0) = (1, 0). Then at t = 1 the spot will still be available
with probability 0.8. After 3.5 minutes this probability will have
decreased to 0.52. Now, consider a different scenario where at
t = 0 X has been observed as consumed, then after 1 minute
it is available with probability 0.05. After 3.5 minutes this
probability will have increased to 0.12.

To conclude, we now have a probabilistic model on our hands
which is capable of describing all three kinds of resource uncer-
tainty introduced in Section 2. The core contribution of this model
is its ability to reflect resource reappearance. Also, it allows effi-
cient resource-specific parametrization by incorporating long term
and short term observations.

4. QUERY DEFINITION AND RESULT SET
Now that we have defined the probabilistic model, we turn to

our query and its result. Both are best described using an alter-
native graph, referred to as resource graph Ĝ. Therefore, in this
section, we will first define the resource graph. Subsequently, we
introduce two measures which are then used to define the Proba-
bilistic Resource Route Query with Reappearance (PRRQR) and
its result.

4.1 Resource Graph
We assume that for a road network graph and a query node q a set

of suitable resources X (q) = {X1, . . . , XN} is given. In the ma-
jority of applications, only a reasonable subset of resources might
qualify. For example, parking spots should be within walking dis-
tance of the driver’s destination. In this case, the query node would
be the driver’s position when he reaches the vicinity of his destina-
tion. An according range query to a database would then retrieve
suitable parking opportunities on which a PRRQR would be exe-
cuted. For every resource Xi, we assume distribution parameters
λi, µi and an initial distribution πi0 as given.

The set of vertices of the resource graph is defined as V̂ :=
{q} ∪ X , where q ∈ V denotes the query node. The edges of the
resource graph, Ê, represent cost-optimal paths between resource
locations in the underlying road network. Thus, each route in the
resource graph can be expanded into a corresponding route in the
transportation network (cf. Figure 1(a)). Let us note that even in
cases where cost does not refer to the travel time, we will also com-
pute the travel time of cost-optimal path because it is needed to for
estimating the success probability. Although it is possible to com-
pute the cost-optimal path between each pair of resource locations,
we will require Ê to contain only a minimal set of edges by remov-
ing transitive connections. A transitive connection is a path within
the road network that contains at least one intermediate resource
location. For example, if along the cost-optimal path from XA to
XB resource locationXC is encountered, thenXA andXB would
not be connected in the resource graph (cf. Figure 1(b)). However,
Ĝ would contain edges connecting XA and XC as well as XC

and XB . We explicitly exclude transitive connections from the re-
source graph for two reasons. First, transitive links do not allow
computing the success probability correctly because the intermedi-
ate resource locations are not considered. Second, the existence of

(a) Optimal direct paths between re-
sources are marked green, fastest
paths with intermediate resources are
marked red.

(b) Edges of the resource graph
(marked continuously green) and ex-
cluded transitive connections (marked
dashed red).

Figure 1: Illustration of a query node q and resources A,B,C
in a road network graph (a) and the respective resource graph
(b).

transitive connections leads to the inefficient traversal of identical
subpaths.

We also compute the cost-optimal paths from the query node q
to all resource locations. But as there is no gain in returning to the
query node, paths ending at q are excluded from the computation.
Algorithm 1 describes the computation of Ê which is illustrated in
Figures 1. Note that in order to compute Ê, we need to compute all
cost-optimal paths within the road network graph and then prune
the transitive connections. It is not possible to avoid the computa-
tion of transitive connections directly.

The cost function of the road network graph G naturally extends
to Ĝ. Since every edge in Ĝ corresponds to an cost-optimal path
in G, the cost function ĉ : Ê → R+

0 maps an edge of Ê to the
accumulated costs of the respective path in G. Analogously, t̂ :
Ê → R+

0 maps an edge of Ê to the accumulated time of the
respective cost-optimal path in G.

Combining the above, we define the resource graph as Ĝ =
Ĝ(q,X ) := (V̂ , Ê, ĉ, t̂). Note that Ĝ holds all the query-relevant
information since it contains the query node q as well as the re-
source locations X (q). Therefore, speaking of a query setting, we
mean q and X (q) as well as the according resource graph Ĝ.



Algorithm 1: Computation of Ê
Input: Query setting X (q), q

Output: Edges Ê of resource graph Ĝ

1 begin
2 Ê ← ∅
3 foreach X ∈ X (q) do
4 Compute fastest path p from q to X
5 if no intermediate resource on p then
6 Ê ← Ê ∪ p
7 end
8 Compute multi-target Dijkstra from X to all

X ′ ∈ X \X in G
9 foreach fastest path p from X to X ′ do

10 if no intermediate resources on p then
11 Ê ← Ê ∪ p
12 end
13 end
14 end
15 end

4.2 Resource Routes and PRRQR
Relying on Ĝ, we may now define the possible solutions to our

query. For a given query setting q,X (q) and the according resource
graph Ĝ, a resource route is a route r in Ĝ, starting at query node
q = X0. Note that by construction of the resource graph a resource
route only follows optimal paths between resources. We describe
a resource route as a set of edges (in Ĝ), i.e., r = (er1 , . . . , ern),
where eri ∈ Ê for all 1 ≤ i ≤ n. Since in our context the order
of resources is of particular interest, we introduce a specific no-
tation for it. Recall that every edge in Ê connects two resources
unless it starts at the query node. Hence, along a resource route
r with n edges we encounter n resources. Note that these re-
sources are not necessarily distinct, as r may contain cycles. Let
Xr = (Xr1 , . . . , Xrn) denote the n resources along r. To intro-
duce a measure for the success probability of a complete route, we
start by defining the success probability of a resource route.

DEFINITION 1. For a given resource route r along resources
(Xr1 , . . . , Xrn), let ti denote the time of arrival at Xri , i.e., t0 <
t1 < · · · < tn, and let ci denote the accumulated cost up to re-
source Xri . Furthermore, let {P (Xri , t), t ≥ 0} denote the tran-
sition matrices of Xri (dependent on the parameters of Xri ) and
let π0(Xri) denote the initial distribution of the states of Xri (de-
pendent on the availability of short term observations regarding
Xri ). Then the probability distribution of Xri at ti is defined as:(

P(Xri
ti

= 0),P(Xri
ti

= 1)
)

:= πti(X
ri) = π0(Xri)P (ti)

Hence, the success probability ofXri at arrival time ti is the prob-
ability that resource Xri is in state available at time ti, i.e.,
P(Xri

ti
= 0).

Note that in accordance with the probabilistic model as presented
in Section 3, we denote state available of a resourceX byX =
0 and the state consumed by X = 1. Based on this definition, we
are able to define the success probability for a complete resource
route:

DEFINITION 2. Let q,X (q), Ĝ be a query setting and r be a re-
source route in Ĝ. The Success Probability of r, denoted by PS(r),

is defined as the probability of the complementary event of not find-
ing any available resource along r:

PS(r) := 1−
( n∏
i=1

P(Xri
ti

= 1)

)
Given the success probability, we now need to find a second mea-

sure which measures the effort of finding an available resource, i.e.,
the expected cost of a resource route:

DEFINITION 3. Let q,X (q), Ĝ be a query setting and r be a
resource route in Ĝ. The Expected Cost of r, denoted by Ec(r), is
defined as:

Ec(r) :=

n∑
i=1

(
ci · P(Xri

ti
= 0) ·

i−1∏
j=1

P(X
rj
tj

= 1)

)
Relying on both measures, we can now define the Probabilistic

Resource Route Query with Reappearance (PRRQR):

DEFINITION 4. Let q be a query node, X (q) the set of corre-
sponding resources, Ĝ the according resource graph. Furthermore,
let 0 � ρ < 1 denote a probability threshold. The result of a
PRRQR with threshold ρ, denoted by PRRQR(ρ), is the resource
route in Ĝ with minimal expected cost among all resource routes
which exceed the probability threshold ρ.

PRRQR(ρ) = arg min{Ec(r) | PS(r) ≥ ρ}

Note that there exists a straightforward variation of the PRRQR.
Instead of thresholding the success probability, one could bound
the maximal cost. Given a cost threshold τ > 0, the query result
is the resource route maximizing the success probability while not
exceeding the cost bound τ . In this case, it is usually more reason-
able to employ τ as a strict bound on the maximal cost instead as
a bounding for the expected cost. For example, consider driving an
electric vehicle with a limited remaining range. Bounding the ex-
pected distance misses the point, only bounding the actual driven
distance (while maxmimizing the success probability) will provide
a suitable route. This variation of the query is also examined our
experiments. However, in the following, we focus on the first (and
more sophisticated) case to keep the description compact.

5. QUERY PROCESSING
In this section, we present algorithms for processing PRRQRs.

First, we propose two heuristics which are employed in a greedy
search that computes approximations of the optimal results. After-
wards, we will present two methods computing optimal solutions,
relying on backtracking as well as on branch and bound. In the fol-
lowing, let 0 < ρ < 1 be a probability threshold, and let Ĝ be the
resource graph according to a given query setting q,X (q).

Let us note some aspects central to the PRRQR before going into
the details of the algorithms. Given Ĝ and the query position q, then
all resource routes start at q by definition. Hence, the set of possi-
ble solutions may be conceived as a search tree rooted at q where
each branch is a sequence of resource locations. For a probability-
constrained PRRQR with ρ = 1, i.e., a PRRQR requiring certainty
of finding a resource, this search tree is infinite. The effect is caused
by the time-dependent decay inherent in our model. Thus, a certain
observation of availability of a particular resource will no longer be
certain at the time of arrival. As a result, the success probability of
a resource route can only asymptotically converge against 1. Even
when ρ < 1, the search space is generally very large. This is be-
cause considering resource reappearance adds considerably to the



complexity of the task. Similar to the Traveling Salesman Problem
(TSP), there is no local optimality w.r.t. the resource subsequences
that can be exploited. Hence, it is not possible to tell whether a
resource route r can be extended into an optimal solution based on
its current PS(r) and Ec(r). Furthermore, it is easy to see that all
permutations of the set of resources can be found in the search tree.
Thus, from a theoretic point of view the problem is NP-complete.
Only by setting the threshold ρ < 1, the search space becomes
finite.

One precomputational step which all algorithms have in com-
mon is the computation of the resource graph Ĝ and its edges which
constitute cost-optimal paths between resource locations in the un-
derlying road network graph. The pseudocode for this operation
is given in Algorithm 1. The set of edges Ê is realized as an ad-
jacency matrix A of dimension N + 1 × N , where |X (q)| = N
is the number of suitable resources of the respective query setting.
For notational reasons, we denote the query node q by X0. The
entries aij , 0 ≤ i ≤ N, 1 ≤ j ≤ N of A are defined as:

aij =

{
c(p(Xi, Xj)) @Xk ∈ p(Xi, Xj), i, j, k pairw. inequal
∞ else

where p(Xi, Xj) denotes the cost-optimal path from Xi to Xj

within the underlying road network graph. A holds the cost of
all cost-optimal paths, both pairwise between resources as well as
from q to any resource, if no intermediate resources are located
along this path. A, however, does not hold any information about
paths from any resource to q, because the query node is not a re-
source and thus does not yield any gain toward the query goal. In
case cost does not refer to travel time, we also compute the travel
times of the cost-optimal paths. Recall the example of a query set-
ting and its resource graph, as illustrated in Figure 1.

The according adjacency matrix of this scenario is given by:

A B C
q ∞ t(p(q,B)) t(p(q, C))
A ∞ ∞ t(p(A,C))
B ∞ ∞ t(p(B,C))
C t(p(C,A)) t(p(C,B)) ∞

As mentioned before, depending on the application, the subset of
suitable resource locations may be query-dependent. However, as
the total set of resource locations is known prior to the query, it is
possible to precompute the above adjacency matrix. If at query time
a selection of suitable resources is required, the non-relevant rows
and columns may simply be ignored. In the following, we consider
an appropriate adjacency matrix as given. This assumption is not to
the disadvantage of any of the proposed algorithms, as they all rely
on the resource graph Ĝ and its edges modeled by the adjancency
matrix.

5.1 Heuristic Solutions
In order to cope with the complexity of the PRRQR, we pro-

pose two search heuristics employed in greedy algorithms. Both
heuristics aim at exceeding the given probability threshold by ex-
tending a (partial) resource route r by the “best” next resource
location. The first heuristic greedily chooses the resource loca-
tion which yields the best success probability upon arrival, while
the second heuristic greedily chooses the resource location which
yields the best tradeoff between success probability upon arrival
and cost to reach the location from the present one. Formally,
we propose to evaluate a possible extension of resource route r
along resources (Xr1 , . . . , Xri−1) by one of the resource locations
{X1, . . . , XN} according to the following heuristics:

(1) Extend r by Xri such that

Xri = arg max{P(X
rj
tj

= 0) | 1 ≤ j ≤ N}

(2) Extend r by Xri such that

Xri = arg max{P(X
rj
tj

= 0)/ĉ(erj ) | 1 ≤ j ≤ N}

where ĉ(erj ) denotes the cost for traveling from resource lo-
cation Xrj−1 to Xrj along the an cost-optimal path.

In conclusion, our greedy approaches G1 and G2 proceed as fol-
lows: For a given query setting q,X (q) and a probability threshold
0 < ρ < 1 all cost-optimal paths from q to all resource locations
adjacent to q w.r.t. the adjacency matrix are computed. Then, G1
and G2 choose the most promising extension according to the ex-
tension strategies (1) and (2), respectively. If the success probabil-
ity of the obtained resource route does not exceed the probability
threshold ρ, the procedure is repeated for all resource locations ad-
jacent to the current one w.r.t. the adjacency matrix. As soon as the
success probability exceeds ρ, we have found a viable solution.

5.2 Optimal Results
The greedy approach described above aims at the computation

of reasonable resource routes in efficient time. However, in some
applications, quality is more important than efficiency. For these
cases, we propose two different approaches which guarantee op-
timal results. We present a backtracking algorithm and a further
accelerated branch and bound approach.

5.2.1 Optimal Results through Backtracking
The backtracking approach, denoted by BT, starts at query node

q and gradually expands resource routes as long as they qualify as
result candidates. A resource route disqualifies as a result candi-
date if it exceeds the expected cost of the currently best resource
route. During the expansion, BT explores the search tree (rooted
at q) in depth-first order. Note that this search tree is generally in-
finite. Consequently, it is of even greater importance to exclude
resource routes from expansion early on in the algorithm. There-
fore, we conduct a prior initialization step equal to an execution of
the greedy G2 algorithm. This generates a valid resource route in
efficient time, its expected cost may be used as a first bound. We
omit the initialization step here (since it is equal to the description
of G2 above). Instead, we only give the recursive procedure as
presented in Algorithm 2.

The procedure expandRecursive is initially called with a
trivial resource route only consisting of query node q and an un-
specified resource (which is reset to an adjacent resource during the
first run). The expected cost of the result generated by G2 is held
in a global variable Mc as an initial upper bound for the expected
cost. While traversing the search tree Mc will be tightened by find-
ing better solutions. In line 3, candidates which do not qualify as
results are excluded, while in line 6 possible result are generated
(i.e., resource routes exceeding the probability threshold). The ac-
tual search tree traversal is realized recursively in lines 10, 11. If
an expansion r′ of a resource route r is better than the current best
route along this subtree r̂ (w.r.t. the expected cost), then r̂ is up-
dated to r′ and Mc is updated to Ec(r

′) (lines 13,14). Thus, by
sequential traversal of the search tree, BT returns the optimal re-
sult upon termination. However, due to the exponential number of
branches and the technically infinite length of the branches runtime
is prone to degenerate. Therefore, we propose another algorithm
which computes optimal results in significantly less time.



Algorithm 2: Expansion step of BT
1 expandRecursive(Resource route r,
2 resource X)

Data: Upper bound for Ec, Mc

Output: Optimal resource route r̂

3 begin
4 if Ec(r) > Mc then
5 return ∅
6 end
7 if PS(r) > ρ then
8 return r
9 end

10 initialize variable holding current best route r̂ = ∅
11 foreach resource X adjacent to last resource of r

do
12 r′ ← expand(r,X)
13 if r̂ = ∅ ∨ Ec(r

′) < Mc then
14 r̂ = r′

15 Mc ← Ec(r̂)

16 end
17 end
18 return r̂
19 end

5.2.2 Optimal Results through Branch and Bound
Like the backtracking algorithm BT, this branch and bound ap-

proach, denoted by BB, relies on an upper bound for the expected
cost (Mc) which is tightened as the algorithm progresses. Addition-
ally, BB incorporates a forward estimation for the expected cost a
route minimally needs to exceed the probability threshold ρ. The
forward estimation is a lower bound for the expected cost w.r.t. a
resource route and ρ. Consequently, if this lower bound exceeds
the upper bound for the expected cost Mc, r can be excluded from
further expansion, i.e. the respective subtree can be pruned.

Algorithmically, BB is similar to BT, except for the mentioned
forward estimation. This forward estimation is incorporated into
Algorithm 2 as an if(mc < Mc))-statement spanning from line 11
through line 17, where mc is the output of procedure
forwardEstimation, as presented in Algorithm 3. Before each
possible expansion of a resource route r, forwardEstimation
is called with r and the probability threshold ρ. In lines 3-7 the pa-
rameters are set which are subsequently used to compute the lower
bound for the expected travel time. tnow is the absolute travel time
of input resource route r. tmin is the fastest travel time between
any two resources. Thus, topt is the minimal possible arrival time
at the next resource w.r.t. the absolute travel time of r. popt and
mc are initialized with PS(r) and Ec(r), respectively. Both values
are updated in the while loop (lines 8-13) until popt ≥ ρ, i.e. until
the optimal success probability exceeds the threshold. Now, let us
investigate the operations in the while loop. First, pmax is defined
as the maximal probability among all resources at the minimal pos-
sible arrival time topt. Note that we only allow observations to be
incorporated into the model until query time. Therefore, pmax is
monotonically decreasing in topt, and it converges against the min-
imal value of all stationary distributions in state consumed. mc

is extended by a new summand reflecting a hypothetical and opti-
mal journey to the resource with maximal probability and minimal
cost. Consequently, the success probability bound is updated to the
probability of the complementary event of not finding any available
resource along this optimal journey. By this strategy, in every itera-

Algorithm 3: Forward Estimation of BB
1 forwardEstimation(Resource route r,

current Ec bound Mc)
Output: Upper bound for the success probability

of any extension of r until it exceeds Mc

2 begin
3 tnow ← arrival time at last resource of r
4 tmin ← mine∈Ê t̂(e)
5 topt ← tnow + tmin

6 popt ← PS(r)
7 mc ← Ec(r)
8 while mc < Mc do
9 pmax ← maxX∈X (q) P(Xtopt = 0)

10 mc ← mc +
(
topt · pmax(1− popt)

)
11 popt ← 1−

(
(1− popt)(1− pmax)

)
12 topt ← topt + tmin

13 end
14 return popt

15 end

tion of the while loop, a journey to an optimal next resource causing
minimal cost is simulated. Thus, the maximal success probability
is aggregated while assuming minimal cost. We prove this in the
following lemmas. We introduce the following terminology: For a
given resource route r we refer to any iteration of the while loop of
Algorithm 3 as an optimal extension. This coincides with the above
described intuition.

LEMMA 1. In any optimal extension the gain of the updated
values m′c ← mc and p′opt ← popt yield the best possible trade-off
between expected cost and success probability. More specifically,
let r be a resource route with Ec(r) = mc, PS(r) = popt and travel
time topt. Then the following statement holds: For any possible
extension r′ of r to another resource:

m′c −mc

p′opt − popt
<

Ec(r
′)− Ec(r)

PS(r′)− PS(r)

PROOF. In order to prove this lemma, we need to formulate the
success probability of a resource route r differently:

PS(r) = 1−
n∏
i=1

P(Xri
ti

= 1)

=

n∑
i=1

(
P(Xri

ti
= 0) ·

i−1∏
j=1

P(X
rj
tj

= 1)

)

Note that the equality indeed holds. This is because the event of
finding at least one available resource can be described by the
complementary event of not finding any resource in state available.
Equally, it can be described as the union of events that resource
Xri is available but all other resources thus far were consumed.
Now, for a given resource route r, let r′ denote an arbitrary exten-
sion of r by another resource X with respective arrival time t. By
the alternative definition of PS, we have PS(r

′) = PS(r)+tP(Xt =
0) · (1− PS(r)). Recall that Ec(r) = mc and PS(r) = popt.



Now, we show our claim:

m′c −mc

Ec(r′)−mc
<

p′opt − popt

PS(r′)− popt

c′optp
′
opt(1− PS(r))

c(r)P(Xt = 0)(1− PS(r))
<

p′opt(1− PS(r)

P(Xt = 0)(1− PS(r)

By definition, t′opt ← topt + tmin, where tmin denotes the minimal
travel time in Ê. Consequently, t′opt < t, therefore, the inequality
holds which proves the claim.

LEMMA 2. Let r be a resource route. The forward estimation
of the expected cost as computed by Algorithm 3 is indeed a lower
bound.

PROOF. This follows from the following properties:

(i) The number of optimal extensions needed until r exceeds the
probability threshold is at most the number of actual exten-
sions needed.

(ii) Every optimal extension of r yields a better trade-off than an
actual extension.

(iii) No sequence of actual extensions of r can exceed the proba-
bility threshold while yielding a lower expected cost than the
sequence of optimal extensions chosen by Algorithm 3.

(i) follows directly from the definition of popt ← 1−
(
(1−popt)(1−

pmax)
)
. In every optimal extension, popt is increased by the maxi-

mally possible value. Therefore, no other sequence of extensions
can yield a faster increase. (ii) is the statement of Lemma 1. Fi-
nally, (iii) follows from both, (i) and (ii).

Note that all of the above is easily applied to the case where in-
stead of minimizing the expected cost w.r.t. a probability threshold
we maximize the probability w.r.t. an absolute cost bound (as in-
troduced at the end of Section 4.2). For example, consider the back-
tracking expansion Algorithm 2. Instead of dismissing (storing) a
route r if Ec(r) > Mc (“<” holds), in the complementary scenario,
a route r is dismissed (stored), if c(r) > Mc (“<” holds). Simi-
larly for the forward estimation presented in Algorithm 3. Again,
the expected cost Ec(r) is to be replaced with the absolute cost
c(r). While the absolute cost bound is not exceeded, optimal path
extensions are simulated, adding maximal success probability to
the path. When the cost bound is exceeded and the maximal cur-
rent best success probability is not surpassed, the search tree can be
pruned. If, on the other hand, the success probability is surpassed
by the optimal path extension, the path (and its subtree in the search
tree) qualifies as a candidate. As for the theoretic arguments, they
apply analoguously, therefore we omit an adapted version due to
space limitations.

Concludingly, we have presented four algorithms for solving the
proposed PRRQR in this section. G1 and G2 follow a greedy
heuristic to produce approximate results, while BT and BB pro-
duce exact results. BB is an extension of BT which makes use of a
lower bound forward estimation of the expected cost. In the above
lemmas, we have shown correctness of the proposed bound.

6. EXPERIMENTAL EVALUATION
We evaluate our model and our algorithms on settings in real

world road networks extracted from OpenStreetMap1 (OSM) using
the MARiO framework [6]. All experiments were conducted on a
1http://www.openstreetmap.org/

desktop computer equipped with an Intel Core i7-3770 CPU and
32 GB RAM, running Java 1.64 (64-Bit) on Linux 3.13 x86_64.
Different algorithms are always tested on the same randomly gen-
erated scenario before comparing results. Runtime evaluations are
based on Java’s nanotime clock and performed for each algorithm
individually excluding preliminary steps like graph population and
building of the adjacency matrix. Computation of the latter takes
around 250 milliseconds, for standard settings in the Parking and
Charging scenarios, respectively. Note that all cost-optimal paths
were computed using Dijkstra’s algorithm. Choosing a different
routing algorithm or employing a speed-up technique would yield
the same benefit for all compared approaches. Modifying the path
computation algorithm is an easy task, however, on a city scale
(which the applications require) this would hardly yield any com-
putational benefit. We present experiments for two realistic appli-
cations:

• Parking scenario (located in Bamberg, Germany): Given a
probability threshold, we provide a route along parking spots
which surpasses the threshold and minimizes the expected
travel time. This scenario is based on ground truth extracted
from OSM metadata.

• Charging scenario (located in Brussels, Belgium): Given a
query position and a range limit (as used by electric vehi-
cles), we provide a route along charging stations not exceed-
ing the range limit and maximizing the success probability.

Note that these scenarios are complementary w.r.t. the criterion
which is bounded and the criterion which is to be optimized, as
explained in Section 4.1. Besides, while Charging relies on an hard
numeric bound (distance), Parking relies on the more sophisticated
expected value bound. Therefore we choose Parking as our main
scenario. We will not present all charts for both scenarios, however
noting that corresponding charts show the same behavior.

6.1 Parking Scenario
We generated the following test cases on the road network of the

city of Bamberg, Germany, containing approximately 10.000 nodes
and 20.000 edges as well as nearly exhaustive metadata regarding
parking spots. For every test case, a target node is randomly drawn
from all road network nodes of degree≥ 1 within a three kilometer
radius from the city center. Then, an isochrone of 800 meters walk-
ing distance is computed around the target. LetN be the number of
resources (according to the ground truth) within the isochrone. In
our experiments, resources are rather dense, i.e., 25 ≤ N ≤ 100.
Subsequently, the query node q is randomly drawn from all nodes
within the isochrone. This corresponds to the use case where we
expect the user to trigger the query when they are in the vicinity
of their target. The average and maximal distance from q to a re-
source are by construction 800 and 1600 meters, respectively. Fi-
nally, M ≤ N observations of resource availability are randomly
distributed among the resource locations, and the respective sojourn
times in the states available and consumed are set. For rea-
sons of clarity, in our experimental settings the sojourn times are
set to the same configurations for all resources. We assume the
expected time a spot stays vacant (available) to be 3 minutes
and the expected time a spot stays occupied (consumed) to be 90
minutes. Note that the resources could easily be parametrized sep-
arately to model differently volatile resources. In this scenario, a
probability threshold is given, and as a cost function we use travel
time as formalized in Definition 3. The optimal resource route is the
one with the least expected travel time among all resource routes
with a success probability exceeding the threshold.



(a) BB-related algorithms

(b) G2-related algorithms

Figure 2: Illustration of the influence of model complexity on
the quality of results (Parking scenario.

First, we want to evaluate how much the additional information
held by our probabilistic model improves result quality. Recall,
that our model supports reappearance and incorporates short term
observations, two properties that distinguish this work from others.
In order to prove that the gain in result quality outweighs the gain in
model complexity, we trim our algorithms BB (branch and bound)
and G2 (greedy approach with probability per cost heuristic) to par-
tially ignore the information provided by the underlying model. In
a first step, we disable the possibility of resource reappearance, we
denote these approaches by BB-R and G2-R, respectively. This
means, BB-R and G2-R proceed like their respective counterparts
but do not revisit resources which have previously been observed
as consumed. This corresponds to a simpler probabilistic model
without the feature of resource reappearance. In a second step, we
additionally disable short term observations. We denote these ap-
proaches by BB-R-O and G2-R-O. As before, they proceed like
BB-R and G2-R, respectively, but additionally ignore any short
term observations. Hence, the variations emulate an even simpler
model which only allows static uncertainty, as used in [4], for ex-
ample.

The results for the BB-related and the G2-related algorithms are
shown in Figures 2(a) and 2(b), respectively. Both figures depict
the same settings. It is obvious that requiring a greater probabil-
ity threshold results in resource routes with longer expected travel

(a) Expected travel time relative to optimal solution

(b) Calculation time

Figure 3: Illustration of quality as well as efficiency of all algo-
rithms in the Parking scenario.

time. Therefore, the overall increase in expected travel time is con-
sequential. Both figures clearly show that the algorithms which
rely on greater information, i.e., use a more complex model, yield
better results. Figure 2(a) visualizes the results of the branch and
bound approaches which are optimal w.r.t. to the information avail-
able. As claimed, BB on average outperforms BB-R, its coun-
terpart which does not allow reappearance by at least 20 percent.
BB-R, in turn, outperforms its counterpart which does not incorpo-
rate short term observations, BB-R-O. This supports the previously
made claim that resource reappearance and short term observations
do indeed improve the quality of results. From Figure 2(b) we ob-
serve, that simpler algorithms also benefit from the additional in-
formation contained in the model. Comparing the two figures, BB-
algorithms of course yield better results than G2-algorithms and
do so with significantly less variance than the greedy approaches.
This is because the heuristics rely on chance in the form of benefi-
cial problem settings in order to generate near-optimal results.

Next, let us investigate the performance of the algorithms pre-
sented. As mentioned before, there exists no work which is fully
comparable. However, as the PRRQR is related to the TSP and
clustering is commonly used to approximate the TSP (as in [3]), we
use this concept to implement an approximative comparison part-
ner denoted by TS. It is important to mention that TS does not sup-
port resource reappearance, because otherwise the heuristic would



Figure 4: Influence of the number of resources and the number
of observations on the expected travel time, i.e., result quality
(for a probability threshold of 0.7)

not visit sufficiently many distinct resources to achieve a compara-
ble success probability. Before we present the results, let us explain
how TS proceeds. In a first step, TS conducts a k-medoid clustering
on the set of all resources, where experimentally k = 6 has proven
adequate. Subsequently, a TSP on the cluster medoids (starting at
the query node) is solved. Then follows the actual resource route
computation. It starts at the query node and computes the cost-
optimal path to the first medoid. In the respective cluster, a greedy
depth-first search (starting at the medoid) is conducted, returning
an approximation of the cluster-internal cost-optimal path. From
the last resource of the cluster we compute the cost-optimal path
to the next medoid. This procedure is continued until the resource
route exceeds the given probability threshold. TS serves as an algo-
rithmic competitor based on a simpler probabilistic model but with
a solid heuristic that has proven efficient when solving TSP-related
problems. Note that the cost-optimal paths between all resources
are precomputed in order to make the comparison to our algorithms
– which use the precomputed adjacency matrix – fair.

We compare TS to all algorithms introduced in Section 5, i.e.,
the two greedy approaches G1 and G2 as well as the exact so-
lutions BT and BB. Figure 3(a) shows the quality of the results
produced by the approximative algorithms, i.e., G1, G2, and TS.
Their respective expected travel times are given relative to the op-
timal results. The higher the probability threshold, i.e., the more
complex the task, the greater the discrepancy between optimal re-
sults and approximation. Although G2 relies on the rather simple
probability-to-cost ratio heuristic, it significantly outperforms its
comparison partners. While G2 yields near-optimal results in the
easier settings, the optimal solutions in the most elaborate scenario
(probability threshold 0.9) undercut its expected travel times on av-
erage by about 30 percent. This gain in quality, however, comes
at the price of calculation time, as depicted in Figure 3(b). This
illustration shows the averaged runtimes of all algorithms when in-
creasing the required probability threshold. The greedy approaches
generate results in almost interactive time, while BB, BT, and TS
are around two to three orders of magnitude slower. However, it
is important to note that two orders of magnitude only correspond
to around 100 ms of calculation time. Comparing the exact algo-
rithms, we observe that BB outperforms BT which can be attributed
to the forward estimation. The competitive approach TS performs
in constant time of about 150 milliseconds (for the same number of
resources), however generating the worst results.

(a) Success probability

(b) Calculation time

Figure 5: Illustration of quality as well as efficiency of selected
algorithms in the Charging scenario.

Finally, we want to explore how volatile the results are w.r.t. the
model parameters. We restrict ourselves to the optimal solution
provided by BB, seeing as the quality ratio of optimal to approx-
imative solutions has been explored above. Figure 4 depicts the
influence of the number of parking spots relative to the number of
short term observations of vacant parking spots. Thus, each circle
in the plot corresponds to a pair of parameter values, and the diame-
ter of each circle represents the average expected travel time of this
scenario in seconds, as do the numbers in the corner circles. The
result shows the expected behavior that with an increasing number
of parking spots, expected travel time decreases. Furthermore, for
any given scenario, it can be seen that the increased amount of short
term observations also reduces the expected time until a vacant spot
is found. Similarly expectable behavior is observed when varying
the sojourn time parameters 1/λ and 1/µ, therefore further charts
are omitted.

6.2 Charging Scenario
For Charging we generated test cases on the road network of the

city of Brussels, Belgium, containing approximately 30.000 nodes
and 67.000 edges. For every test case a query node is randomly
drawn from all road network nodes of degree ≥ 1 within a 6 kilo-
meter radius of the city center. Then, an isochrone of 6 kilome-
ters is computed around the query node, wherein 6 resource loca-
tions are randomly drawn. We have evaluated other numbers of
resources but the results do not reveal additional information and
are therefore omitted here. Compared to Parking, where nearly ev-
ery street holds at least one resource, this scenario models resource
scarcity. Again, if N denotes the number of resources (6 in our
experiments), then M ≤ N observations of resource availability
are randomly distributed among these resource locations. The ex-
pected time a charging station remains vacant (available) is set
to 30 min, and the expected time it remains occupied (consumed)
is set to 50 minutes. As before, every charging station may be



parametrized individually, however we pass on it for reasons of
clarity and lack of ground truth. In this scenario an absolute dis-
tance bound of 6 kilometers is giving, emulating the remaining
range of an electric vehicle with low battery. Note that in con-
trast to Parking, this bound is strict and cannot be exceeded. Every
algorithm computes a route with an absolute distance of 6 kilome-
ters, the optimal resource route is the one with maximal success
probability.

In a first setting, we compare the result quality of our exact algo-
rithm BB, our greedy solution G2 and BB-R, the branch and bound
variation which does not incorporate resource reappearance. Addi-
tionally to the scarcity of resources, the remaining range (6 kilo-
meters) is only double the average distance from query node to the
next resource (3 kilometers, as resources are distributed uniformly
within the isochrone). Due to these tightened constraints, superior-
ity of the optimal results generated by BB becomes more apparent.
In almost three out of four runs, BB yields a success probability of
over 95 percent, outperforming G2 significantly. While the greedy
heuristic worked well before, it is now easily lead down a consid-
erably less beneficial branch of the search tree. Nonetheless, G2
still produces slightly better results than BB-R. Again, this advo-
cates our model which supports resource reappearance. Even an
approximative approach on our model yields better results than an
exact algorithms on a less sophisticated model due to lack of in-
formation. Of course, a simpler model needs less intricate function
evaluations. In our case, however, the difference is merely a matter
of microseconds, as depicted in Figure 5(b).

Concludingly, we have empiricially proven the benefit of our
probabilistic model. It improves the quality of results by incor-
porating richer information, especially for complex but also for
simpler tasks while not causing any significant computational over-
head. On the contrary, our greedy approaches deliver competitive
results in near-interactive time while our branch and bound ap-
proach yields optimal solutions in efficient time.

7. SUMMARY AND OUTLOOK
In this paper, we investigate probabilistic route queries in road

networks where the user is guided along a set of resources in order
to maximize the probability of encountering an available resource.
We aim to find a route with minimal expected cost among all routes
exceeding a given probability threshold. We propose a novel frame-
work in which resources are modeled as continuous-time Markov
chains with two states, available and consumed. In contrast
to similar problems, our framework allows for consumed resources
to reappear and takes short term as well as long term observations
into account. The introduced query, referred to as PRRQR, is theo-
retically NP-complete and has an unlimited search space.

To solve this problem, we propose approximative as well as op-
timal solutions. We employ two different search heuristics in a
greedy algorithm to achieve a trade-off between accuracy and cal-
culation time. Furthermore, solutions using backtracking and a
branch and bound approach provide optimal solutions in competi-
tive time. We demonstrate the superiority of our model as well as
the efficiency and effectiveness of our algorithms on two realistic
applications. The first is the search of a vacant parking spot, and
the second is the search for a vacant charging station for electric
vehicles.

For future work, we want to turn to settings considering other
types of observations like competing drivers looking for the same
type of resource. Furthermore, we want to investigate the influence
of edge costs which might change during the search.
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