
Knowing: A Generic Data Analysis Application

T. Bernecker, F. Graf, H.-P. Kriegel,
N. Seiler

Institute for Informatics,
Ludwig-Maximilians-Universität München

Oettingenstraße 67, 80538 München
{bernecker,graf,kriegel}@dbs.ifi.lmu.de

nepomuk.seiler@campus.lmu.de

C. Türmer, D. Dill
Heinz-Nixdorf-Lehrstuhl für Medizinische

Elektronik, TU München
Theresienstraße 90 / N3, 80333 München

{tuermer,dill}@tum.de

ABSTRACT
Extracting knowledge from data is, in most cases, not re-
stricted to the analysis itself but accompanied by prepara-
tion and post-processing steps. Handling data coming di-
rectly from the source, e.g. a sensor, often requires pre-
conditioning like parsing and removing irrelevant informa-
tion before data mining algorithms can be applied to analyze
the data. Stand-alone data mining frameworks in general do
not provide such components since they require a specified
input data format. Furthermore, they are often restricted
to the available algorithms or a rapid integration of new
algorithms for the purpose of quick testing is not possible.
To address this shortcoming, we present the data analysis
framework Knowing, which is easily extendible with addi-
tional algorithms by using an OSGi compliant architecture.
In this demonstration, we apply the Knowing framework
to a medical monitoring system recording physical activity.
We use the data of 3D accelerometers to detect activities
and perform data mining techniques and motion detection
to classify and evaluate the quality and amount of physical
activities. In the presented use case, patients and physi-
cians can analyze the daily activity processes and perform
long term data analysis by using an aggregated view of the
results of the data mining process. Developers can integrate
and evaluate newly developed algorithms and methods for
data mining on the recorded database.

1. INTRODUCTION
Supporting the data mining process by tools was and still

is a very important step in the history of data mining. By
the support of several tools like ELKI [1], MOA [2], Weka
[3] or RapidMiner [4], scientists are nowadays able to ap-
ply a diversity of well-known and established algorithms on
their data for quick comparison and evaluation. In cases
where the requirements enforce a rapid development from
data mining to a representative prototype, these unstan-
dardized plug-in systems can cause a significant delay which
is caused by the time needed to incorporate the algorithms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

With the use of a standardized plug-in system like OSGi1,
Java Plugin Framework (JPF) or Java Simple Plugin Frame-
work (JSPF), each implementation of an algorithm does
not have to be specifically adapted to the according frame-
work. With Knowing (Know ledge Engineering) we provide
a framework that addresses this shortcoming by bridging
the gap between the data mining process and rapid proto-
type development. We achieve this by using a standardized
plug-in system based on OSGi, so that algorithms can be
packed in OSGi resource bundles. This offers the possibil-
ity to either create new algorithms as well as to integrate
and exchange existing algorithms from common data min-
ing frameworks. The advantage of these OSGi compliant
bundles is that they are not restricted for use in Knowing
but can be used in any OSGi compliant architecture.

This demonstration includes the following contributions:

• a simple, yet powerful graphical user interface (GUI),

• a bundled embedded database as data storage,

• an extensible data mining functionality,

• extension support for algorithms addressing different
use cases and

• a generic visualization of the results of the data mining
process.

Section 2 provides a short overview of related work. De-
tails of the architecture of Knowing will be given in Sec-
tion 3. In our scenario, described in Section 4, we will
present the MedMon system which itself extends Knowing.
In the developer stage, we can easily switch between the
scientific data mining view and the views which will be pre-
sented to the end users later on. As MedMon is intended to
be used by different target groups (physicians and patients),
it is desired to use a single base system for all views and
only deploy different user interface bundles for each target
group. This way, the data mining process can seamlessly be
integrated into the development process by reducing long
term maintenance to a minimum, as only a single system
with different interface bundles has to be kept up to date
and synchronized instead of a special data mining tool, a
physician tool and a patient tool. Section 5 describes the
planned demo tour in more detail.

1OSGi: http://en.wikipedia.org/wiki/OSGI

2. RELATED WORK
In the past years, several data mining frameworks like

ELKI [1], MOA [2], WEKA [3], RapidMiner [4] or R [5]
have been presented and established (among many others).
Although all frameworks perform data mining in their core,
they all have different target groups:

WEKA and MOA provide both algorithms and GUIs. By
using these GUIs, the user can analyze data sets, config-
ure and test algorithms and visualize the outcome of the
according algorithm for evaluation purposes without need-
ing to do some programming. As the GUI cannot satisfy
all complex scenarios, the user still has the possibility to
use the according APIs to build more complex scenarios in
his own code. RapidMiner integrates WEKA and provides
powerful analysis functionalities for analysis and reporting
which are not covered by the WEKA GUI itself. RapidMiner
also provides an improved GUI and also defines an API for
user extensions. Both RapidMiner and WEKA provide some
support to external databases. The aim of ELKI is to pro-
vide an extensible framework for different algorithms in the
fields of clustering, outlier detection and indexing with the
main focus on the comparability of algorithm performance.
Therefore, single algorithms are not extensively tuned to
performance but tuning is done on the application level for
all algorithms and index structures. Like the other frame-
works, ELKI also provides a GUI, so that programming is
not needed for the most basic tasks. ELKI also provides
an API that supports the integration of user-specified algo-
rithms and index structures.

All the above frameworks provide support for the process
of quick testing, evaluating and reporting and define APIs in
different depths. Thus, scientists can incorporate new algo-
rithms into the systems. However, none of them makes use
of a standardized plug-in system, so that each implementa-
tion of an algorithm is specifically adapted to the according
framework without being interchangeable.

R provides a rich toolbox for data analysis. Also there
are a lot of plugins which extend the functionality of R.
Nevertheless, all advantages and disadvantages like for the
above frameworks also hold for R, especially the lack of a
standardized plug-in system.

3. ARCHITECTURE
Applying a standardized plug-in system like OSGi, the

bundles can be used in any OSGi compliant architecture
like the Eclipse Rich Client Platform (RCP)2 or the Net-
Beans RCP3. Then, the integration of existing algorithms
can simply be done by wrapping and packing them into a
separate bundle. Such bundles are then registered as inde-
pendent service providers to the framework. In either case,
algorithms are wrapped into Data Processing Units (DPU)
which can be integrated and configured via pluggable RCP-
based GUI controls. Thus, the user is able to perform an
arbitrary amount of steps to pre- and post-process the data.
Furthermore, we provide the possibility to use the DPUs
contained in the system in any other OSGi compliant ar-
chitecture. As dependencies between resource bundles have
to be modeled explicitly, it is much easier to extract certain
bundles from the system. This loose coupling is not only
an advantage in case where algorithms should be ported

2Eclipse RCP: http://www.eclipse.org/platform/
3NetBeans RCP: http://netbeans.org/features/platform/

between completely different systems, but also if the GUI
should be changed from a data mining view to a prototype
view for the productive system. This can be done by ei-
ther using the resource bundles containing the DPUs, or by
directly extending Knowing itself.

In the current implementation, the Knowing framework
is based on the established and well-known Eclipse RCP
system and uses the standardized OSGi architecture4 which
allows the composition of different bundles. This brings the
great advantage that data miners and developers can take
two different ways towards their individual goal: If they start
a brand new RCP-based application, they can use Knowing
out of the box and create the application directly on top of
Knowing. The more common case might be that an RCP-
or OSGi-based application already exists and should only
be extended with data mining functionality. In this case,
only the appropriate bundles are taken from Knowing and
integrated into the application.

In the following, we describe the architecture of the Know-
ing framework which consists of a classical three-tier archi-
tecture comprising data storage tier, data mining tier and
GUI tier, where each tier can be integrated or exchanged
using a modular concept.

3.1 Data Storage
The data storage tier of Knowing provides the function-

ality and abstraction layers to access, import, convert and
persist the source data. The data import is accomplished by
an import wizard using service providers, so that importing
data is not restricted to a certain format.

Applying the example of the MedMon application, a ser-
vice provider is registered that reads binary data from a
3D accelerometer [7] which is connected via USB. The data
storage currently defaults to an embedded Apache Derby
database5 which is accessed by the standardized Java Per-
sistence API (JPA & EclipseLink). This has the advantage
that the amount of data being read is not limited by the
main memory of the used workstation and that the user does
not have to set up a separate database server on his own.
However, by using the JPA, there is the possibility to use
more than 20 elaborated and well-known database systems
which are supported by this API6. An important feature in
the data storage tier arises from the possibility to use exist-
ing data to support the evaluation of newly recorded data,
e.g. to apply certain parts of the data as training sets or
reference results.

3.2 Data Mining
This tier includes all components needed for data mining

and data analysis. OSGi bundles containing implemented
algorithms are available fully transparently to the system
after the bundle is registered as a service provider.

Algorithms are either implemented directly or wrapped
in DPUs. Following the design of WEKA, DPUs represent
filters, algorithms or classifiers. One or more DPUs can be
bundled into an OSGi resource bundle which is registered
into the program and thus made available in the framework.
Bundling algorithms enforces a pluggable and modular ar-
chitecture so that new algorithms can be integrated and re-

4Eclipse Equinox: http://www.eclipse.org/equinox/
5Apache Derby: http://db.apache.org/derby/
6List of supported databases:
http://wiki.eclipse.org/EclipseLink/FAQ/JPA

Figure 1: The Knowing user interface.

moved quickly without the need for extensive dependency
checks. The separation into bundles also provides the possi-
bility of visibility borders between bundles so that separate
bundles remain independent and thus the system remains
maintainable. The modularity also provides the possibility
to concatenate different algorithms into processing chains so
that algorithms can act both as sources and targets of pro-
cessed entities (cf. Figure 1). Raw data for example first
could pass one or more filtering components before being
processed by a clustering component.

Creating a processing chain (a.k.a. model) of different,
concatenated algorithms and data-conditioning filters is sup-
ported by GUI controls, so that different parameters or con-
catenations can be tested easily. After a model has proved
to fit the needs of a use case, the model can be bundled and
later be bound to other views of the GUI, so that the costs
for porting, adapting and integration are minimized to bind-
ing components and models together. Hence, porting and
adapting algorithms and other components from different
APIs is not needed.

This architecture provides the possibility to integrate al-
gorithms from other sources like [1, 2, 3, 5], so that existing
knowledge can be reused without having to re-implement
algorithms from scratch. This also provides the possibility
to replace components by different implementations quickly
if performance or licensing issues require to do so.

In the data mining part of the application, Knowing not
only supports plain Java but also relies on the use of the
Scala programming language. Scala is a functional and
object-oriented programming language which is based on
the Java Virtual Machine, so that it seamlessly integrates
into Knowing. The advantage of Scala in this part of the
application lies in the easy possibility of writing functional
code shorter than in regular Java code. By using the Akka
actor-model7, it is easy to create processing chains which are
executed in a parallel way so that Knowing can make use of
multi-core systems.

3.3 User Interface
Using the well-established Eclipse RCP and its powerful

concept of views enables developers to easily replace the view
of the data mining scientists with different views for end
users or prototypes. Thus, the task of porting data mining

7Project Akka: http://akka.io/

algorithms and the data model to the final application is
replaced by just switching the view component and binding
model and GUI components together. As Eclipse itself is
designed as an RCP using OSGi, it is comparatively easy to
unregister the original Knowing GUI and replace it with an
interface representing the final application.

4. DEMO PROGRAM
We motivate our demonstration by following a real-world

use case where the convalescence of patients should be moni-
tored by analyzing their daily physical activity as presented
in the works of [6] and [7]. Among others, features like
quality, intensity and amount of physical activity are diag-
nostically strongly conclusive as they have major influence
on medical prevention, convalescence and therapy.

Physical activity in this case includes various types of mo-
tion like walking, running and cycling. The task is to per-
form data mining on long-term temporal sensor data pro-
vided by people wearing a little 3D sensor which is record-
ing and storing acceleration data in all three axes with a
frequency of 25 Hz. When the sensor is connected to a com-
puter, the data is parsed and transferred to the Knowing
framework, where it is stored in the underlying database.
Knowing is able to deal with different types of time series
which are not limited to the medical field but can be ap-
plied to different types of scenarios where time series data
is being produced and needs to be analyzed. Analyzing the
data in this use case means the application of clustering
and classification techniques in order to detect motion pat-
terns of activities and thus to separate the different types of
motions. Available algorithms as well as additionally imple-
mented techniques for data mining and the pre-conditioning
of the temporal data (e.g. filtering of specific information,
dimensionality reduction or removing noise) can efficiently
be tested and evaluated on the data and can furthermore be
applied to the data by taking advantage of the OSGi com-
pliant architecture (cf. Section 3). By using the standard-
ized OSGi plug-in system, we are integrating and embed-
ding well-known data mining tools and, thus, avoid the re-
implementation of already tested algorithms. The require-
ment of a quick migration of the final data mining process
chain to a prototype system is accomplished by using differ-
ent graphical views on a common platform. Thus, neither
the process model nor the algorithms needs to be ported.
Instead, only a different view of the same base model needs
to be activated to enable the prototype. Finally, the demo
provides a generic visualization model to present the results
of the data mining process to the user.

5. DEMO TOUR
In this demo, we present an early stage of the application

prototype MedMon (Med ical Monitoring), which is based
on Knowing. MedMon is a prototype of a use case for mon-
itoring a patient’s activity to support his/her convalescence
[6, 7]. An exemplary GUI frame is depicted in Figure 2.
By using the MedMon application, the users can import 3D
acceleration data from the hardware sensor into a database.
This is the first step of the demonstration: the sensor is
worn as an electronic tag. So the user can go around and
record some raw data that represent patients’ activities as
time series. The raw data is transmitted to the MedMon
application by connecting the sensor to the computer. The

import of the raw data is simplified by a wizard, which in-
cludes a preview of the time series. Working with MedMon,
the user is enabled to switch between different roles. The
prototype allows several views on the recorded data and the
results of the data mining process:

• the data mining view, where DPUs can be combined
to processing chains and which allows to employ newly
developed algorithms;

• the physician view, which provides a more detailed
view on the data for multiple users’ activities and the
possibility to add and modify electronic health records;

• and the patient view, which displays only a very brief
summarization of the patient’s daily activity in order
to give feedback to the user about his achieved activity
pensum each day.

In the presented use case, we can analyze the daily activ-
ity processes and perform long-term data analysis by using
an aggregated view of the results of the data mining process
from the physician view and the patient view. Presenting
the data mining view in detail, we show the integration of
newly developed algorithms and methods for data mining on
the recorded database. Furthermore, we outline how to ad-
just the data mining process chain and to set the algorithm-
specific parameters.

More precisely, the current process comprises the import
of sensor data from binary files, followed by the segmenta-
tion of the data, the extraction of features including a linear
discriminant analysis (LDA), the building of AR-models on
the extracted segments and the classification of the results.
Here, the demo user is able to decide whether to add noise
filters for the raw data, select appropriate features to repre-
sent the segments or to choose from different classification
or clustering methods.

In an evaluation example, we apply k-means clustering
on the data with different parameters combined with a k-
nearest neighbor classification to detect and classify different
motion patterns. Here, recently recorded acceleration data
created by the same patient could, for example, serve as
training sets for the current evaluation. Finally, we show the
possibilities to present the results in the most intuitive way
in order to simulate an application scenario from a physi-
cian’s perspective.

The MedMon prototype system is not limited to medical
applications but provides a valuable tool for scientists having
to deal with large amounts of time series data.

The source code of the Knowing framework, the MedMon
prototype in its current state and the project wiki are avail-
able via GitHub8.

6. CONCLUSION
In this demo, we present the open Knowing framework

that allows faster integration of data mining techniques into
the development process so that information and data can
be managed more effectively. We show the integration of
Knowing in the application of medical monitoring and out-
line the bridge between data mining and development. In
future work, we will integrate more well-known data min-
ing frameworks and extend the data mining GUI for faster
testing of machine learning techniques.
8Knowing at GitHub: https://github.com/knowing

Figure 2: The MedMon prototype GUI.

Acknowledgements
This research has been supported in part by the THESEUS
program in the MEDICO and CTC projects. They are
funded by the German Federal Ministry of Economics and
Technology under the grant number 01MQ07020. The re-
sponsibility for this publication lies with the authors.

7. REFERENCES
[1] E. Achtert, T. Bernecker, H.-P. Kriegel, E. Schubert,

and A. Zimek. ELKI in time: ELKI 0.2 for the
performance evaluation of distance measures for time
series. In Proceedings of the 11th International
Symposium on Spatial and Temporal Databases
(SSTD), Aalborg, Denmark, pages 436–440, 2009.

[2] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer.
MOA: Massive online analysis. 11:1601–1604, 2010.

[3] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The WEKA data
mining software: an update. ACM SIGKDD
Explorations, 11(1):10–18, 2009.

[4] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and
T. Euler. YALE: Rapid prototyping for complex data
mining tasks. In Proceedings of the 12th ACM
International Conference on Knowledge Discovery and
Data Mining (SIGKDD), Philadelphia, PA, pages
935–940, 2006.

[5] R project. http://www.r-project.org/.

[6] C. Türmer, D. Dill, A. Scholz, M. Gül, T. Bernecker,
F. Graf, H.-P. Kriegel, and B. Wolf. Concept of a
medical activity monitoring system improving the
dialog between doctors and patients concerning
preventions, diagnostics and therapies. In Forum
Medizin 21, Evidenzbasierte Medizin (EbM), Salzburg,
Austria, 2010.

[7] C. Türmer, D. Dill, A. Scholz, M. Gül, A. Stautner,
T. Bernecker, F. Graf, and B. Wolf. Conceptual design
for an activity monitoring system concerning medical
applications using triaxial accelerometry. In Austrian
Society for Biomedical Engineering (BMT), Rostock,
Germany, 2010.

