
Reverse k-Nearest Neighbor Search in Dynamic and
General Metric Databases

Elke Achtert Hans-Peter Kriegel Peer Kröger Matthias Renz Andreas Züfle
Ludwig-Maximilians-Universität München

Oettingenstr. 67, 80538 München, Germany
http://www.dbs.ifi.lmu.de

{achtert,kriegel,kroegerp,renz,zuefle}@dbs.ifi.lmu.de

ABSTRACT
In this paper, we propose an original solution for the general
reverse k-nearest neighbor (RkNN) search problem. Com-
pared to the limitations of existing methods for the RkNN
search, our approach works on top of any hierarchically orga-
nized tree-like index structure and, thus, is applicable to any
type of data as long as a metric distance function is defined
on the data objects. We will exemplarily show how our ap-
proach works on top of the most prevalent index structures
for Euclidean and metric data, the R-Tree and the M-Tree,
respectively. Our solution is applicable for arbitrary values
of k and can also be applied in dynamic environments where
updates of the database frequently occur. Although being
the most general solution for the RkNN problem, our solu-
tion outperforms existing methods in terms of query execu-
tion times because it exploits different strategies for pruning
false drops and identifying true hits as soon as possible.

1. INTRODUCTION
A reverse k-nearest neighbor (RkNN) query returns for a

given query object q all objects of a database that have q
among their actual k-nearest neighbors. In this paper, we
focus on the traditional reverse k-nearest neighbor problem
and do not consider recent approaches for related or special-
ized reverse nearest neighbor tasks such as the bichromatic
case, mobile objects, etc.

Since the efficient support of traditional RkNN queries
is important in many applications involving Euclidean and
general metric data [14], this topic has received growing at-
tention recently. As a consequence, a considerable amount
of new methods have been developed that usually extend ex-
isting index structures for RkNN search. However, all these
methods for RkNN search suffer at least from one of the
following drawbacks. First, some approaches are only appli-
cable to a fixed value of k (typically k = 1) or at most to a
specific range 1 ≤ k ≤ kmax of values that needs to be spec-
ified in advance. Second, many approaches are only applica-

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

ble for static scenarios where no objects are inserted into or
deleted from the database because the costs for an update
of the underlying specialized index structure are extremely
high. Third, some approaches are tailored to Euclidean or
metric spaces only because they use specific geometric prop-
erties of the Euclidean space or specific properties of metric
indexes.

In addition, although all approaches more or less use in-
dex structures, none of them explore the full potentials of
pruning index entries already on the directory level. This
is a key limitation because RkNN query processing algo-
rithms are — like all similarity query processing algorithms
— I/O-bound. Thus, applying indexes is mandatory but
each directory entry of the index that needs to be refined
implies an I/O-intensive disc access. In fact any (directory
or leaf) entry E of an index can be pruned if the query ob-
jects q cannot be one of the k-nearest neighbors. Existing
approaches explore this pruning property of an index entry
in two differently ways. First, one part of approaches try
to estimate the k-nearest neighbor distance of each entry E
considering precomputed distances of the objects contained
in the sub-tree represented by E or other heuristics that
are tailored to specific properties of E like the number of
objects contained in the sub-tree representing E or the ex-
tension of the page region represented by E, etc. However,
none of these approaches consider other entries in order to
estimate the k-nearest neighbor distance of an entry. Sec-
ond, the other part of approaches try to identify candidate
results in order to prune index entries that have a smaller
distance to k candidates than to q. In other words, they
consider other objects in order to prune entries. However,
they cannot prune an entry because of another directory en-
try (i.e. they always need other fully refined database objects
for pruning) and an entry E can also not be pruned without
considering other entries/objects e.g. by using an estimation
of its k-nearest neighbor distance.

Obviously, both approaches complement each other but
each approach for its own may require more index node re-
finements invoking page accesses and, thus, may produce
higher I/O costs than necessary because it does not use all
potentials for pruning.

In this paper, we propose to combine both approaches to
achieve optimal pruning power and, thus, reduce query ex-
ecution time. In addition, through jointly using both prun-
ing paradigms we are able to combine their advantages by
fading out their further drawbacks not directly related to
their pruning strategy. As a consequence, to the best of

886

12th Int. Conf. on Extending Database Technology (EDBT'09), Saint-Peterburg, Russia, 2009.

our knowledge, this paper is the first contribution to solve
the generalized RkNN search problem for arbitrary metric
objects in a dynamic environment which is not tailored to
a specific data type or index structure. In particular, our
method provides the following new features:

1. It can be applied to general metric objects, i.e. databases
containing any type of complex objects as long as a
metric distance function is defined on these objects.
It does not use any specific index structure but works
with any hierarchically organized, tree-like access method.

2. It is applicable to the generalized RkNN problem where
the value of k is specified at query time. Thereby, the
maximal applicable value of k is not constrained by
any threshold kmax.

3. It does not rely on the precomputation of distances
and, thus, has no additional costs for inserting or delet-
ing objects from the database. Updates are processed
by the underlying index structure.

4. Due to the combination of both pruning-paradigms,
our approach — although being the most general solu-
tion — even outperforms the existing approaches de-
signed for a more specialized problem in terms of query
execution times.

The reminder of this paper is organized as follows. In Sec-
tion 2 we formally define the RkNN problem we want to solve
here, discuss recent approaches for this problem, and point
out our contributions. Section 3 explores how both existing
pruning strategies can be combined and extended to achieve
more pruning power during index traversal. In Section 4
these basic ideas are implemented to answer RkNN queries
efficiently. Our novel approach is experimentally evaluated
and compared to existing approaches using synthetic and
real-world datasets in Section 5. Last but not least, Section
6 concludes the paper.

2. SURVEY

2.1 Problem Defintion
Since we focus on the traditional reverse k-nearest neigh-

bor problem, we do not consider recent approaches for re-
lated or specialized reverse nearest neighbor tasks such as
the bichromatic case, mobile objects, etc. In the following,
we assume that D is a database of n objects, k ≤ n, and
dist is a metric distance function on the objects in D. The
set of k-nearest neighbors of an object q is the smallest set
NN k(q) ⊆ D that contains at least k objects from D such
that ∀o ∈ NN k(q),∀ô ∈ D−NN k(q) : dist(q, o) < dist(q, ô).
The object p ∈ NN k(q) with the highest distance to q is
called the k-nearest neighbor (kNN) of q. The distance
dist(q, p) is called k-nearest neighbor distance (kNN dis-
tance) of q, denoted by nndistk(q).

The set of reverse k-nearest neighbors (RkNN) of an object
q is then defined as

RNN k(q) = {p ∈ D | q ∈ NN k(p)}.
The naive solution to compute the RkNN of a query object
q is rather expensive. For each object p ∈ D, the kNN of p
is computed. If the distance between p and q is smaller or
equal to the kNN distance of p, i.e. dist(p, q) ≤ nndistk(q),
then q ∈ NN k(p) which in turn means that object p is a

RkNN of q, i.e. p ∈ RNN k(q). The runtime complexity
of answering one RkNN query is O(n2) because for all n
objects, a kNN query needs to be launched which requires
O(n) when evaluated by a sequential scan. The costs of an
RkNN query can be reduced to an average of O(n log n) if
an index such as the M-Tree [5] (or, if the objects are feature
vectors, the R-Tree [6] or the R*-Tree [4]) is used to speed-up
the kNN queries.

2.2 Related Work
Existing approaches for the RkNN search can be classified

as self-pruning approaches or mutual-pruning approaches.
Self-pruning approaches are usually designed on top of

a hierarchically organized tree-like index structure. They
usually try to estimate the kNN distance of each index en-
try E, i.e. E can be a database object or an intermediate
index node. If the kNN distance of E is smaller than the
distance of E to the query q then E can be pruned. Thereby,
self-pruning approaches usually estimate the kNN distance
of each index entry E by only considering special proper-
ties of E rather than taking also other objects (database
objects or index nodes) into account. Several approaches
use an exact estimation by simply precomputing kNN dis-
tances. The RNN-Tree [7] is an R-Tree-based index that
precomputes for each object p the distance to its 1NN, i.e.
nndist1(p). The objects are not stored in the index itself.
Rather, for each object p, the RNN-Tree manages a sphere
with radius nndist1(p), i.e. the data nodes of the tree con-
tain spheres around objects. The RdNN-Tree [15] extends
the RNN-Tree by storing the objects of the database itself
in an R-Tree rather than circles around them. For each ob-
ject p, the distance to p’s 1NN, i.e. nndist1(p), is aggregated.
For each leaf entry E, the maximum of the 1NN distances of
all objects in E is aggregated. An inner node of the RdNN-
Tree again aggregates the maximum 1NN distances of all its
child nodes. Thus, both the RNN-Tree and the RdNN-Tree
allow for pruning false hits already on the directory levels
of the underlying R-Tree. Due to the materialization of the
1NN distances of all data objects, both approaches need not
to compute 1NN queries for the remaining objects that are
not pruned because those objects contribute to the final re-
sult. In addition, the RdNN-Tree, can be extended to metric
spaces (e.g. by applying an M-Tree instead of an R-Tree).
However, since the kNN distances need to be materialized,
both approaches are limited to a fixed value of k and cannot
be generalized to answer RkNN-queries with arbitrary val-
ues of k. To overcome this problem, the MRkNNCoP-Tree
[2] has been proposed which is conceptually similar to the
RdNN-Tree but stores a conservative and progressive ap-
proximation for all kNN distances of any data object rather
than the exact kNN distance for one fixed k. The only limi-
tation is that k is constrained by a parameter kmax specify-
ing the maximal value of k that can be supported. For RkNN
queries with k > kmax, the MRkNNCoP-Tree cannot be ap-
plied. The conservative and progressive approximations of
any index node are propagated to the parent nodes. Using
these approximations, the MRkNNCoP-Tree can identify a
candidate set, true hits, and true drops. For each object in
the candidate set, a kNN query is launched for refinement.
A variant of the MRkNNCoP-Tree is proposed in [1, 3] that
achieves a further runtime improvement and gets rid of the
kmax bound for the value of k on the one hand but on the
other hand generates only approximative results, i.e. the re-

887

sults may contain false hits and are not guaranteed to be
complete. A different approach is proposed in [14] where a
method for RkNN search in metric spaces that is tailored
to the M-Tree is presented. The authors derive several rules
from the M-Tree structure that can be used to estimate the
kNN distance of an index entry. Each remaining database
object o that is contained in a non-pruned leaf node of the
M-Tree needs to be refined, i.e. a kNN query needs to be
computed for o.

Mutual-pruning approaches are usually designed for
the Euclidean space only and use other objects to prune
a given index entry e. For that purpose, they use special
geometric properties of the Euclidean space, typically the
concept of Voronoi cells. The basic idea is that given the
Voronoi-cell around the query object q, each object or index
node E can be pruned if E is beyond a Voronoi plane (for
k = 1). In [11] a two-way filter approach for supporting
R1NN queries based on this idea is proposed. The method
provides approximate solutions, i.e. may suffer from false
alarms and incomplete results. In [13] the first approach for
RkNN search was presented, that can handle arbitrary val-
ues of k. The method uses any hierarchical tree-based index
structure such as an R-Tree to compute a nearest neighbor
ranking of the query object q. The key idea is to itera-
tively construct a Voronoi cell around q from the ranking.
Objects that are beyond k Voronoi planes w.r.t. q can be
pruned and need not to be considered for Voronoi construc-
tion. The remaining objects must be refined, i.e. for each
of these candidates, a kNN query must be launched. In
[12], a different approach for R1NN search in a 2D data set
is presented. It is based on a partition of the data space
into six equi-sized units where the border lines of the units
are cut at the query object q. The 1NN of q in each unit
is determined and all these neighbors are merged together
to generate a candidate set. This considerably reduces the
cost for the nearest-neighbor queries. The candidates are
then refined by computing for each candidate c the nearest
neighbor. Since the number of units in which the candi-
dates are generated increases exponentially with the data
dimensionality, this approach is only applicable for 2D data
sets.

2.3 Discussion and Contributions
All recent methods for RkNN search suffer at least from

one of the following drawbacks. Self-pruning approaches
that rely on precomputed kNN distances are only applicable
for a fixed value of k (typically k = 1) or at least for a spe-
cific range 1 ≤ k ≤ kmax of values that needs to be specified
before index construction. In addition, the costs for recon-
structing the indexes in case of an update of the database are
very high. Thus, approaches that use precomputed distances
disqualify for a general solution. Self-pruning approaches
that rely on the estimation of the kNN distances of objects
or index entries from other heuristics than precomputed dis-
tances have less pruning power and do not use the distances
to other index entries in order to get more accurate estima-
tions. As a consequence, subtrees of an index need to be
refined although they might have been pruned because the
estimation of their kNN distances is too less accurate (but
would have been accurate enough when considering other
entries). On the other hand, mutual-pruning approaches
use geometric properties of the Euclidean space like Voronoi
cells that do not exist in general metric spaces and, thus,

E2E mutual pruning

E

E4

q
candidates

E1

q
self pruning E3

E xE5 x

Figure 1: Illustration of pruning potentials using a
fictive Euclidean dataset indexed by an R-Tree (see
text for details).

cannot be extended for metric databases. In addition, they
do not make use of the potentials of self-pruning, i.e. they
may need to traverse a subtree of the index although it can-
not qualify for the query due to an estimation of its kNN
distance (which may be derived without any precomputing).
In addition, both pruning strategies cannot identify true hits
but need additional refinement rounds. Even though these
refinement rounds can usually be processed rather efficiently,
each approach gives away the potentials of the other pruning
approach.

In this paper, we try to combine the potentials of self-
pruning (without any precomputation and materialization
of distances) and mutual-pruning in order to reduce the page
accesses during index traversal and producing the results of
a given RkNN query in one run through the index. Figure
1 visualizes the benefits of such an approach on a fictive
2D Euclidean database indexed by an R-Tree-like structure.
When using a self-pruning strategy without precomputation
that estimates the kNN distance of each entry from heuris-
tics that do not consider other entries (e.g. from the extend
of the region of the corresponding entry), we will be able to
prune only entries E5 and E2. Entry E1 has to be refined
although it could be pruned when considering E2. On the
other hand, a mutual-pruning approach like [13] needs at
least one exact object to prune other entries, i.e. E2 and E1

cannot prune each other. Here, only E3 could be pruned.
Entry E5 will never be pruned by any object in other entries,
so E5 needs to be refined anyway. However, in fact all entries
except E4 could be pruned in this situation when combining
both pruning strategies and extending the mutual-pruning
also to intermediate entries. This simple example illustrates
the potential benefit of our approach. In other words, the
aim of our novel method is to provide the advantages of the
mutual-pruning and the self-pruning approaches by fading
out the drawbacks of both, thus, providing the “best of two
worlds”. As a consequence — to the best of our knowledge
— this paper contributes the first solution for the general-
ized RkNN search problem applicable for arbitrary metric
data, not tailored to a specific index structure. Since our
approach does not require any RkNN search specific access
methods and no distance pre-computation it is qualified also
in a dynamic database environment where updates may oc-

888

o
o3

nn dist(o1)

o

o2

o1 q1
q2

oo4
query objects

(a) Pruning us-
ing exact kNN
distances.

LB_nn dist(o1)
UB di ()UB_nn dist(o1)

o1 q1
q22 q3

query objects

(b) Pruning us-
ing kNN distance
approximations.

Figure 2: Illustration of self-pruning.

cur frequently. In addition, our very general solution even
outperforms the existing approaches that are designed for a
more specialized problem in terms of query execution times
because of the advanced pruning capabilities that are de-
rived from the combination of the self-pruning and mutual-
pruning potentials.

3. RKNN SEARCH USING MULTIPLE PRUN-
ING STRATEGIES

3.1 Combining Multiple Pruning Strategies
As discussed above, we want to explore both self-pruning

as well as mutual pruning possibilities. Our approach is
based on an arbitrarily hierarchically organized tree-like in-
dex structure I, e.g. a R*-tree [4] or an M-tree [5]. The set
of objects managed in the subtree of an index entry E ∈ I
is denoted by subtree(E). Note, that the entry E can be
an intermediate node in I or an object in D. In the case
that the entry E ∈ I is an object (i.e. E = e ∈ D) then
subtree(E) = {e}. The basic idea of our approach is to ap-
ply the pruning strategy mentioned above during the traver-
sal of the index, i.e. to identify true drops and true hits as
early as possible in order to reduce the I/O cost by saving
unnecessary page accesses.

The existing self-pruning works as follows: Each object
o ∈ D can be pruned if its kNN distance is smaller than the
distance of o to the query object q. Otherwise o is a true hit.
Figure 2(a) illustrates this strategy. Object o1 is one of the
RkNNs of query object q1 because nndistk(o1) ≥ dist(o1, q1)
while it is not one of the RkNNs of query object q2 because
nndistk(o1) ≥ dist(o1, q2). However, as discussed above,
precomputation of all kNN distances for all possible values
of k is too expensive or even impossible and would addi-
tionally result in heavy computational costs for each update
of the database. Rather, we have to try to approximate
the kNN distances of each database object using heuris-
tics. Two kinds of heuristics are helpful. First, an up-
per bounding kNN distance approximation UB nn-dist(o)
for which nndistk(o) ≤ UB nn-dist(o) holds can be used to
prune true drops because if the upper bounding kNN dis-
tance approximation is smaller than the distance of o to the
query object q, i.e. dist(q, o) > UB nn-dist(o), then o can
be pruned. Second, a lower bounding kNN distance approx-
imation LB nn-dist(o) for which LB nn-dist(o) ≤ nn-dist(o)

E

x

E
q

(a) Pruning using
objects.

X

E
q

(b) Pruning us-
ing index entries
(here: R-Tree en-
tries).

Figure 3: Illustration of mutual-pruning.

holds can be used to identify true hits because if the lower
bounding kNN distance approximation is greater or equal
than the distance of o to the query object q, i.e. dist(q, o) ≤
LB nn-dist(o), then o is one of qs RkNNs. If LB nn-dist(o) <
dist(q, o) < UB nn-dist(o) we cannot make a decision on o.
In that case we have to try to get better approximations or
even compute the exact kNN distance of o. An example for
these decision rules is shown in Figure 2(b). While object
o1 is an RkNN of q1 but not an RkNN of q3, it cannot be
decided whether o is an RkNN of q2 or not. In fact, without
considering other objects or entries, approximations of the
kNN distances are usually hard to obtain for objects. On
the other hand, for intermediate entries in the underlying in-
dex structure, we can derive upper and lower bounds based
on the properties of the page region, e.g. [14] derives such
approximations for M-Tree entries. In this paper, we will in-
troduce general methods to derive distance approximations
for an entry E that are not tailored to any index structure
and additionally considers information about the distance
of E to other entries in the index. The later can be rather
beneficial because this way, a more accurate approximation
of the kNN distance of an entry can be computed.

The mutual-pruning strategy basically works with a simi-
lar idea — approximating the kNN distance of an entry, or,
more precisely, estimating the kNNs of an entry. The major
difference to the self-pruning approach is that it considers
the location of neighboring objects to estimate the kNNs of
an entry. So far, the existing implementations can only be
applied to Euclidean data: given the Voronoi cell around q
which is specified by a set of objects Vq ⊆ D, we know that
all objects o 6∈ Vq and corresponding entries E that are out-
side of this cell can be pruned when searching for the R1NN
of q because at least one of the objects in Vq that builds the
Voronoi cell has a smaller distance to o or all objects in E
than q Figure 3(a) illustrates this idea: an object x builds a
Voronoi hyperplane (dashed line) and entry E can be pruned
because it is beyond that line w.r.t. q. This idea can be ex-
tended to the general RkNN case by pruning objects that
are beyond k Voronoi hyperplanes. In order to apply this
strategy also for metric objects, we first generalize this idea
to metric spaces. Generally, given a Voronoi hyperplane Hx

between q and an object x ∈ D in a Euclidean space, the
fact that object o ∈ D “is beyond Hx” can be expressed by
dist(x, o) < dist(q, o). This expression no longer uses the
Euclidean geometry but only relys on distances and, thus,
can be applied to general metric objects. As a consequence,
for a R1NN query we can prune each (general metric) object

889

o ∈ D and each entry E of a metric index structure if there
is another object x ∈ D such that dist(x, o) < dist(q, o) and
dist(x, e) < dist(q, e) for all objects e ∈ subtree(E). Gener-
alizing this to RkNN search, we need k of such objects x ∈ D
in order to prune o or E as true drop. A second extension
to the original mutual-pruning approach is the following. So
far, object x must be a database object. Thus, before the
pruning can start, at least one object of the database (usu-
ally the NN of q) needs to be obtained from the index, i.e.
at least one path of the index root to the leaf needs to be
completely refined to get a candidate object x even though
x need not necessarily be an RkNN of q. This is a limitation
because, even on higher levels of the index we may generally
be able to perform mutual pruning. We generally may find
for a given entry E ∈ I k other entries X ∈ I such that for
all objects o ∈ subtree(E) there is an object x ∈ subtree(X)
with dist(x, o) < dist(q, o). This situation can be formalized
by the following inequality:

LB dist(E, q) > UB nn-dist(E),

where LB dist(E, q) is a lower bound of the distance of all
objects o ∈ subtree(E) to q and UB nn-dist(E) is an up-
per bounding estimation of the kNN distances of all objects
o ∈ subtree(E).

Let us note that this rule is equivalent to the pruning rule
of the self-pruning strategy using the lower bounding ap-
proximations for the kNN distance and the distance to the
query but already on a higher level of the index. If E is
an object (subtree(E) = e), then obviously LB dist(e, q) =
dist(e, q) and UB nn-dist(e) = nndistk(e). Analogously, we
can define a rule to identify true hits using the lower bound-
ing bounding kNN distance approximation of all objects in
subtree(E), denoted by LB nn-dist(E), and an upper bound
of the distance between E and q, denoted by UB dist(E, q).

Combining both pruning strategies, we end up with the
following rules: Assuming that the data objects are indexed
by any hierarchical index structure I, an entry E ∈ I

1. is a true hit if UB dist(E, q) < LB nn-dist(E),

2. is a true drop if LB dist(E, q) > UB nn-dist(E).

In summary, we have contributed the following advances
over existing approaches so far. We have first combined the
two separately existing pruning strategies into two rather
general pruning rules for any entry E that rely on abstract
upper and lower bounding approximations of (i) the distance
between E and q and (ii) the kNN distance of E. Especially
the estimations of the latter one are not constrained, i.e.
can be obtained from considering the structure of the page
region of E as well as the distance of E to other entries.
Second, we have extended the mutual-pruning concept such
that it can be applied to general metric data and to the
pruning at higher levels during the index traversal.

3.2 Computing Distance Approximations
The derived pruning rules rely on abstract distance ap-

proximations. In the following, we derive suitable distance
functions to estimate such distance approximations as accu-
rate as possible considering properties of the page regions
and the distance to other entries simultaneously.

Let q be a query object and E, E′ ∈ I be entries represent-
ing either directory nodes or objects. Our pruning strategies
are based on the lower bounding and upper bounding esti-

mation of the following distances: we assume that we are
able to estimate

• the distances of all objects in subtree(E) to the query
object q in order to derive an estimation for LB dist(E, q)
and UB dist(E, q);

• the distances of all objects in subtree(E) to all ob-
jects in subtree(E′) in order to derive an estimation for
LB nn-dist(E) and UB nn-dist(E) (as well as LB nn-dist(E′)
and UB nn-dist(E′), respectively);

• the distances between all objects in subtree(E) in order
to derive an estimation for LB nn-dist(E) and UB nn-dist(E).

In the following, we define distance approximations for
these distances.

Definition 1 (Distance Approximations). The fol-
lowing distance functions are defined on two index entries E
and E′ with the following properties:

MinDist(E, E′) always underestimates the distances between
the objects in subtree(E) and subtree(E′):

∀o ∈ subtree(E),∀o′ ∈ subtree(E′) :

MinDist(e, e′) ≤ dist(o, o′).

MaxDist(E, E′) always overestimates the distances between
the objects in subtree(E) and subtree(E′):

∀o ∈ subtree(E),∀o′ ∈ subtree(E′) :

MaxDist(E, E′) ≥ dist(o, o′).

MinMaxDist(E, E′) is the minimal overestimation of the dis-
tances between the objects in subtree(E) and subtree(E′):

∀o ∈ subtree(E),∃o′ ∈ subtree(E′) :

MinMaxDist(E, E′) ≥ dist(o, o′).

MaxMinDist(E, E′) is the maximal underestimation of the
distances between the objects in subtree(E) and subtree(E′):

∀o ∈ subtree(E),∃o′ ∈ subtree(E′) :

MaxMinDist(E, E′) ≤ dist(o, o′).

The definition of these distance approximations also works
if E and E′ are identical, i.e. subtree(E) = subtree(E′). In
that case, these distance functions estimate the kNN dis-
tances of E = E′ without considering other entries. In ad-
dition, if E′ = q the distance functions approximate the
distance of E to q.

In the following we present implementations of these four
distance approximations exemplarily for the case that the
regions of intermediate index entries are rectangular like in
R-Tree variants and for the case that the regions of inter-
mediate index entries are based on a covering radius and a
routing object like in M-Tree variants. Distance approxima-
tions based on M-tree nodes and R-tree nodes are illustrated
in Figure 4.

3.2.1 Implementations for R-Tree Nodes
Since, the minimum and maximum distance approxima-

tions between objects and node regions as well as between
two node regions are rather intuitive and already defined
in several publications concerning indexing, e.g. [10], here
we omit them due to space limitations. Rather, we want
to concentrate on the more specialized distance functions
MinMaxDist and MaxMinDist.

890

E

MinDist(E,E‘) E‘

MaxMinDist(E,E‘)

MaxDist(E E‘)

(,)

MaxDist(E,E)

MinMaxDist(E E‘)MinMaxDist(E,E)

(a) R-Tree.

E‘
E

c(E‘)c(E)
r(E‘)

MinDist(E,E‘)
r(E)

MinMaxDist(E E‘)
MaxMinDist(E,E‘)

MaxDist(E,E‘)
MinMaxDist(E,E)

(b) M-Tree.

Figure 4: Illustration of the distance approximations for Euclidean and metric index structures.

A definition of the MinMaxDist distance function defined
for an object and an R-Tree region can also be found in [10].
The MinMaxDist function defined for two intermediate R-
tree entries E and E′ is quite similar to the MinMaxDist
definition given in [10]. We assume that the page region
of an entry E which is a d-dimensional hyper-rectangle is
specified by its lower left corner (E1.l, . . . , Ed.l) and upper
right corner (E1.r, . . . , Ed.r). Furthermore, the center of the
page region is denoted by the vector (E1.m, . . . , Ed.m) with
Ei.m = (Ei.l + Ei.r)/2. The MinMaxDist function defined
for E and E′ can be computed as follows1:

MinMaxDist(E, E′) =

p

vuut min
1≤i≤d

((pEi − pE′
i)

p +

dX
j=1,j 6=i

dmax(Ej , E′
j)),

where dmax(Ej , E
′
j) = max{(Ej .u−E′

j .l)
p, (Ej .l−E′

j .u)p},

pE′
i =

E′

i.l , if Ei.m < E′
i.m

E′
i.u , if Ei.m ≥ E′

i.m

and

pEi =

Ei.l , if Ei.m < pE′

i

Ei.u , if Ei.m ≥ pE′
i

Note that here we assume that the distance function dist is
any Lp-norm. The intuition behind the above formula is to
find for each dimension i ∈ {1, . . . , d} one of the two border
hyper-planes of the rectangle associated with E′ which are
orthogonal to the dimension i and is closer to the farthest
point p ∈ subtree(E), i.e. p is enclosed by the rectangular re-
gion of E. Finally, the function MinMaxDist computes the
maximum distance between p and the corresponding hyper-
plane (cf. Figure 4(a)).

The function MaxMinDist can be defined analogously. Here,
we define MaxMinDist for two index entries E ∈ I and
E′ ∈ I regardless whether an entry E is an object or an
intermediate index node. This can be done, since an object
can be considered as a specialized region with no extension.

MaxMinDist(E, E′) =

1The nodes E and E′ are assumed to be dissimilar, i.e.
subtree(E) 6= subtree(E′).

p

vuut max
1≤i≤d

((pEi − pE′
i)

p +

dX
J=1,j 6=i

dmin(Ej , E′
j)),

where dmin(Ej , E
′
j) = max{0, (Ej .l−E′

j .u)p, (E′
j .l−Ej .u)p},

pE′
i =

E′

i.u , if Ei.m < E′
i.m

E′
i.l , if Ei.m ≥ E′

i.m

and

pEi =

8<: Ei.l , if Ei.l > pE′
i

Ei.u , if Ei.u < pE′
i

pE′
i , else

Figure 4(a) also illustrates all distance approximations for
the sample R-Tree entries. The special case where both en-
tries E ∈ I and E′ ∈ I are identical, i.e. subtree(E) =
subtree(E′) have to be considered separately. For an en-
try E ∈ I, we can only estimate MinMaxDist(E, E) =
MaxDist(E, E) and MaxMinDist(E, E) = MinDist(E, E).
For example, for the MinMaxDist(E, E) estimation, in the
worst case we have to assume an object o ∈ subtree(E) is lo-
cated at one corner of E and all other objects in subtree(E)
are located at the opposite corner of E. The distance be-
tween two opposite corners of an entry E obviously equals
MaxDist(E, E). The minimum distance can be derived anal-
ogously. Let us note that both the MinMaxDist and the
MaxMinDist functions — unlike MinDist and MaxDist —
are not symmetric in general.

3.2.2 Implementations for M-tree Nodes
For the distance estimations defined on M-tree entries we

do not need to distinguish between intermediate M-tree en-
tries and objects. The region of an entry E is defined by
means of a rooting object r(E) ∈ subtree(E) and a cover-
ing radius c(E) such that for all objects o ∈ subtree(E) it
holds that dist(o, r(E)) ≤ c(E). Each object o ∈ D defines
a degenerated region with routing object o and the cover-
ing radius c(o) = 0. Again, we omit the specification of the
well-known MinDist and MaxDist distance approximations
for M-tree entries due to space limitation. The MinMaxDist
function defined for two M-tree entries E ∈ I and E′ ∈ I is
defined as follows:

MinMaxDist(E, E′) = dist(r(E), r(E′)) + c(E).

891

A similar definition can be given for the function MaxMinDist:

MaxMinDist(E, E′) = max{0, dist(r(E), r(E′))− c(E)}.

Here, the special case that both entries E and E′ are iden-
tical, i.e. subtree(E) = subtree(E′) needs not be considered
separately. For example, the maximum distance of an ob-
ject in an M-tree entry E to its nearest neighbor in E can be
conservatively estimated by the covering radius c(E). Fig-
ure 4(b) also illustrates all distance approximations for two
sample M-Tree entries.

4. METRIC RKNN SEARCH
In the following we will first discuss how the combined

pruning strategies and distance approximations can be used
for R1NN search, i.e. k = 1. After that, we extend these
concepts to the general RkNN search, i.e. k ≥ 1.

4.1 The Basic R1NN Case
Now we want to explore how the distance approximations

defined above can be used to identify “true hits” and “true
drops” of a R1NN query as early as possible during the
traversal of an index I. In contrast to the other distance
approximations, the MaxMinDist function only plays a role
for k > 1. The reason for this is that identifying an in-
termediate entry E with |subtree(E)| > 1 as a true hit is
obviously not possible for k = 1 because we cannot estimate
all pairwise distances of the objects in subtree(E) and their
distances to q accurately.

Let q be the query object and E ∈ I an entry, i.e. an
object in D or an intermediate node of I. Recall that E can
be pruned, if for all objects o ∈ subtree(E), the distance to q
is greater than the distance to any other object o′ 6= o either
in the subtree of E or in the subtree of another index entry
E′ ∈ I. Transferred to the problem where only distance
approximations are available, entry E ∈ I can be pruned, if

∃E′ ∈ I : MinDist(E, q) > MinMaxDist(E, E′).

Here, it is assumed that at least one entry, E or E′ is an
intermediate index node which contains at least two objects
within their subtrees. In the case, that both entries E and E′

are objects, then we additionally need the condition E 6= E′

and MinMaxDist(E, E′) = dist(E, E′). In order to find an
entry E′ ∈ I which fulfills the above criterion, it suffices to
know the minimal MinMaxDist(E, E′) from E to all entries
E′ ∈ I which are neither predecessor nor successor of E,
i.e. E 6∈ subtree(E′) and E′ 6∈ subtree(E) holds. This mini-
mal MinMaxDist, denoted by MMMDist is formalized in the
following definition.

Definition 2 (Minimal MinMaxDist). Let I be an in-
dex structure and let the entry E be a database object or an
intermediate node in I. Furthermore, let
E := {E′ ∈ I |E 6∈ subtree(E′) ∧ E′ 6∈ subtree(E)}.
Then the minimal MinMaxDist of E, denoted by MMMDist(E),
is defined as follows:

MMMDist(E) = min
E′∈E

MinMaxDist(E, E′).

Obviously, MMMDist(E) is (the smallest currently avail-
able) upper bound of the 1NN distance of all objects in
subtree(E). Thus, if MMMDist(E) < MinDist(E, q) then
entry E ∈ I can be pruned. On the other hand, we are also
able to identify E as true hit but — as discussed above —

only if it is a database object and not an intermediate index
entry, i.e. subtree(E) = e. In that case, we can compute the
exact distance between e and q. The object e is a “true hit”,
if the following statement holds:

∀E′ ∈ I : MinDist(e, E′) ≥ dist(e, q).

Therefore, additional to the minimal MinMaxDist distance
we consider for each object the minimal MinDist distance
which is defined as follows:

Definition 3 (Minimal MinDist). Let I be an index
structure and let the entry e be a database object in I. Fur-
thermore, let E := {E′ ∈ I | e 6∈ subtree(E′)}.
Then the minimal MinDist of e, denoted by MMDist(e), is
defined as follows:

MMDist(e) = min
E′∈E

MinDist(e, E′).

Obviously, MMDist(E) is (the largest currently available)
lower bound of the 1NN distance of e. Thus, e is a true hit
if MMDist(e) ≥ dist(e, q).

Both the concept of the MMMDist and the concept of the
MMDist give us a starting point to develop an algorithm for
R1NN because we just need to keep the MMMDist values
for all candidate entries up to date during index traversal
in order to prune true drops. For candidate objects we can
additionally keep the MMDist values up-to-date in order to
identify true hits. This will enable us to retrieve the final
result with only one pass through the index, i.e. we will
not need additional refinement rounds where the true 1NN
distances of potential candidates are computed. We will
discuss the RkNN algorithm which is also valid for the R1NN
search problem in more details later.

4.2 The General RkNN Case
The concepts described above for k = 1 can be extended

to k ≥ 1. In general, the conversion from k = 1 to k ≥ 1
only requires that the distance to the kNN instead of the
1NN distance has to be taken into account in order to de-
cide whether an object or an intermediate index entry can
be pruned or reported as a true hit. However, this has signif-
icant impact on the distance estimations based on entry re-
gions. For example, since the MinMaxDist and MaxMinDist
functions relate to a single object of the subtree of a node, it
does not suffice any longer to make a worst-case distance es-
timation w.r.t. the kNNs. Rather, we need other constructs
for the approximations of the kNN distances.

The distance approximations which are associated with
one or two index entries relate to all objects which belong to
the subtrees of the corresponding entries. This means that
the distance approximations are related to a set of objects. If
we assume that the number of objects a particular distance
approximation relates to is known, we can use this informa-
tion in order to make better estimations of the kNN distance
of objects. For that purpose, we exploit the indexing con-
cept as proposed in [8], which allows to store with each index
entry E the number of objects covered by E, i.e. the aggre-
gate value |subtree(E)| is stored along with each entryE. For
example, the aggregate R-tree (aR-tree) [8, 9] is an instance
of this indexing concept. We can assign to each distance ap-
proximation between two index entries E, E′ ∈ I a number
of objects the distance approximation relates to. For ex-
ample, MinMaxDist(E, E′) is a distance approximation for
each object in subtree(E) and relates to exactly one object

892

Table 1: The count(d(E, E′)) values for the used dis-
tance approximations.

d(.,.) E = E′ E 6= E′

MinDist(E, E′) |subtree(E′)| − 2 |subtree(E′)| − 1
MaxMinDist(E, E′) 1 1

MaxDist(E, E′) |subtree(E′)| − 2 |subtree(E′)| − 1
MinMaxDist(E, E′) 1 1

in subtree(E′). The distance approximation MaxDist(E, E′)
which is assigned to each object in subtree(E) relates to
|subtree(E′)| objects. Let count(d(E, E′)) denote the num-
ber of objects for which a distance approximation d(E, E′)
relates to. Table 1 specifies the count() values for the dis-
tance approximations used here.

The rationale for subtracting one from |subtree(E′)| in
case of the MinDist and MaxDist function is that the dis-
tance of exactly one object in E′ is already approximated
more precisely by the MinMaxDist and MaxMinDist func-
tions, respectively. If both entries E and E′ are identi-
cal, then we additionally have to subtract one object from
subtree(E′) because the distance approximation of an ob-
ject o ∈ subtree(E′) can only relate to another object o′ ∈
subtree(E′) with o 6= o′.

The count function associated with the given distance ap-
proximations can be used to estimate the kNN distance of
an object o ∈ D in order to identify “true drops”. Similar to
the definition of the MMMDist which is used to prune can-
didates in case of k = 1, we define the k-MMMDist which
additionally take the number of objects into account, the
correspondingly exploited distance approximations MaxDist
and MinMaxDist relates to.

Definition 4 (k-th minimal MinMaxDist). Let I be
an index structure and let the entry E be an intermediate
entry or a database object in I. Furthermore, let
E := {E′ ∈ I |E 6∈ subtree(E′)}
and let D̂ =< d1, . . . , d2·|E| > be a sequence of 2 · |E| distance
approximations sorted in ascending order of their distance
values, such that for each entry E′ ∈ E we have
MinMaxDist(E, E′) ∈ D̂ and MaxDist(E, E′) ∈ D̂.
Then the k-th minimal MinMaxDist of E is defined as

k-MMMDist(E) = di ∈ D̂,

where di is the first distance in D̂ (in the order of the entries

in D̂) such that the following criterion is fulfilled:

iX
1=j

count(dj) ≥ k.

Obviously, the k-MMMDist(E) distance of an entry E ∈ I
is an upper bound of the kNN distances of all objects o ∈
subtree(E), i.e.

∀o ∈ subtree(E) : kNN-dist(o) ≤ k-MMMDist(E).

Thus, an entry E ∈ I can be pruned if k-MMMDist(E) <
MinDist(E, q).

The count function associated with the distance approxi-
mations MinDist and MaxMinDist can analogously be used
to identify true hits by estimating a lower bound of the kNN
distance of an object o ∈ D. This estimation is done by the
function k-MMDist which is the extension of the MMDist

defined above for k = 1. In contrast to the special case of
k = 1 we are now also able to identify intermediate entries E
if |subtree(E)| ≤ k. Thus, the function k-MMDist is defined
for arbitrary index entries, i.e. objects and intermediate en-
tries.

Definition 5 (k-th minimal MinDist). Let I be an in-
dex structure and let the entry E be an intermediate entry
or a database object in I. Furthermore, let
E := {E′ ∈ I |E 6∈ subtree(E′)}
and let D̂ =< d1, . . . , d2·|E| > be a sequence of 2 · |E| distance
approximations sorted in ascending order of their distance
values, such that for each entry E′ ∈ E we have MinMaxDist(E, E′) ∈
D̂ and MaxDist(E, E′) ∈ D̂. Then the k-th minimal MinDist
of E is defined as

k-MMDist(E) = di ∈ D̂,

where di is the first distance in D̂ (in the order of the entries

in D̂) such that the following criterion is fulfilled:

iX
j=1

count(dj) ≥ k.

Obviously, the k-MMDist(E) distance of an entry E ∈ I
is a lower bound of the kNN distances of all objects o ∈
subtree(E), i.e.

∀o ∈ subtree(E) : kNN-dist(o) ≥ k-MMDist(E).

Thus, an entry E ∈ I can be reported as true hit if k-MMDist(E) ≥
MinDist(E, q).

Similar to the special case k = 1 above, the values k-MMMDist
and k-MMDist of all entries can be used to formulate a
RkNN search algorithm that enables self-pruning of an entry
E at any index level as well as mutual-pruning of one entry
E w.r.t. another entry E′ at any index level. In addition,
the k-MMDist function can be used to identify true hits al-
ready for intermediate entries E as long as |subtree(E)| ≤ k.
This is beneficial because it saves I/O intensive disc accesses
necessary to refine E.

4.3 The RkNN Search Algorithm
The pseudocode of the algorithm for the RNN k query

is illustrated in Figure 6. First, we initialize a pruning
list prune, a result list result and a priority queue queue
which stores index entries E sorted in ascending order by
MinDist(q, E). The priority queue is initialized with the
root of the index I. Then we dequeue the first entry E of
queue. If E is a directory node, then E will be refined. The
refinement routine is depicted in Figure 7. Before the entry
E is refined we have to check which elements of queue will
be affected by the refinement of E, i.e. for which elements
the lower-bounding and upper-bounding kNN distance ap-
proximations kMMDist(E) and kMMMDist(E) have to
be updated. This obviously affects all elements c for which
MinDist(c, E) ≤ k-MMMDist(c) holds. These elements are
then stored in the list update. Next, the child entries Ei of E
have to be tested, whether they can be pruned or reported as
“true hits” by means of their kNN distance approximations
kMMDist(Ei) and kMMMDist(Ei). This is done by the
filter function apply filter(E,q,prune,result) which returns
true if E cannot be filtered and, thus, has to be inserted
into queue. Furthermore, the kNN distance approximations
of the elements of the update list update have to be updated

893

8MMDist(E)
8MMMDi (E)8MMMDist(E)

EE
3

o
4

E‘

4
o

Figure 5: Example: Object E cannot be refined any-
more, but there must exist at least one another re-
finement candidate E′.

w.r.t. the child entries of E and the aforementioned filter
function has to be applied on them.

If the entry E is a leaf entry, i.e. E is an object, then
E obviously cannot be refined. However, if we cannot de-
cide about the status of E as hit or drop yet, we have to
get better distance approximations. In fact, in this case
there must exist at least one other refinement candidate E′

which is a directory entry and which is responsible that E
can neither be pruned nor reported as“true hit”by the filter.
Such a candidate E′ definitely fulfills the following criterion:
MinDist(E, E′) ≤ k-MMDist(E). Obviously, there might be
more than one such candidate. We refine the candidate for
which MinDist(E, E′) is closest to k-MMDist(E). This sce-
nario is illustrated in Figure 5. Thereby, the numbers within
the directory nodes denotes the number of objects covered by
the corresponding node. In our algorithm this candidate is
returned by the function E.kth-next-entry(). After refining
E′ we have to update kMMDist(E) and kMMMDist(E)
w.r.t. the child entries of E′. Finally we have to check
whether E can be filtered or has to be reinserted into queue.
Note that if E′ is also a leaf entry, then the kNN distance
approximations of E equal the exact kNN distance. In that
case, we can finally decide about the status of E as true hit
or true drop. This complete procedure will be repeated until
the priority queue has no candidates anymore.

As discussed above, since we keep the kNN distance ap-
proximations up-to-date, we implement both the self-pruning
and the mutual-pruning paradigm. The algorithm produces
the final result in one index traversal without any refinement
rounds.

5. EXPERIMENTAL EVALUATION
We compared our novel approach, hereafter referred to as

“AKKRZ”, for RkNN search with a state-of-the-art approach
that do not use any precomputing. For Euclidean data we
used the “TPL” algorithm [13] which implements a mutual-
pruning strategy. For metric data “TPL” is not applicable.
All experiments are based on an R*-Tree for Euclidean data
or an M-Tree for metric data with a page size of 4K. Since all
approaches are I/O bound we compared the number of disc
pages accessed during the execution of 1,000 sample RkNN
queries and averaged the results or illustrate the results us-
ing box plots that display the mean value, the 25% quantile
and the 75% quantile.

5.1 Euclidean Data

RkNN(D,q)

// Initial lists
prune = EMPTY; result= EMPTY;
queue = EMPTY; // priority queue sorted by MinDist(q,E).
queue.add(D.root);

WHILE (queue is not empty) DO
E = queue.dequeue();
IF (E is a DirectoryEntry) THEN refine(E);
ELSE // E is a LeafEntry

E′ = E.kth-next-entry(); // see text for description
refine(E′)
FOR EACH (E′

i ∈ E′) DO
update k-MMMDist(E, E′

i)
update k-MMDist(E, E′

i)
END-FOR
IF apply filter(E,q,prune,result)=true THEN

queue.insert(E);
END-IF

END-IF
END-WHILE

END RkNN.

Figure 6: Pseudocode of the RNN k algorithm.

refine(E,q,queue,prune,result)

update = {c ∈queue|MinDist(c, E) ≤ k-MMMDist(c)};
FOR EACH Ei ∈ E DO

compute MinDist(Ei, q);
compute kMMMDist(Ei);
IF apply filter(E,q,prune,result)=true THEN

queue.insert(E);
END-IF

FOR EACH c ∈ update DO
update k-MMMDist(c, Ei);
update k-MMDist(c, Ei);
IF apply filter(c,q,prune,result)=false THEN

queue.remove(c);
END-IF

END-FOR
END-FOR

END refine.

Figure 7: Pseudocode of the refinement routine.

We first focus on Euclidean data and compared our AKKRZ
algorithm with the TPL algorithm on two synthetic datasets
and two real-world datasets. The first synthetic dataset
“DS1”contains uniformly distributed 2D points. The second
synthetic dataset “DS2” contains clustered 2D points. Both
datasets are depicted in Figure 9. The real-world dataset
“Genes” contains appr. 1,100 points in a 5D space repre-
senting the expression levels of genes. The real-world dataset
“Cloud” contains 9D weather parameters recorded at appr.
17,100 different locations in Germany.

Figure 10 displays the performance of the competitors on
the four datasets when processing R1NN queries. It can be
seen that our novel AKKRZ algorithm significantly outper-
forms the TPL approach in terms of I/O costs and, thus,
query execution times. The reason for this clear perfor-
mance boost over the mutual-pruning approach TPL can
be derived from Figure 11 where the number of self-pruned
objects, the number of mutual-pruned objects on the leaf
level, and the number of mutual-pruned objects on higher

894

apply filter(E,q,prune,result)
IF (k-MMMDist(E) < MinDist(E, q)) THEN

prune.add(E);
ELSE

compute k-MMDist(E);
IF (kMMDist(E) ≥ MinDist(E, q)) THEN

result.add(E);
ELSE

return true;
ENDIF

ENDIF
return false;

END apply filter criteria.

Figure 8: Pseudocode of the filter function.

(a) Dataset DS1 with
uniformly distributed
objects.

(b) Dataset DS2 with
clusters.

Figure 9: Synthetic datasets DS1 and DS2.

levels in the index are displayed separately for our AKKRZ
approach. As it can be seen, first, the combination of both
pruning strategies is beneficial and superior over using only
mutual-pruning on the leaf level of the index as done by
TPL. In addition, our AKKRZ algorithm can in contrast to
the TPL method also mutually prune on higher levels of the
index.

Next, we evaluated the scalability of the competitors w.r.t.
the number of data objects n. Figure 12 displays the results.
Again, the performance gain of our AKKRZ algorithm over
the TPL method remains significant with varying number of
data objects. In particular for large databases our method
outperforms the TPL method by up to two orders of mag-
nitude.

Last but not least, we evaluated the impact of the query
parameter k on the scalability of the competitors. The re-
sulting performances are visualized in Figure 13. It can be
observed that our AKKRZ algorithm still clearly outper-
forms the TPL approach even for higher k values when using
the Gene dataset. The reason for this may be that the self-
pruning becomes more efficient for this dataset. As can be
observed from the experiments on the DS1 dataset, for uni-
formly distributed data the difference between our approach
and the competitor becomes more evident.

5.2 Metric Data
We used the two synthetic datasets “DS1” and “DS2” to

evaluate our AKKRZ approach based on the M-tree. Here,
the distances are measured by the L1 norm.

00

es
se

s]
30

ag
e

ac
ce

20
0

O
 c

os
t[

p
10

0

I/O
0

DS1 DS2 Genes Cloud
AKKRZ TPL AKKRZ TPL AKKRZ TPL AKKRZ TPL

Figure 10: Comparison of AKKRZ and TPL pro-
cessing R1NN queries on four Euclidean datasets.

Figure 14 displays separately the number of self-pruned
objects and the number of mutual-pruned objects for our
AKKRZ approach. Similar to the results on Euclidean data
the results on metric data show that the combination of both
pruning strategies is beneficial and superior over using only
self-pruning.

5.3 Summary
In summary, the conducted experiments showed the fol-

lowing. Our novel approach clearly outperformed the com-
petitor even though it solves a more specialized version of
the problem. The reason for this is that our approach com-
bines multiple pruning strategies rather than implementing
only one pruning paradigm. As a consequence, our new algo-
rithm needs a significantly less number of disc page accesses
which in turn means less time to report the results of single
RkNN queries.

6. CONCLUSIONS
In recent years, several solutions for the RkNN problem

have been proposed. These solutions are limited by specific
assumptions. Some assume that the data is of a particu-
lar type (Euclidean/general metric) and use certain proper-
ties of the data spaces or data type specific data structures.
Others assume that the range of possible values for k is lim-
ited and that the database remains static, i.e. no updates
like insertions or deletions occur. In addition, existing ap-
proaches use only one particular pruning strategy, i.e. either
self-pruning or mutual-pruning, and, thus, waste possible
pruning potentials.

In this paper, we propose a general solution that only
assumes that the data is indexed by a tree-like access method
which is a rather realistic assumption because the processing
of similarity queries without index support is infeasible for
real-world database applications. In addition, our solution
extends the existing pruning strategies and combines them
in order to explore the full pruning potentials. In particular,
we presented a generalization of the mutual-pruning strategy
from Euclidean spaces to general metric spaces and discussed
how it can be used to prune as early as possible during
index traversal. Our experimental evaluation shows that our
very general solution outperforms the existing specialized

895

Euklidisch

1000

1200

pa
ge

s

600

800
self pruning

re
ct

or
y

p

400

600
mutual pruning (directory)

mutual pruning (leaf level)

pr
un

ed
di

0

200

#
p

0

DS1 DS2 Genes Clouds

datasets

(a) Pruning power w.r.t. directory nodes.
Euklidisch

ts 12000

14000

16000

ed
ob

je
ct

8000

10000

12000

self pruning

pr

un
e

4000

6000

8000
mutual pruning (directory)

mutual pruning (leaf level)

0

2000

datasets
DS1 DS2 Genes Clouds

(b) Pruning power w.r.t. data objects.

Figure 11: Benefit of different pruning strategies for
AKKRZ.

solutions significantly in terms of query execution times.
For future work, we plan to investigate how our solution

can be adapted to databases of continuously moving ob-
jects.

7. REFERENCES
[1] E. Achtert, C. Böhm, P. Kröger, P. Kunath,

A. Pryakhin, and M. Renz. Approximate reverse
k-nearest neighbor search in general metric spaces. In
Proc. CIKM, 2006.

[2] E. Achtert, C. Böhm, P. Kröger, P. Kunath,
A. Pryakhin, and M. Renz. Efficient reverse k-nearest
neighbor search in arbitrary metric spaces. In Proc.
SIGMOD, 2006.

[3] E. Achtert, C. Böhm, P. Kröger, P. Kunath,
A. Pryakhin, and M. Renz. Efficient reverse k-nearest
neighbor estimation. In Proc. BTW, 2007.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-Tree: An efficient and robust access
method for points and rectangles. In Proc. SIGMOD,
pages 322–331, 1990.

[5] P. Ciaccia, M. Patella, and P. Zezula. M-Tree: an
efficient access method for similarity search in metric
spaces. In Proc. VLDB, 1997.

[6] A. Guttman. R-Trees: A dynamic index structure for
spatial searching. In Proc. SIGMOD, pages 47–57,

ss
es

]

1000

10000

TPL

ag
e

ac
ce

s

100

1000

O
 c

os
t[

pa

10

AKKRZ

I/O

1

250 500 1000 2000 5000 10000 20000 50000

data objects

Figure 12: Scalability of the competitors w.r.t. the
dataset size.

1984.

[7] F. Korn and S. Muthukrishnan. Influenced sets based
on reverse nearest neighbor queries. In Proc.
SIGMOD, 2000.

[8] I. Lazaridis and S. Mehrotra. Progressive approximate
aggregate queries with a multi-resolution tree
structure. In Proc. SIGMOD, 2001.

[9] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao.
Efficient olap operations in spatial data warehouses. In
Proc. SSTD, 2001.

[10] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In SIGMOD ’95: Proceedings of the
1995 ACM SIGMOD international conference on
Management of data, San Jose, California, United
States, pages 71–79, 1995.

[11] A. Singh, H. Ferhatosmanoglu, and A. S. Tosun. High
dimensional reverse nearest neighbor queries. In Proc.
CIKM, 2003.

[12] I. Stanoi, D. Agrawal, and A. E. Abbadi. Reverse
nearest neighbor queries for dynamic databases. In
Proc. DMKD, 2000.

[13] Y. Tao, D. Papadias, and X. Lian. Reverse kNN search
in arbitrary dimensionality. In Proc. VLDB, 2004.

[14] Y. Tao, M. L. Yiu, and N. Mamoulis. Reverse nearest
neighbor search in metric spaces. IEEE TKDE,
18(9):1239–1252, 2006.

[15] C. Yang and K.-I. Lin. An index structure for efficient
reverse nearest neighbor queries. In Proc. ICDE, 2001.

896

cluster dataset (DS1)

250

ss
es

]

200

ag
e

ac
ce

s

100

150

TPL

AKKRZ

O
 c

os
t[

pa

50

100 AKKRZ

I/O

0

1 2 4 8 16 32 64

k

(a) DS1.
cluster dataset (DS2)

120

100

ss
es

]

60

80

TPL

ag
e

ac
ce

s

40

AKKRZ

O
 c

os
t[

pa

0

20

1 2 4 8 16 32 64

I/O

1 2 4 8 16 32 64

k

(b) DS2.
cluster dataset (Gene)

400

ss
es

]

300

350

400

ag
e

ac
ce

s

200

250

TPL

O
 c

os
t[

pa

50

100

150 AKKRZ

I/O

0

50

1 2 4 8 16 32 64

k

(c) Gene.

Figure 13: Performance of the competitors w.r.t.
different values of k.

Metrisch (Manhattan)

ag
es

350

400

ec
to

ry
pa

200

250

300

350

self pruning

l

un
ed

di
re

50

100

150

200 mutual pruning
(directory)

mutual pruning (leaf
level)

d t t

pr

u

0

50

DS1 DS2

)

datasets

(a) Pruning power w.r.t. directory nodes.
Metrisch (Manhattan)

s

3000

3500

d
ob

je
ct

s

2000

2500
self pruning

pr

un
ed

1000

1500
mutual pruning
(directory)

mutual pruning (leaf
level)

0

500

S1 S2

level)

datasets
DS1 DS2

(b) Pruning power w.r.t. data objects.

Figure 14: Benefit of different pruning strategies for
AKKRZ.

897

