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Abstract. Structured and semi-structured object representations are getting more
and more important for modern database applications. Examples for such data are
hierarchical structures including chemical compounds, XML data or image data.
As a key feature, database systems have to support the search for similar objects
where it is important to take into account both the structure and the content fea-
tures of the objects. A successful approach is to use the edit distance for tree
structured data. As the computation of this measure is NP-complete, constrained
edit distances have been successfully applied to trees. While yielding good re-
sults, they are still computationally complex and, therefore, of limited benefit for
searching in large databases. In this paper, we propose a filter and refinement
architecture to overcome this problem. We present a set of new filter methods
for structural and for content-based information in tree-structured data as well
as ways to flexibly combine different filter criteria. The efficiency of our meth-
ods, resulting from the good selectivity of the filters is demonstrated in extensive
experiments with real-world applications.

1 Introduction

Recently, databases are used more and more to store complex objects from scientific,
engineering or multimedia applications. In addition to a variety of content-based at-
tributes, complex objects typically carry some kind of internal structure which often
forms a hierarchy. Examples of such data include chemical compounds, CAD drawings,
XML documents, web sites or color images. The efficient search for similar objects in
such databases, for example to classify new objects or to cluster database objects, is a
key feature in those application domains. Beside the internal structure of the objects,
the content information stored in the tree structure determines the similarity of different
objects, too. Whereas the concept of feature vectors has proven to be very successful
for unstructured content data, we particularly address the internal structure of similar
objects. For this purpose we discuss several similarity measures for trees as proposed
in the literature [1–3]. These measures are well suited for hierarchical objects and have
been applied to web site analysis [4], structural similarity of XML documents [5], shape
recognition [6] and chemical substructure search [4], for instance. A general problem
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of all those measures is their computational complexity, which makes them unsuitable
for large databases. The core idea of our approach is to apply a filter criterion to the
database objects in order to obtain a small set of candidate answers to a query. The final
result is then retrieved from this candidate set through the use of the original complex
similarity measure. This filter-refinement architecture reduces the number of expensive
similarity distance calculations and speeds up the search process. To extend this concept
to the new problem of searching similar tree structures, efficient and effective filters for
structural properties are required. In this paper, we propose several new filter methods
for tree structures and also demonstrate how to combine them with filters for content
information in order to obtain a high filter selectivity.

In the next section, we discuss several measures for structural similarity. In section
3, the concept of a filter-refinement architecture is presented, while section 4 deals with
our filter methods. Finally, we present an experimental evaluation of our filters, before
we conclude the paper.

2 Structural similarity

Quantifying the similarity of two trees requires a structural similarity measure. There
exist several similarity measures for general graphs in the literature [7–9]. All of them
either suffer from a high computational complexity or are limited to special graph types.
Papadopoulos and Manolopoulos presented a measure based on certain edit operations
for general graphs [10]. They use the degree sequence of a graph as feature vector and
the Manhattan distance between the feature vectors as similarity measure. While their
measure can be calculated efficiently, it is not applicable to attributed graphs. Con-
sequently, special distance measures for labeled trees which exploit the structure and
content of trees become necessary. Jiang, Wang and Zhang [1] suggested a measure
based on a structural alignment of trees. They also prove that the structural alignment
problem for trees is NP-hard if the degree of the trees is not bounded. Selkow [2] pre-
sented a tree-to-tree editing algorithm for ordered labeled trees. It is a first step towards
the most common approach to measure tree similarity, which is the edit distance. The
edit distance, well known from string matching [11, 12], is the minimal number of edit
operations necessary to transform one tree into the other. There are many variants of
the edit distance known, depending on which edit operations are allowed. The basic
form allows two edit operations, i.e. the insertion and the deletion of a tree node. The
insertion of a noden in a tree below a nodep means thatp becomes the parent ofn
and a subset ofp’s children becomen’s children. The deletion of a node is the inverse
operation to the insertion of the node. In the case of attributed nodes, as they appear in
most real world applications, the change of a node label is introduced as a third basic
operation. Using those operations, we can define the edit distance between two trees as
follows.

Definition 1 (edit sequence, cost of an edit sequence).An edit operatione is the inser-
tion, deletion or relabeling of a node in a treet. Each edit operatione is assigned a non-
negative costc(e). The cost of a sequence of edit operationsS = 〈e1, . . . , em〉, c(S), is
defined as the sum of the cost of each edit operation inS, i.e.c(S) = c(e1)+. . .+c(em).



Definition 2 (edit distance).The edit distance between two treest1 andt2,ED(t1, t2),
is the minimum cost of all edit sequences that transformt1 into t2:
ED(t1, t2) = min{c(S)|S a sequence of edit operations transforming t1 into t2}

A great advantage of using the edit distance as a similarity measure is that along
with the distance value, a mapping between the nodes in the two trees is provided in
terms of the edit sequence. The mapping can be visualized and can serve as an explana-
tion of the similarity distance to the user. This is especially important in the context of
similarity search, as different users often have a different notion of similarity in mind.
Here, an explanation component can help the user to adapt weights for the distance mea-
sure in order to reflect the individual notion of similarity. Zhang, Statman and Shasha,
however, showed that computing the edit distance between unordered labeled trees is
NP-complete [13]. Obviously, such a complex similarity measure is unsuitable for large
databases. To overcome this problem, Zhang proposed a constrained edit distance be-
tween trees, the degree-2 edit distance. The main idea behind this distance measure is
that only insertions or deletions of nodes with a maximum number of two neighbors are
allowed.

Definition 3 (degree-2 edit distance).The edit distance between two treest1 and t2,
ED2(t1, t2), is the minimum cost of all degree-2 edit sequences that transformt1 into
t2 or vice versa. A degree-2 edit sequence consists only of insertions or deletions of
nodesn with degree(n) ≤ 2, or of relabelings:
ED2(t1, t2) = min{c(S)|S is a degree-2 edit sequence transforming t1 into t2}

One should note that the degree-2 edit distance is well defined in the sense that two
trees can always be transformed into each other by using only degree-2 edit operations.
In [14] an algorithm is presented to compute the degree-2 edit distance inO(|t1||t2|D)
time, whereD is the maximum of the degrees oft1 andt2 and |ti| denotes the num-
ber of nodes inti. Whereas this measure has a polynomial time complexity, it is still
too complex for the use in large databases. To overcome this problem, we extend the
paradigm of filter-refinement architectures to the context of structural similarity search.

3 Multistep query processing

The main goal of a filter-refinement architecture, as depicted in figure 1, is to reduce
the number of complex and time consuming distance calculations in the query process.
To achieve this goal, query processing is performed in two or more steps. The first step
is a filter step which returns a number of candidate objects from the database. For those
candidate objects the exact similarity distance is then determined in the refinement step
and the objects fulfilling the query predicate are reported. To reduce the overall search
time, the filter step has to fulfill certain constraints. First, it is essential, that the filter
predicate is considerably easier to determine than the exact similarity measure. Second,
a substantial part of the database objects must be filtered out. Obviously, it depends on
the complexity of the similarity measure what filter selectivity is sufficient. Only if both
conditions are satisfied, the performance gain through filtering is greater than the cost
for the extra processing step.
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Fig. 1.The filter-refinement architecture.

Additionally, the completeness of the filter step is an important property. Complete-
ness in this context means that all database objects satisfying the query condition are
included in the candidate set. Available similarity search algorithms guarantee com-
pleteness if the distance function in the filter step fulfills the following lower-bounding
property. For any two objectsp andq, a lower-bounding distance functiondlb in the
filter step has to return a value that is not greater than the exact distancede of p and
q, i.e. dlb(p, q) ≤ de(p, q). With a lower-bounding distance function it is possible to
safely filter out all database objects which have a filter distance greater than the cur-
rent query range because the similarity distance of those objects cannot be less than the
query range.

Using a multi-step query architecture requires efficient algorithms which actually
make use of the filter step. Agrawal, Faloutsos and Swami proposed such an algorithm
for range search [15]. In [16] a multi-step algorithm for k-nearest-neighbor search is
presented, which is optimal in the sense that the minimal number of exact distance
calculations are performed during query processing.

4 Structural and content-based filters for unordered trees

In this section, we introduce several filtering techniques that support efficient similarity
search for tree-structured data. Whereas single-valued features including the height of
a tree, the number of nodes, or the degree of a tree, are of limited use, as we learned
from preliminary experiments, we propose the use of feature histograms The advan-
tage of this extension is that there is more information provided to the filter step for the
purpose of generating candidates and, thus, the discriminative power is increased. Addi-
tionally, a variety of multidimensional index structures and efficient search algorithms
are available for vector data including histograms. The particular feature histograms
which we propose in the following are based on the height, the degree or the label of
individual nodes.

4.1 Filtering based on the height of nodes

A promising way to filter unordered trees based on their structure is to take the height
of nodes into account. A very simple technique is to use the height of a tree as a single
feature. The difference of the height of two trees is an obvious lower bound for the
edit distance between those trees, but this filter clearly is very coarse, as two trees with
completely different structure but the same height cannot be distinguished.

A more fine-grained and more sensitive filter can be obtained by creating a his-
togram of node heights in a tree and using the difference between those histograms as



Fig. 2.A single insertion can change the distance to the root for several nodes.

a filter distance. A first approach is to determine the distance of each node in the tree to
the root node and then to store the distribution of those values in a histogram. Unfortu-
nately, the distance between two such histograms is not guaranteed to be a lower bound
for the edit distance or the degree-2 edit distance between the original trees. As can be
seen in figure 2, the insertion of a single node may change the height of all nodes in its
subtree. Thus, the number of affected histogram bins is only bounded by the height of
the tree.

Therefore, we propose a different approach to consider the height of a node. Instead
of the distance of a node from the root, its leaf distance is used to approximate the
structure of a tree.

Definition 4 (leaf distance).The leaf distancedl(n) of a noden is the maximum length
of a path fromn to any leaf node in the subtree rooted atn.

Based on this definition, we introduce the leaf distance histogram of a tree as illus-
trated in figure 3.

Definition 5 (leaf distance histogram).The leaf distance histogramhl(t) of a treet
is a vector of lengthk = 1 + height(t) where the value of any bini ∈ 0, . . . , k is the
number of nodes that share the leaf distancei, i.e.hl(t)[i] = |n ∈ t, dl(n) = i|.

For the proof of the following theorem the definition of a maximum leaf path is
useful:

Definition 6 (maximum leaf path). A maximum leaf path (MLP) of a noden in a tree
t is a path of maximum length fromn to a leaf node in the subtree rooted byn.
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Fig. 3.Leaf distance of nodes and leaf distance histogram.
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An important observation is that adjacent nodes on an MLP are mapped to adjacent
bins in the leaf distance histogram as illustrated in figure 4.

Theorem 1. For any two treest1 andt2, theL1-distance of the leaf distance histograms
is a lower bound of the edit distance oft1 andt2:

L1(hl(t1), hl(t2)) ≤ ED(t1, t2)

Proof. Given two arbitrary treest0 and tm, let us consider an edit sequenceS =
〈S1, . . . , Sm〉 that transformst0 to tm. We proceed by induction over the lengthm =
|S|. If m = 0, i.e.S = 〈〉 andt0 = tm, the values ofL1(hl(t0), hl(tm)) and ofc(S)
both are equal to zero. Form > 0, let us assume that the lower-bounding property al-
ready holds for the treest0 andtm−1, i.e.L1(hl(t0), hl(tm−1)) ≤ c(〈S1, . . . , Sm−1〉).
When extending the sequence〈S1, . . . , Sm−1〉 by Sm to S, the right hand side of the
inequality is increased byc(Sm) = 1.

The situation on the left hand side is as follows. The edit stepSm may be a rela-
beling, an insertion or a deletion. Obviously, the effect on the leaf distance histogram
hl(tm−1) is void in case of a relabeling, i.e.hl(tm) = hl(tm−1), and the inequality
L1(hl(t0), hl(tm)) = L1(hl(t0), hl(tm−1)) ≤ c(S) holds.

The key observation for an insert or a delete operation is that only a single bin is
affected in the histogram in any case. When a nodeν is inserted, for all nodes below
the insertion point, clearly, the leaf distance does not change. Only the leaf distance
of any predecessor of the inserted node may or may not be increased by the insertion.
Therefore, ifν does not belong to an MLP of any of its predecessors, only the bin
affected by the inserted node is increased by one. This means that in the leaf distance
histogram exactly one bin is increased by one. On the other hand, if an MLP of any
of the predecessors ofν containingν exists, then we only have to consider the longest
of those MLPs. Due to the insertion, this MLP grows in size by one. As all nodes
along the MLP are mapped into consecutive histogram bins, exactly one more bin than
before is influenced by the nodes on the MLP. This means that exactly one bin in the leaf
distance histogram changes due to the insertion. As insertion and deletion are symmetric
operations, the same considerations hold for the deletion of a node.

The preceding considerations hold for all edit sequences transforming a treet1 into
a treet2 and particularly include the minimum cost edit sequence. Therefore, the lower-
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Fig. 5. Folding techniques for histograms: The technique of Papadopoulos and Manolopoulos
(top) and the modulo folding technique (bottom).

bounding relationship immediately holds for the edit distanceED(t1, t2) of two trees
t1 andt2, too.

It should be noticed that the above considerations do not only hold for the edit
distance but also for the degree-2 edit distance. Therefore, the following theorem allows
us also to use leaf-distance histograms for the degree-2 edit distance.

Theorem 2. For any two treest1 andt2, theL1-distance of the leaf distance histograms
is a lower bound of the degree-2 edit distance oft1 andt2:

L1(hl(t1), hl(t2)) ≤ ED2(t1, t2)

Proof. Analogously to the proof of theorem 1.

Theorem 1 and 2 also allow us to use leaf distance histograms as a filter for the
weighted edit and weighted degree-2 edit distance. This statement is justified by the
following considerations. As shown above, theL1-distance of two leaf distance his-
tograms gives a lower bound for the insert and delete operations that are necessary to
transform the two corresponding trees into each other. This fact also holds for weighted
relabeling operations, as weights do not have any influence on the necessary structural
modifications. But even when insert/delete operations are weighted, our filter can be
used as long as their exists a smallest possible weightwmin for an insert or delete
operation. In this case, the term(L1(hl(t1), hl(t2)) · wmin) is a lower bound for the
weighted edit and degree-2 edit distance between the treest1 andt2. Since we assume
metric properties as well as the symmetry of insertions and deletions for the distance,
the triangle inequality guarantees the existence of such a minimum weight. Otherwise,
any relabeling of a node would be performed cheaper by a deletion and a corresponding
insertion operation. Moreover, structural differences of objects would be reflected only
weakly if structural changes are not weighted properly.

Histogram folding. Another property of leaf distance histograms is that their size
is unbounded as long as the height of the trees in the database is also unbounded. This
problem arises for several feature vector types, including the degree histograms pre-
sented in section 4.2. Papadopoulos and Manolopoulos [10] address this problem by
folding the histograms into vectors with fixed dimension. This is done in a piecewise



grouping process. For example, when a 5-dimensional feature vector is desired, the first
one fifth of the histogram bins is summed up and the result is used as the first compo-
nent of the feature vector. This is done analogously for the rest of the histogram bins.
The above approach could also be used for leaf distance histograms, but it has the disad-
vantage that the maximal height of all trees in the database has to be known in advance.
For dynamic data sets, this precondition cannot be fulfilled. Therefore, we propose a
different technique that yields fixed-size n-dimensional histograms by adding up the
values of certain entries in the leaf distance histogram. Instead of summing up adjacent
bins in the histogram, we add up those with the same index modulo n, as depicted in
figure 5. This way, histograms of distinct length can be compared, and there is no bound
for the length of the original histograms.

Definition 7 (folded histogram). A folded histogramhfn(h) of a histogramh for a
given parametern is a vector of sizen where the value of any bini ∈ 0, . . . , n− 1 is
the sum of all binsk in h with k mod n = i, i.e.

hfn(h)[i] =
∑

k=0...(|h|−1)∧k mod n=i

h[k]

The following theorem justifies to use folded histograms in a multi-step query pro-
cessing architecture.

Theorem 3. For any two histogramsh1 and h2 and any parametern ≥ 1, theL1-
distance of the folded histograms ofh1 andh2 is a lower bound for theL1-distance of
h1 andh2:

L1(hfn(h1), hfn(h2)) ≤ L1(h1, h2)

Proof. Let len = n · dmax(h1,h2)
n e be the length ofh1 andh2. If necessary,h1 andh2

are extended with bins containing 0 until|h1| = len and|h2| = len. Then the following
holds:

L1(hfn(h1), hfn(h2))

=
n−1∑
i=0

∣∣∣∣∣∣∣
∑

k=0...((|h1|−1)
∧k MOD n=i

h1[k]−
∑

k=0...((|h2|−1)
∧k MOD n=i

h2[k]

∣∣∣∣∣∣∣
=
n−1∑
i=0

∣∣∣∣∣∣
(len DIV n)−1∑

j=0

h1[i+ j · n]−
(len DIV n)−1∑

j=0

h2[i+ j · n]

∣∣∣∣∣∣
≤
n−1∑
i=0

(len DIV n)−1∑
j=0

|h1[i+ j · n]− h2[i+ j · n]|

=
len∑
j=0

|h1[k]− h2[k]

= L1(h1, h2)



4.2 Filtering based on degree of nodes

The degrees of the nodes are another structural property of trees which can be used
as a filter for the edit distances. Again, a simple filter can be obtained by using the
maximal degree of all nodes in a treet, denoted bydegreemax(t), as a single feature.
The difference between the maximal degrees of two trees is an obvious lower bound for
the edit distance as well as for the degree-2 edit distance. As before, this single-valued
filter is very coarse and using a degree histogram clearly increases the selectivity.

Definition 8 (degree histogram).The degree histogramhd(t) of a treet is a vector of
lengthk = 1 + degreemax(t) where the value of any bini ∈ 0, . . . , k is the number of
nodes that share the degreei, i.e.hd(t)[i] = |n ∈ t, degree(n) = i|.

Theorem 4. For any two treest1 and t2, theL1-distance of the degree histograms
divided by three is a lower bound of the edit distance oft1 andt2:

L1(hd(t1), hd(t2))
3

≤ ED(t1, t2)

Proof. Given two arbitrary treest0 and tm, let us consider an edit sequenceS =
〈S1, . . . , Sm〉 that transformst0 into tm. We proceed by induction over the length of the
sequencem = |S|. If m = 0, i.e.S = 〈〉 andt0 = tm, the values ofL1(hd(t0),hd(tm))

3
and ofc(S) both are equal to zero. Form > 0, let us assume that the lower-bounding
property already holds fort0 andtm−1, i.e. L1(hd(t0),hd(tm−1))

3 ≤ c(〈S1, . . . , Sm−1〉).
When extending the sequence〈S1, . . . , Sm−1〉 by Sm to S, the right hand side of the
inequality is increased byc(Sm) = 1. The situation on the left hand side is as follows.
The edit stepSm may be a relabeling, an insert or a delete operation. Obviously, for a
relabeling, the degree histogramhd(tm−1) does not change, i.e.hd(tm) = hd(tm−1)
and the inequalityL1(hd(t0),hd(tm))

3 = L1(hd(t0),hd(tm−1))
3 ≤ c(S) holds.

The insertion of a single node affects the histogram and theL1-distance of the his-
tograms in the following way:

1. The inserted noden causes an increase in the bin ofn’s degree. That may change
theL1-distance by at most one.

2. The degree ofn’s parent nodepmay change. In the worst case this affects two bins.
The bin ofp’s former degree is decreased by one while the bin of its new degree
is increased by one. Therefore, theL1-distance may additionally be changed by at
most two.

3. No other nodes are affected.

From the above three points it follows that theL1-distance of the two histograms
hd(tm−1) andhd(tm) changes by at most three. Therefore, the following holds:

L1(hd(t0), hd(tm))
3

≤ L1(hd(t0), hd(tm−1)) + 3
3

L1(hd(t0), hd(tm))
3

≤ L1(hd(t0), hd(tm−1)
3

+ 1

L1(hd(t0), hd(tm))
3

≤ c(〈S1, . . . , Sm−1〉) + 1



L1(hd(t0), hd(tm))
3

≤ c(〈S1, . . . , Sm−1, Sm〉)

L1(hd(t1), hd(t2))
3

≤ ED(t1, t2)

As the above considerations also hold for the degree-2 edit distance, theorem 4
holds analogously for this similarity measure.

4.3 Filtering based on node labels

Apart from the structure of the trees, the content features, expressed through node la-
bels, have an impact on the similarity of attributed trees. The node labels can be used
to define a filter function. To be useful in our filter-refinement architecture, this filter
method has to deliver a lower bound for the edit cost when transforming two trees into
each other. The difference between the distribution of the values within a tree and the
distribution of the values in another tree can be used to develop a lower-bounding fil-
ter. To ensure efficient evaluation of the filter, the distribution of those values has to be
approximated for the filter step.

One way to approximate the distribution of values is to use histograms. In this case,
ann-dimensional histogram is derived by dividing the range of the node label inton
bins. Then, each bin is assigned the number of nodes in the tree whose value is in the
range of the bin. To estimate the edit distance or the degree-2 edit distance between two
trees, half of theL1-distance of their corresponding label histograms is appropriate.
A single insert or delete operation changes exactly one bin of such a label histogram,
a single relabeling operation can influence at most two histogram bins. If a node is
assigned to a new bin after relabeling, the entry in the old bin is decreased by one
and the entry in the new bin is increased by one (cf. figure 6). Otherwise, a relabeling
does not change the histogram. This method also works for weighted variants of the
edit distance and the degree-2 edit distance as long as there is a minimal weight for a
relabeling operation. In this case, the calculated filter value has to be multiplied by this
minimal weight in order to gain a lower-bounding filter.

This histogram approach applies to discrete label distributions very well. However,
for continuous label spaces, the use of a continuous weight function which may become
arbitrarily small, can be reasonable. In this case, a discrete histogram approach can not
be used. An example for such a weight function is the Euclidean distance in the color
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Fig. 6.A single relabeling operation may result in a label histogram distance of two.
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Fig. 7.Filtering for continuous weight functions.

space, assuming trees where the node labels are colors. Here, the cost for changing a
color value is proportional to the Euclidean distance between the original and the target
color. As this distance can be infinitely small, it is impossible to estimate the relabeling
cost based on a label histogram as in the above cases.

More formally, when using the term ’continuous weight function’ we mean that the
cost for changing a node label from valuex1 to valuex2 is proportional to|x1 − x2|.
Let maxdiff be the maximal possible difference between two attribute values. Then
|x1 − x2| has to be normalized to[0, 1] by dividing it throughmaxdiff , assuming that
the maximal cost for a single insertion, deletion or relabeling is one. To develop a filter
method for attributes with such a weight function, we exploit the following property of
the edit distance measure. The cost-minimal edit sequence between two trees removes
the difference between the distributions of attribute values of those two trees. It does
not matter whether this is achieved through relabelings, insertions or deletions.

For our filter function we define the following feature valuef(t) for a treet:

f(t) =
|t|∑
i=1

|xi|

Herexi is the attribute value of thei-th node int and|t| is the size of treet. The absolute
difference between two such feature values is an obvious lower bound for the difference
between the distribution of attribute values of the corresponding trees. Consequently, we
use

dfilter(t1, t2) =
|f(t1)− f(t2)|

maxdiff

as a filter function for continuous label spaces, see figure 7 for an illustration. Once
more, the above considerations also hold for the degree-2 edit distance.

To simplify the presentation we assumed that a node label consists of just one single
attribute. But usually a node will carry several different attributes. If possible, the at-
tribute with the highest selectivity can be chosen for filtering. In practice, there is often
no such single attribute. In this case, filters for different attributes can be combined with
the technique described in the following section.



4.4 Combining filter methods

All of the above filters use a single feature of an attributed tree to approximate the
edit distance or degree-2 edit distance. As the filters are not equally selective in each
situation, we propose a method to combine several of the presented filters.

A very flexible way of combining different filters is to follow the inverted list ap-
proach, i.e. to apply the different filters independently from each other and then intersect
the resulting candidate sets. With this approach, separate index structures for the dif-
ferent filters have to be maintained and for each query, a time-consuming intersection
step is necessary. To avoid those disadvantages, we concatenate the different filter his-
tograms and filter values for each object and use a combined distance function as a
similarity function.

Definition 9 (Combined distance function).LetC = di be a set of distance functions
for trees. Then, the combined distance functiondc is defined to be the maximum of the
component functions:

dC(t1, t2) = max{di(t1, t2)}

Theorem 5. For every set of lower-bounding distance functionsC = {dlow(t1, t2)},
i.e. for all treest1 and t2 di(t1, t2) ≤ ED(t1, t2), the combined distance functiondC
is a lower bound of the edit distance functiondED:

dC(t1, t2) ≤ ED(t1, t2)

Proof. For all treest1 andt2, the following equivalences hold:

dC(t1, t2) ≤ ED(t1, t2)⇔
max{di(t1, t2)} ≤ ED(t1, t2)⇔
∀di : di(t1, t2) ≤ ED(t1, t2)

The final inequality represents the precondition.

Justified by theorem 5, we apply each separate filter function to its corresponding
component of the combined histogram. The combined distance function is derived from
the results of this step.

5 Experimental evaluation

For our tests, we implemented a filter and refinement architecture according to the op-
timal multi-step k-nearest-neighbor search approach as proposed in [16]. Naturally, the
positive effects which we show in the following experiments for k-nn-queries also hold
for range queries and for all data mining algorithms based on range queries or k-nn-
queries (e.g. clustering, k-nn-classification). As similarity measure for trees, we imple-
mented the degree-2 edit distance algorithm as presented in [14]. The filter histograms
were organized in an X-tree [17]. All algorithms were implemented in Java 1.4 and the
experiments were run on a workstation with a Xeon 1,7 GHz processor and 2 GB main
memory under Linux.

To show the efficiency of our approach, we chose two different applications, an
image database and a database of websites which are described in the following.
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Fig. 8.Structural and content-based information of a picture represented as a tree.

5.1 Image databases

As one example of tree structured objects we chose images, because for images, both,
content-based as well as structural information are important. Figure 8 gives an idea of
the two aspects which are present in a picture.

The images we used for our experiments were taken from three real-world databases:
a set of 705 black and white pictographs, a set of 8,536 commercially available color
images and a set of 43,000 color TV-Images. We extracted trees from those images in
a two-step process. First, the images were divided into segments of similar color by a
segmentation algorithm. In the second step, a tree was created from those segments by
iteratively applying a region-growing algorithm which merges neighboring segments if
their colors are similar. This is done until all segments are merged into a single node.
As a result, we obtain a set of labeled unordered trees where each node label describes
the color, size and horizontal as well as vertical extension of the associated segment.
Table 1 shows some statistical information about the trees we generated.

Table 1.Statistics of the data set.

number number of nodes height maximal degree
of imagesmax min Ø max min Ø max min Ø

commercial color images 8,536 331 1 30 24 0 3 206 0 18
color TV-images 43,000 109 1 24 13 0 3 71 0 11

black and white pictographs 705 113 3 13 2 1 1 112 2 12

For the first experiments, we used label histograms as described in section 4.3. To
derive a discrete label distribution, we reduced the number of different attribute values
to 16 different color values for each color channel and 4 different values each for size
and extensions. We used a relabeling function with a minimal weight of 0.5. Later on
we also show some experiments where we did not reduce the different attribute values
and used a continuous weight function for relabeling.

Comparison of our filter types. For our first experiment we used 10,000 TV-images.
We created 10-dimensional height and degree histograms and combined them as de-
scribed in section 4.4. We also built a 24-dimensional combined label histogram which
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Fig. 9.Runtime and number of candidates for k-nn-queries on 10,000 color TV-images.

considered the color, size and extensions of all node labels (6 attributes with histograms
of size 4). Finally, the combination of this combined label histogram and a 4-dimensional
height histogram was taken as another filter criterion. Let us note, that the creation of
the filter X-trees took between 25 sec. for the height histogram and 62 sec. for the
combined height-label histogram.

We ran 70 k-nearest-neighbor queries (k = 1, 10, 100) for each of our filters. Figure
9 shows the selectivity of our filters, measured in the average number of candidates
with respect to the size of the data set. The figures show that filtering based solely on
structural (height or degree histogram) or content-based features (label histogram) is not
as effective as their combination. Figure 9 also shows that for this data the degree filter
is less selective than the height filter. The method which combines the filtering based on
the height of the nodes and on content features is most effective. Figure 5.1 additionally
depicts the average runtime of our filters compared to the sequential scan. As one can
see, we reduced the runtime by a factor of up to 5. Furthermore, the comparison of
the two diagrams in figure 9 shows that the runtime is dominated by the number of
candidates, whereas the additional overhead due to the filtering is negligible.

Influence of histogram size. In a next step we tested to what extent the size of the
histogram influences the size of the candidate set and the corresponding runtime. The
results for nearest neighbor queries on 10,000 color TV-images are shown in figure 10.
With increasing dimension, the number of candidates as well as the runtime decrease.
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Fig. 10.Influence of dimensionality of histograms.
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Fig. 11.Scalability versus size of data set.

The comparison of the two diagrams in figure 10 shows that the runtime is again domi-
nated by the number of candidates, while the additional overhead due to higher dimen-
sional histograms is negligible.

Scalability of filters versus size of data set.For this experiment we united all three
image data sets and chose three subsets of size 10,000, 25,000 and 50,000. On these
subsets we performed several representative 5-nn queries. Figure 11 shows that the
selectivity of our structural filters does not depend on the size of the data set.

Comparison of different filters for a continuous weight function. As mentioned
above, we also tested our filters when using a continuous weight function for relabeling.
For this experiment, we used the same 10,000 color images as in 5.1. Figure 12 shows
the results averaged over 200 k-nn queries. In this case, both the height histogram and
the label filter are very selective. Unfortunately, the combination of both does not further
enhance the runtime. While there is a slight decrease in the number of candidates, this
is used up by the additional overhead of evaluating two different filter criteria.

Comparison with a metric tree. In [18] other efficient access methods for similarity
search in metric spaces are presented. In order to support dynamic datasets, we use
the X-tree that can be updated at any time. Therefore, we chose to compare our filter
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Fig. 12.Runtime and number of candidates when using a continuous weight function.
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Fig. 13.Runtime and number of distance computations of filter methods compared to the M-Tree.

methods to the M-tree which analogously is a dynamic index structure for metric spaces.
We implemented the M-tree as described in [19] by using the best split policy mentioned
there.

The creation of an M-tree for 1,000 tree objects already took more than one day, due
to the split policy that has quadratic time-complexity. The time for the creation of the
filter vectors, on the other hand, was in the range of a few seconds. As can be seen in fig-
ure 13, the M-tree outperformed the sequential scan for small result sizes. However, all
of our filtering techniques significantly outperform the sequential scan and the M-tree
index for all result set sizes. This observation is mainly due to the fact that the filter-
ing techniques reduce the number of necessary distance calculations far more than the
M-tree index. This behavior results in speed-up factors between 2.5 and 6.2 compared
to the M-tree index and even higher factors compared to a simple sequential scan. This
way, our multi-step query processing architecture is a significant improvement over the
standard indexing approach.

5.2 Web site graphs

As demonstrated in [20], the degree-2 edit distance is well suitable for approximate
website matching. In website management it can be used for searching similar websites.
In [21] web site mining is described as a new way to spot competitors, customers and
suppliers in the world wide web.

By choosing the main page as the root, one can represent a website as a rooted,
labeled, unordered tree. Each node in the tree represents a webpage of the site and is
labeled with the URL of that page. All referenced pages are children of that node and
the borders of the website where chosen carefully. See figure 14 for an illustration.

Fig. 14.Part of a website tree.



207

96
152

94

0

250

500

750

1000

1250

1500

1750

2000

sequential scan height
histogram

degree
histogram

height/degree
histogram

ru
nt

im
e 

in
 s

ec

runtime in sec. number of candidates

Fig. 15.Average runtime and number of candidates for 5-nn queries.

For our experiment, we used a compressed form of the 207 web sites described in
[21], resulting in trees that have 67 nodes on the average. We ran 5-nn-queries on this
data. The results are shown in figure 15. We notice that even if the degree filter produces
a lot more candidates than the height filter, it results in a better run time. This is due to
the fact that it filters out those trees, where the computation of the degree-2 edit distance
is especially time-consuming. Using the combination of both histograms, the runtime
is reduced by a factor of 4.

6 Conclusions

In this paper, we presented a new approach for efficient similarity search in large
databases of tree structures. Based on the degree-2 edit distance as similarity measure,
we developed a multi-step query architecture for similarity search in tree structures.
For structural as well as for content-based features of unordered attributed trees, we
suggested several filter methods. These filter methods significantly reduce the number
of complex edit distance calculations necessary for a similarity search. The main idea
behind our filter methods is to approximate the distribution of structural and content-
based features within a tree by means of feature histograms. Furthermore, we proposed
a new technique for folding histograms and a new way to combine different filter meth-
ods in order to improve the filter selectivity. We performed extensive experiments on
two sets of real data from the domains of image similarity and website mining. Our
experiments showed that filtering significantly accelerates the complex task of simi-
larity search for tree-structured objects. Moreover, it turned out that no single feature
of a tree is sufficient for effective filtering, but only the combination of structural and
content-based filters yields good results.

In our future work, we will explore how different weights for edit operations influ-
ence the selectivity of our filter methods. Additionally, we intend to investigate other
structural features of trees for their appropriateness in the filter step. In a recent pub-
lication [5], an edit distance for XML-documents has been proposed. An interesting
question is, how our architecture and filters can be applied to the problem of similarity
search in large databases of XML-documents.
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