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Abstract. In many modern application ranges high-dimensional feature vectors
are used to model complex real-world objects. Often these objects reside on dif-
ferent local sites. In this paper, we present a general approach for extracting
knowledge out of distributed data sets without transmitting all data from the local
clients to a server site. In order to keep the transmission cost low, we first deter-
mine suitable local feature vector approximations which are sent to the server.
Thereby, we approximate each feature vector as precisely as possible with a spec-
ified number of bytes. In order to extract knowledge out of these approximations,
we introduce a suitable distance function between the feature vector approxima-
tions. In a detailed experimental evaluation, we demonstrate the benefits of our
new feature vector approximation technique for the important area of distributed
clustering. Thereby, we show that the combination of standard clustering algo-
rithms and our feature vector approximation technique outperform specialized
approaches for distributed clustering when using high-dimensional feature vec-
tors.

1 Introduction

One of the primary data mining tasks is clustering. Clustering aims at partitioning the
data set into distinct groups, called clusters, while maximizing the intra-cluster similar-
ity and minimizing the inter-cluster similarity [8]. Traditionally, the clustering algo-
rithms require full access to the data which is going to be analyzed. All data has to be
located at the site where it is processed. Nowadays, large amounts of heterogeneous,
complex data reside on different, independently working computers which are connect-
ed to each other via local or wide area networks. Examples comprise distributed mobile
networks, sensor networks or supermarket chains where check-out scanners, located at
different stores, gather data unremittingly. Furthermore, international companies such
as DaimlerChrysler have some data which are located in Europe and some data located
in the US and Asia. Those companies have various reasons why the data cannot be
transmitted to a central site, e.g. limited bandwidth or security aspects. 

Many of these real-world distributed data sets consist of objects modeled by high-di-
mensional feature vectors. For instance, a starting point for applying clustering algo-
rithms to distributed unstructured document collections is to create a vector space mod-
el, alternatively known as a bag-of-words model [13], where each document is
represented by a high-dimensional feature vector. Other examples for high-dimensional
feature vectors representing distributed complex objects can be found in the area of
image retrieval [12], and molecular biology [4]. 

The requirement to extract knowledge from distributed data, without a prior unifica-
tion of the data, created the rather new research area of Distributed Knowledge Discov-
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ery in Databases (DKDD). In this paper, we present a general approach which helps to
extract knowledge out of high-dimensional feature vectors spread over several sites. To
get specific, we demonstrate the benefits of our approach for distributed density-based
clustering. Our approach tries to describe local feature vectors as accurately as possible
with a certain number of granted bytes. These approximations are sent to a server site,
where the global server clustering is carried out based on a suitable distance function
measuring the similarity between the locally determined feature vector approximations. 

The remainder of the paper is organized as follows: In Section 2, we present the
related work in the area of distributed clustering. In Section 3, we explain how to form
the local approximations which are sent to a central server site. Then, in Section 4, a
meaningful similarity measure for the feature vector approximation is introduced. In
Section 5, we demonstrate the suitability of our feature vector approximation technique
and the corresponding distance function. In Section 6, we close this paper with a short
summary and a few remarks on future work.

2 Related Work

Distributed Data Mining (DDM) is a dynamically growing area within the broader
field of KDD. Generally, many algorithms for distributed data mining are based on
algorithms which were originally developed for parallel data mining. In [10], some
state-of-the-art research results related to DDM are summarized. Whereas there already
exist algorithms for distributed classification and association rules, there is a lack of
algorithms for distributed clustering.

In [5] the “collective hierarchical clustering algorithm” for vertically distributed data
sets was proposed which applies single link clustering. In contrast to this approach, we
concentrate in this paper on horizontally distributed data sets. 

In [14] the authors presented a technique for centroid-based hierarchical clustering
for high-dimensional, horizontally distributed data sets by merging clustering hierar-
chies generated locally. Unfortunately, this approach can only be applied for dis-
tance-based hierarchical distributed clustering approaches, whereas our aim is to intro-
duce a generally applicable approach.

In [6, 7], density-based distributed clustering algorithms were presented which are
based on the density-based partitioning clustering algorithm DBSCAN. The idea of
these approaches is to determine suitable local objects representing several other local
objects. Based on these representatives a global DBSCAN algorithm is carried out.
These approaches are tailor-made for the density-based distributed clustering algorithm
DBSCAN. 

The goal of this paper is to introduce an approach which is generally applicable to
DDM. To get specific, we demonstrate the benefits of our approach for distributed clus-
tering algorithms. In contrast to the above specific distributed clustering approaches, our
approach is not susceptible to an increasing number of local clients. It does only depend
on the overall allowed transmission cost, i.e. on the number of bytes we are allowed to
transmit from the local clients to a server. In order to keep these transmission cost low,
we introduce in the following section a suitable client-side approximation technique for
describing high-dimensional feature vectors.



3. Client-side Approximation
The hybrid-approximation approach which we propose in this section is quite simi-

lar to the idea of the IQ-tree [2] which is an index structure especially suitable for man-
aging high-dimensional feature vectors. First, we divide the data set into a set of parti-
tions represented by minimum bounding rectangles (MBRs) of the points located in the
corresponding region in the data space. This kind of data set approximation is further
elaborated in Section 3.1. In Section 3.2, we describe each single feature vector by an
approximation hierarchy where in each level of the hierarchy K more bits are used to
describe the feature vector more accurately.

3.1 Data Set Approximation

The goal of this section is to find a rough description of the complete data set by
means of some (flat) directory pages which conservatively approximate the complete
data space. The problem of finding these MBRs is related to clustering. We are not
mainly interested in the clusters themselves but rather in a partitioning of the data space
into rectangular cuboids. Similar, to directory pages in an index structure, these cuboids
should be formed as quadratic as possible for efficient query processing [3]. We can
achieve such cuboids with only a little variation of the lengths of the edges by applying
the k-means clustering algorithm [11]. Thereby the data set is approximated by k cen-
troids, and each vector is assigned to its closest centroid. All feature vectors which are
assigned to the same centroid form a cluster and are approximated by an MBR of all the
vectors of this cluster. As desired, the form of these MBRs tend to be quadratic as the
centroid of a cluster tends to be close to the middle of the MBR. Thus, the k-means
clustering algorithm indirectly also minimizes the average length of the space diagonals
of the k MBRs.

3.2 Feature Vector Approximation

After having partitioned the local data space into k clusters represented by MBRs, we
express each feature vector v  w.r.t. to the lower left corner of its corresponding mini-
mum bounding rectangle MBRCluster(v). 

Definition 1 Feature Vector 
Each feature vi of a d-dimensional feature vector v = (v1,..., vd)t ∈ IRd is represented by
a sequence of bytes <bi,1,.., bi,m> where each byte consists of w bits. The feature value
vi is calculated by

vi = , where 

For clarity, we assume in this paper that each feature of a d-dimensional feature
vector is represented by a byte string of length m. We will describe each feature vector
by a conservative hierarchy of approximations where in each level we use some more
bytes to approximate the feature vector more closely. By traversing the complete ap-
proximation hierarchy, we can reconstruct the correct feature vector. 

The client first computes a byte ranking of all the bytes bi,j of v. Then the most
meaningful bytes are transmitted to the server along with positional information of the
bytes. By means of this additional positional information, the server can construct an
accurate server side approximation of v. 

val bi j,( )
j 1=

m
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Definition 2 Ranking and Approximation Function 
Let W be the set of all byte sequences of length . Let v = (v1 ,...,vd)t ∈ IRd  be a
feature vector where each feature vi is represented by a sequence of bytes <bi,1,.., bi,m>.
Then, we require a byte ranking function frank: IR

d → W and a feature vector approxima-
tion function fapp:  to have the following properties: 

  • frank (v)=< b1, ...,bm.d > where bl = bπ(i,j), for a bijective ranking function πrank:

  • fapp(frank (v), 0) = MBRCluster(v), fapp(frank (v), L1)  fapp(frank (v), L2) iff L1 L2,

and fapp(frank (v), )) = v

After having received a certain number of L bytes the server can compute the ap-
proximation area A = fapp(frank(v), L). In the following subsections, we present three
approximation techniques of high-dimensional feature vectors, i.e. the byte-oriented,
the dimension-oriented, and the combined approximation technique (cf. Figure 1). All
three approaches fulfill rather obviously the properties stated in Definition 2. Neverthe-
less, they differ in the way they actually define the ranking and approximation functions.
In the following, we assume that the cluster MBR of a feature vector v MBRCluster(v)=
[MBR_l1× MBR_u1] ×...× [MBR_ld× MBR_ud] has already been transmitted to the serv-
er. Furthermore, we assume that v is defined according to Definition 1. 

3.2.1 Byte-Oriented Approximation (BOA)
As the first bytes of each feature contain the most significant information, we rank

the bytes bi,j by means of the bijective function π:  ac-
cording to their j-positions, i.e. π(i,j) < π(i’,j’) iff (j < j’) or (j = j’ and i < i’). 

The server computes the approximation area a= fapp(frank (v), L)= [l1,u1]×...×[ld,ud]
as follows: 

3.2.2 Dimension-Oriented Approximation (DOA)
In the above approach, we considered the first bytes of each dimension to build the

approximation. In this approach, we select significant dimensions and then transmit all
bytes of the selected features to the server. The dimension oriented approximation ap-
proach (cf. Figure 1b) selects  dimensions i having the highest values vi. Thus, we
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Figure 1. Approximation techniques. (L = 10 Bytes)
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rank the bytes bi,j by means of the bijective function π:
as follows: π(i,j) < π(i’,j’) iff (vi > vi’) or (vi = vi’ and i < i’) or (vi = vi’ and i = i’ and
j < j’). 

The big advantage of this technique is that it implies an upper bound for those dimen-
sions which have not been selected for transmission. Thus, we can shrink the approxi-
mation area also for those dimensions for which we have not received any bytes. This
shrinking is possible due to the ranking agreement between the clients and the server
that the value of the dimensions for which we have not received any bytes is equal or
smaller to the smallest value for which we have already received some bytes. Let i’ ∈
{1,.., d} now be the transmitted dimension with the smallest feature value of all
transmitted dimensions. 

Then, the server computes the approximation area a= fapp(frank (v), L)= [l1,u1]×...×
[ld,ud] as follows:

3.2.3 Combined Approximation (CA)
This approach combines the two previous approaches. According to Definition 1,

each byte bi,j of v can be assigned to a value val(bi,j) = bi,j · 2
w(m - j). Now, we can rank

the set of bytes {bi,j: i = 1, .., d; j = 1, .., m} according to their value val(bi,j), and transmit
the L bytes having the highest ranking values. Thus the bijective function π:

 is defined as follows: π(i,j) < π(i’,j’) iff
(val(bi,j) > val(bi’,j’)) or (val(bi,j) = val(bi’,j’) and i < i’) or (val(bi,j) = val(bi’,j’) and i = i’
and j < j’). 

Let now bi’,j’ be the byte with the L highest val(bi’,j’). Then, the server computes the
approximation area a= fapp(frank(v), L)= [l1,u1]×...×[ld,ud] as follows:

The example presented in Figure 2 demonstrates the conservative approximation
areas for the three proposed approaches. The figure shows clearly that the combined
approach leads to a smaller approximation area than the byte-oriented and the dimen-
sion-oriented approach. 

1…d{ } 1…m{ }× 1…m d⋅{ }→

li MBR_li
val bi j,( ) , if π i j,( ) L≤( )

0 , else



j 1=

m

∑+=

ui min MBR_ui MBR_l,
i

val bi j,( ) , if π i j,( ) L≤( )

val bi ′ j,( ) , if π i j,( ) L>( ) π i’ j,( ) L≤( )∧

2
w

1–( ) 2⋅
w m j–( )

, else







j 1=

m

∑+

 
 
 
 
 
 
 

=

1…d{ } 1…m{ }× 1…m d⋅{ }→

li MBR_li
val bi j,( ) , if π i j,( ) L≤( )

0 , else



j 1=

m

∑+=

ui min MBR_ui MBR_li offset+,( ), where =

offset

val bi j,( ) , if π i j,( ) L≤( )

0 , if π i j,( ) L>( ) j j′<( )∧
val bi′ j ′,( ) , if π i j,( ) L>( ) j=j′( )∧

2
w

1–( ) 2⋅
w m j–( )

, if π i j,( ) L>( ) j j′>( )∧










j 1=

m

∑=



4 Approximated Clustering based on Fuzzy Distance Functions

In this section, we will show how to compute the similarity between two feature
vector approximations. The most straightforward approach is to use the box center to
compute the distance between two box approximations. This center oriented box dis-
tance approximates the exact distance between the feature vectors rather accurate if the
boxes are rather small and do not overlap. 

On the other hand, imagine that we have two rather big boxes where the box centers
are identical. The center oriented distance would assign a zero distance to the approxi-
mated feature vectors, although the exact distance between the feature vectors might be
very high. Therefore, it is better to generally use the expectation value of the exact
distances between the feature vectors rather than the distances between the box centers.
This distance expectation value is based on the distance distribution function Pd: O × O
→ (IR0

+ → [0..1]), which assigns a probability value p to each possible distance τ (cf.
Figure 3a). The value p indicates the probability that the exact distance between the
feature vectors is smaller than τ. Figure 3b shows how we can compute Pd for two
feature vectors based on two arbitrary conservative approximations A = fapp(frank(v), L)
and A’ = fapp(frank(v’), L’). First, we measure those portions of the area A’ which are
overlapped by a sphere around x ∈ A with radius τ. Summing up all these values for all
x ∈ A yields the probability Pd(v,v’)(τ) that the distance d(v, v’) is smaller than τ. The
following lemma describes formally how to compute Pd for two approximated feature
vectors.

Lemma 1 Distance Distribution Function. Let A = fapp(frank(v), L) and A’ = fapp(frank(v’),
L’) ∈ [IR × IR]d be two arbitrary conservative approximations of the feature vectors v,
v’ ∈ IRd. Let R(x, τ) denote a sphere around the feature vector x ∈ IRd with radius
τ ∈ IR. Then the distance distribution function Pd: IRd × IRd → (IR0

+ → [0..1]) based
on the approximations A and A’ can be computed as follows.

As already mentioned clustering algorithms can only handle unique distance values.
In order to put clustering methods into practice, we extract an aggregated value which
we call distance expectation value. The distance expectation value Ed: O × O → IR0

+

FE07FF

00FFFF

00A3FF
00A300

000000
FEFFFFFE0000

FE0700

FE07FF
FEA3FF

exact feature vector v

approximation area
of DOA

approximation area
of BOA

approximation area
of CA
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represents the similarity between two box approximations in the best possible way by
one single value , where P’d(v, v’) denotes the
derivation of Pd(v, v’).

Practically, we can compute this distance expectation value between two approxi-
mated feature vectors by means of monte-carlo sampling. Thereby, we create randomly
feature vectors located in the boxes and compute the average distance of these randomly
created feature vectors to each other, Obviously, the higher the sample rate the more
accurate is the computation of the distance expectation value. Note, that the center ori-
ented distance can be regarded as a distance expectation value where only one sample
pair, i.e. the box centers, is used. 

5 Experiments

In this section, we evaluate the performance of our approach with a special emphasis
on the overall transmission cost. The tests are based on an artificial dataset ART and two
real world data sets PLANE and PDB which were distributed to two clients:

ART dataset. The artificial dataset ART consists of 1000 feature vectors, equally
distributed in a 30-dimensional vector space. 

PLANE dataset. The PLANE dataset consists of 1000 high-resolution 3D CAD
objects provided by our industrial partner, an American airplane manufacturer. Each
object is represented by a 42-dimensional feature vector which is derived from the cover
sequence model as described in [9]. 

PDB dataset. This 3D protein structure dataset is derived from the Brookhaven
Protein Data Bank (PDB). The 1000 objects are represented by 3D shape histograms [1]
resulting in a 120-dimensional feature vector per object.

5.1 Quality of the Feature Vector Approximation Techniques

In a first experiment, we examined the quality of the three approximation techniques
BOA, DOA and CA (cf. Section 3). For each feature vector, we transmitted once L bytes
(measured in percent of all bytes of a feature vector) to the server which then constructs
the approximations based on the transmitted data. Figure 4 depicts how the approxima-
tion error depends on the transmission cost. The error is measured by the average length
of the diagonal of the approximation areas.

Figure 4a shows that the average approximation error rapidly decreases for the BOA
approach as well as for the CA approach. For high values of L, the DOA approach per-
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Figure 3. Computation of the distance distribution function Pd.
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forms worst. Only for very small values of L it outperforms the BOA approach. Howev-
er, our CA approach yields to the best results, especially for low transmission cost.

Furthermore, we examined the CA approach for a varying parameter k used for the
k-means based pre-clustering of the client sites. Figure 4b shows that if we initially
transmit only the pre-clustering information of the feature vectors, i.e. the dataset ap-
proximations (cf. Section 3.1), the approximation quality increases slowly with increas-
ing k. Obviously, an increasing k parameter yields higher transfer cost. In contrast to the
dataset approximation approach, the quality increases more rapidly when we increase
the amount of transmitted data of the feature vector approximations (cf. Section 3.2).
Figure 4b shows that we achieve the best trade-off between accuracy and transfer over-
head when we set k = 10, especially for low transfer cost.

5.2 Distance Measures

In this section, we investigate the accuracy of the two distance measures, mid(A, A’)
and exp(A, A’). The distance function mid(A, A’) denotes the distance between the center
points of the approximations A and A’ and the distance function exp(A, A’) denotes the
expected distance of the feature vectors approximated by A and A’ (cf. Section 4). For
the computation of the expected distance exp(A, A’), we used monte-carlo sampling with
a sample rate s. For measuring the quality we summed up the quadratic distance error of
the examined distance measures exp(A, A’) and mid(A, A’) with respect to the exact
distance of the feature vectors. Figure 5 depicts the average quadratic distance error of
all feature vector approximations.

In the first experiment, we observed the behavior of exp(A, A’) for a varying sample
rate s. Figure 5a shows that the distance function exp(A, A’) reflects the exact distance
between the feature vectors much more accurately than the distance function mid(A, A’),
already for a sample rate s > 2. Figure 5b shows that the difference between the two
distance measures exp(A, A’) and mid(A, A’) increases with decreasing transfer cost.
Therefore it is especially important to use the exp(A, A’) distance measure when only
small transfer cost are allowed.
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5.3 Density-Based Clustering

In a last experiment, we compared a standard DBSCAN run based on the exp(A, A’)
measure to the distributed clustering approach introduced in [7]. We measured the qual-
ity of the approximated clustering result by the quality criterion used in [7]. Figure 6
shows clearly that for a certain amount of transferred information our approach per-
forms much better, i.e. our approach yields higher quality values than the approach pre-
sented in [7]. Note that the approach of [7] was especially designed for achieving
high-quality distributed clusterings based on little transmitted information. We would
like to point out that this experiment shows that our approximation technique for
high-dimensional feature vectors can beneficially be used as basic operation for distrib-
uted data mining algorithms.

6 Conclusion

In this paper, we presented a novel technique for approximating high-dimensional dis-
tributed feature vectors. In order to generate suitable approximations, we enhanced the
idea of state-of-the-art index structures for high-dimensional data which approximate
each single feature vector by a certain number of granted bytes. Based on this technique
we can limit the transmission cost considerably while only allowing a small decrease of
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the quality. We demonstrated the benefits of our technique for the important area of dis-
tributed clustering.

In our future work, we will show that also other distributed data mining algorithms
benefit from our high-dimensional feature vector approximation technique.
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