Proc. ACM SIGMOD 2001 Int. Conf. on Management of Data, Santa Barbara, CA, 2001

Data Bubbles: Quality Preserving Performance Boosting
for Hierarchical Clustering

Markus M. Breunig®, Hans-Peter Kriegel®, Peer Krager', Jorg Sander*

T Institute for Computer Science
University of Munich
Oettingenstr. 67, D-80538 Munich, Germany

{ breunig | kriegel | kroegera }
@dbs.informatik.uni-muenchen.de

ABSTRACT

In this paper, we investigate how to scale hierarchica clustering
methods (such as OPTICS) to extremely large databasesby utilizing
data compression methods (such as BIRCH or random sampling).
We propose a three step procedure: 1) compress the data into suit-
able representative objects; 2) apply the hierarchical clustering a-
gorithm only to these objects; 3) recover the clustering structure for
the whole data set, based on the result for the compressed data. The
key issue in this approach is to design compressed data items such
that not only ahierarchical clustering algorithm can be applied, but
also that they contain enough information to infer the clustering
structure of the origina data set in the third step. Thisiscrucia be-
causetheresultsof hierarchical clustering algorithms, when applied
naively to arandom sample or to the clustering features (CFs) gen-
erated by BIRCH, deteriorate rapidly for higher compression rates.
Thisisdueto threekey problems, which weidentify. To solve these
problems, we propose an efficient post-processing step and the con-
cept of aDataBubbleasaspecial kind of compressed dataitem. Ap-
plying OPTICS to these Data Bubbles allows us to recover a very
accurate approximation of the clustering structure of alarge data set
even for very high compression rates. A comprehensive perfor-
mance and quality evaluation shows that we only trade very little
quality of the clustering result for a great increase in performance.

Keywords

Database Mining, Clustering, Sampling, Data Compression.

1. INTRODUCTION

Knowledge discovery in databases (KDD) isthe non-trivial process
of identifying valid, novel, potentially useful, and understandable
patterns in large amounts of data. One of the primary data analysis
tasks which should be applicablein this processis cluster analysis.

T Department of Computer Science
University of British Columbia
Vancouver, BC V6T 1Z4 Canada

jsander@cs.ubc.ca

There aredifferent types of clustering algorithmsfor different types
of applications. The most common distinction is between partition-
ing and hierarchical clustering agorithms (see e.g. [7]). Examples
of partitioning agorithms are the k-means[8] and the k-medoids[7]
algorithms which decompose a database into a set of k clusters.
Most hierarchical clustering algorithms such as the single link
method [9] and OPTICS [1] on the other hand compute a represen-
tation of the data set which reflectsits hierarchical clustering struc-
ture. Whether or not the data set is then decomposed into clusters
depends on the application.

In general, clustering algorithms do not scale well with the
size of the data set. However, many real-world databases contain
hundred thousands or even millions of objects. To be able to per-
form a cluster analysis of such databases, a very fast method is re-
quired (linear or near-linear runtime). Even if the database is medi-
um sized, it makes alarge difference for the user if he can cluster
his data in a couple of seconds or in a couple of hours (e.g. if the
analyst wants to try out different subsets of the attributes without
incurring prohibitive waiting times). Therefore, improving cluster-
ing algorithms has received alot of attention in the last few years.

A general strategy to scale-up clustering algorithms (without the
need to invent anew cluster notion) is to draw asample or to apply
akind of data compression (e.g. BIRCH [10]) before applying the
clustering algorithm to the resulting representative objects. Thisap-
proach is very effective for k-means type of clustering agorithms.
For hierarchical clustering algorithms, however, the success of this
approachislimited. Hierarchical clustering algorithms are based on
the di stances between data points which are not represented well by
the distances between representative objects, especially when the
compression rate increases.

In this paper, we analyze in detail the problemsinvolved in the ap-
plication of hierarchical clustering algorithms to compressed data.
In order to solve these problems, we generalize the idea of a so-
called Data Bubble introduced in [3] which is a more specialized
kind of compressed data items, suitable for hierarchicad clustering.
We present two ways of generating Data Bubbles efficiently, either
by using sampling plus a nearest neighbor classification or by uti-
lizing BIRCH. Furthermore, we show that our method is efficient
and effectivein the sense that an extremely accurate approximation
of the clustering structure for avery large data sets can be produced
from a very small set of corresponding Data Bubbles. Thus, we
achieve high quality clustering results for data sets containing hun-
dred thousands of objectsin afew minutes.

The rest of the paper is organized as follows. In section 2, we dis-
cuss data compression techniques for clustering, and give a short
review of BIRCH. Hierarchical clusteringisreviewed in section 3,
including a short presentation of OPTICS. In section 4, we identify
three key problems with a “naive” application of a hierarchical
clustering algorithm to representative objects, called “size distor-
tion”, “lost objects’, and “structura distortion”. The size distortion
problem and the lost objects problem have arather straightforward
solution whichis presented in section 5. However, thissolution can
befully effective only if the structura distortion problemis solved.
For this purpose, the general concept of aDataBubbleisintroduced
in section 6. To recover theintrinsic clustering structure of an orig-
inal data set even for extremely high compression rates, Data
Bubbles integrate an estimation of the distance information needed
by hierarchica clustering algorithms. In section 7, the notion of a
Data Bubbles is speciaized to Euclidean vector data in order to
generate Data Bubbles very efficiently (by utilizing BIRCH or by
drawing a sample plus a k-nearest neighbor classification).
Section 8 presents an application of OPTICS to these Data Bubbles
which indicatesthat all three problems are solved. In section 9, this
observation is confirmed by a systematic experimental eval uation.
Data sets of different sizes and dimensions are used to compare the
clustering results for Data Bubbles with the results for the underly-
ing data set. Section 10 concludes the paper.

2. DATA COMPRESSION FOR CLUSTERING

Random sampling is probably the most widely used method to
“compress’ alarge data set in order to scale expensive data mining
algorithmsto large numbers of objects. The basic ideaisrather sim-
ple: choose a subset of the database randomly and apply the data
mining agorithm only to this subset instead of to the whole data-
base. The hopeisthat if the number of objects sampled (the sample
size) is large enough, the result of the data mining method on the
samplewill be similar enough to the result on the original database.

More specialized data compression methods have been developed
recently to scale up k-means type clustering algorithms. The suffi-
cient statistics intended to support clustering algorithms are basi-
cally the same for all these compression methods. As an example,
we give ashort description of BIRCH and discuss the mgjor differ-
ences and the common features for the other methods in this sec-
tion. BIRCH [10] uses a specialized tree-structure for clustering
large sets of d-dimensiona vectors. It incrementally computes
compact descriptions of subclusters, called Clustering Features.

Definition 1: (Clustering Feature, CF)
Given aset of n d-dimensional datapoints{X}, 1L<i<n.
The Clustering Feature (CF) for { X} is defined asthe triple

CF =(n, LS s5), where LS = 2 X

i=1.n
ss =% X

i=1..n

isthe linear sum and
the square sum of the points.

The CF-values are sufficient to compute information about the sets
of objects they represent like centroid, radius and diameter. They
satisfy an important additivity condition, i.e. if CF; = (nq, LS, %)
and CF5 = (ny, LS,, ssp) are the CFsfor sets of points S; and S, re-
spectively, then CF; + CF, = (ng + ny, LS, +LS,, s5; + s3)) isthe
clustering feature for the set S; U S,

| CRe=CRetCF, | = | ' |

| CFg=CF+CFy+CF3 [CF=CFy+CFs | ‘

[CF [CR, [CR \H’ CF, | CFs | \

Figure 1: CF-tree structure

The CFs are organized in a balanced tree with branching factor B
and athreshold T (see figure 1). A non-leaf node represents a sub-
cluster consisting of all the subclusters represented by its entries. A
leaf node has to contain at most L entries and the diameter of each
entry in aleaf node hasto belessthan T.

BIRCH performs a sequential scan over al data points and builds a

CF-tree similar to the construction of B*-trees. A point isinserted
by inserting the corresponding CF-vaueinto the closest leaf. If an
entry in the leaf can absorb the new point without violating the
threshold condition, its CF is updated. Otherwise, a new entry is
created in the leaf node, and, if the leaf node then contains more
than L entries, it and maybe its ancestors are split. A clustering a-
gorithm can then be applied to the entries in the leaf nodes of the
CF-tree. The number of leaf nodes contained in a CF-tree can be
specified by a parameter in the original implementation.

In [2] another compression technique for scaling up clustering al-
gorithms is proposed. Their method produces basically the same
type of compressed data items as BIRCH, i.e. triples of the form
(n, LS ss) asdefined above. The method is, however, more special -
ized to k-meanstype clustering algorithmsthan BIRCH in the sense
that the authors distinguish different sets of data items: A set of
compressed dataitems DSwhich isintended to condense groups of
pointsunlikely to change cluster membershipin theiterations of the
(k-meanstype) clustering algorithm, a set of compressed dataitems
CS which represents tight subclusters of data points, and a set of
regular data points RS which contains all points which cannot be
assigned to any of the compressed data items. While BIRCH uses
the diameter to threshold compressed dataitems, [2] apply different
threshold conditions for the construction of compressed data items
in the sets DSand CSrespectively.

A very genera framework for compressing data has been intro-
duced recently in [4]. Their techniqueisintended to scaleup alarge
collection of data mining methods. In a first step, the data is
grouped into regions by partitioning the dimensions of the data.
Then, in the second step, a number of moments are calculated for
each region induced by this partitioning (e.g. means, minima, max-
ima, second order moments such as X;2 or X; X;, and higher order
moments depending on the desired degree of approximation). Inthe
third step, they create for each region a set of squashed data items
so that its moments approximate those of the original datafallingin
the region. Obvioudly, information such as clustering features for
the constructed regions, to speed-up k-means type clustering algo-
rithms, can be easily derived from thiskind of squashed dataitems.

For the purpose of clustering, we can also compute sufficient statis-
tics of the form (n, LS, ss) efficiently based on a random sample
since we can assume that a distance function is defined for the ob-
jectsin the data set. This allows usto partition the data set using a

k-nearest neighbor classification. This method has the advantages
that we can control exactly the number of representative objects for
adataset and that we do not rely on other parameters (like diameter,
or bin-size) to restrict the size of the partitions for representatives
givenin theform (n, LS ss). The method works as follows:

1. Draw arandom sample of size k from the database to ini-
tialize k sufficient statistics.

2. Inonepassover theoriginal database, classify each origina
object oto thesampled object sitis closest to and incremen-
tally add o to the sufficient statisticsinitialized by s, using
the additivity condition given above.

The application of k-means type clustering algorithms to com-
pressed dataitems (n, LS, ss) israther straightforward. The k-means
algorithm represents clusters by the mean of the pointscontained in
that cluster. It starts with an assignment of data points to k initia
cluster centers, resulting in k clusters. Then it iteratively performs
the following steps while the cluster centers change: 1) Compute
the mean for each cluster. 2) Re-assign each datapoint to the closest
of the new cluster centers. When using sufficient statisticsthe a go-
rithm just has to be extended so that it treats the triplets (n, LS, ss)
as data points LS/n with a weight of n when computing cluster
means, i.e. the mean of m compressed pointsLS;/ny, ..., LS, /N, is
calculated as (LS/nq+ ... +LS /) / Nyt .40y,

3. HIERARCHICAL CLUSTERING

Typicdly, hierarchical clustering agorithms represent the cluster-
ing structure of adata set D by adendrogram, i.e. atree that itera-
tively splits D into smaller subsets until each subset consists of one
object. In such ahierarchy, each node of thetree representsacluster
of D. The dendrogram can either be created bottom-up (agglomer-
ative approach) or top-down (divisive approach) by merging, re-
spectively dividing clusters at each step.

There are alot of different algorithms producing the same hierar-
chical structure (see e.g. [9], [6]). In generd, they are based on the
inter-object distances and on finding the nearest neighbors of ob-
jects and clusters. Therefore, the runtime complexity of these clus-

tering algorithmsisat least O(nz), if al inter-object distancesfor an
object have to be checked to find its nearest neighbor. Agglomera-
tive hierarchical clustering algorithms, for instance, basically keep
merging the closest pairs of objectsto form clusters. They start with
the “digoint clustering” obtained by placing every object in a
unique cluster. In every step thetwo “closest” clustersin the current
clustering are merged. For this purpose, they define a distance mea-
sure for sets of objects. For the so-called “single link method”, for
example the distance between two sets of objectsis defined as the
minimal distance between their objects (seefigure 2 for anillustra-
tion of the single link method).

distance 2
between
clusters
1
0
1234567829

Figure 2: Singlelink clustering of n = 9 objects

OPTICS[1] isanother hierarchical clustering method that has been
proposed recently. This method is based on a different agorithmic
approach which reduces some of the shortcomings of traditional hi-
erarchical clustering algorithms. It weakens the so called “single
link effect”; it computes information, that can be displayed in a di-
agram that isamore appropriate for very large data sets than a den-
drogram; and it is specifically designed to be based on range que-
ries, which can be efficiently supported by index-based access
structures. Thisresultsin aruntime complexity of O(n log n) under
the condition that the underlying index structure works well.

In the following we give a short review of OPTICS [1], since we
will use thisalgorithm to evaluate our method for hierarchical clus-
tering using compressed dataitems. The method itself can be easily
adapted to work with classical hierarchica clustering algorithmsas
well.

First, the basic concepts of neighborhood and nearest neighbors are
defined in the following way.

Definition 2: (e-neighborhood and k-distance of an object P)
Let P be an object from a database D, let € be a distance value,
let k be a natural number and let d be a distance metric on D.
Then, the e-neighborhood N (P) is a set of objects X in D with
diP.X)<e:
Ne(P)={ Xe D|d(PX)<e},

and the k-distance of P, k-dist(P), is the distance d(P, O) be-
tween P and an object O € D such that at least for k objects
O’ € Dit haldsthat d(P, O’) < d(P, O), and for at most k-1 ob-
jectsO’ € Dit holdsthat d(P, O’) < d(P, O). Note that k-dist(P)
is unique, although the object O which iscalled ‘the’ k-nearest
neighbor of P may not be unique. When clear from the context,
Ni(P) is used as a shorthand for Ny_gisi(r)(P)-

The objects in the set N,(P) are called the “k-nearest-neighbors of

P” (although there may be more than k objects contained in the set
if the k-nearest neighbor of P is not unique).

OPTICS is based on a density-based notion of clusters introduced
in [5]. For each object of a density-based cluster, the e-neighbor-
hood hasto contain at least a minimum number of objects. Such an
object is called a core object. Clusters are defined as maximal sets
of density-connected objects. An object P is density-connected to
Q if there exists an object O such that both P and Q are density-
reachable from O (directly or transitively). P is directly density-
reachablefrom Oif P e N,(O) and O isacoreobject. Thus, a“flat”
partitioning of a data set into a set of clustersis defined, using glo-
bal density parameters. OPTICS extendsthis density-based cluster-
ing approach to create an augmented ordering of the database rep-
resenting its density-based clustering structure. The cluster-
ordering contains information which is equivalent to the density-
based clusterings corresponding to a broad range of parameter set-
tings. This cluster-ordering of a data set is based on the notions of
“core-distance” and “(density-)reachability-distance”.
Definition 3: (core-distance of an object P)

Let P be an object from a database D, let € be a distance value

and let MinPts be a natural number. Then, the core-distance of
P isdefined as

oo, if |N€(P)| < MinPts
MinPts-dist(P), otherwise

core-dist; pinpts(P) =

The core-distance of an object P isthe smallest distancee’ < € such
that P is a core object with respect to €’ and MinPts- if such adis-
tance exists, i.e. if there are at least MinPts objects within the e-
neighborhood of P. Otherwise, the core-distanceis co.
Definition 4: (reachability-distance of an object P w.r.t. O)
Let P and O be objects, P € N¢(O), let e be adistancevalueand
MinPts be a natural number. Then, the reachability-distance of
P with respect to O is defined as
reach-distg pinpts(P,O) = max(core-di te Minpts(O)> d(o, P)).

Intuitively, reach-dist(P,0) = = _

is the smallest distance such - N
that P is directly density- Se o~
reachable from O if Oisa | / , Qpl S \
core object. Therefore | / (N \
reach-dist(P,0) cannot be | | \ > |
smaller than core-dist(O) \ N S\ﬁ/ o/
because for smaller distanc- N / /
es no object is directly den- \ (o) y
sity-reachable from O. Oth- A é -
erwise, if O is not a core 2 — — MinPts=4

Figure 3: core-dist(0),

object, reach-dist(P,0) is c.
reach-distsr(P4,0), r(P,,0)

(Seefigure 3.

Using the core- and reachability-distances, OPTICS computes a
“wak” through the data set, and assigns to each object O its core-
distance and the smallest reachability-distance reachDist with re-
spect to an object considered before O in the walk (see [1] for de-
tails). This walk satisfies the following condition: Whenever a set
of objects Cisadensity-based cluster with respect to MinPtsand a
value ¢’ smaler than the value € used in the OPTICS dgorithm,
then the objects of C (possibly without a few border objects) form
a subsequence in the walk. The reachability-plot consists of the
reachability values (on the y-axis) of all objects, plotted in the or-
dering which OPTICS produces (on the x-axis). Thisyields an easy
to understand visualization of the clustering structure of the data
set. The “dents’ in the plot represent the clusters because objects
within a cluster typicaly have a lower reachability-distance than
objects outside a cluster. A high reachability-distance indicates a
noise object or ajump from one cluster to another cluster.

Figure 4 shows the reachability-plot for two 2-dimensional syn-
thetic data sets, DS1 and DS2, which we will use in the following
sections to evaluate our approach. DS1 contains one million points
grouped into several nested clusters of different densities and dis-
tributions (uniform and Gaussian) and noise objects. DS2 contains
100,000 objectsin 5 Gaussian clusters of 20,000 objects each. The
figure also shows the result of applying the basic OPTICS ago-
rithm to these data sets. The “dents” in the plots represent the clus-
ters, clearly showing the hierarchical structure for DS1.

4. PROBLEMSWITH A NAIVE APPLICA-
TION TO RANDOM SAMPLESOR TO
CF CENTERS

When we want to apply a hierarchical clustering agorithm to a
“compressed” data set, it is not clear whether we will get satisfac-
tory results if we treat clustering features (n, LS ss) as data points
LSn, or if we simply use arandom sample of the database. Hierar-
chical clustering agorithms do not compute any cluster centers but

(a) data set DS1 and its reachability-plot

0

(b) data set DS2 and its reachability-plot

Figure 4: Databases DS1 and DS2 and the original OPTICS
reachability-plots. Theruntimes using the basic OPTICS-al-
gorithm wer e 16,637sec and 993sec.

compute a specia representation of the distances between points
and between clusters. This information, however, may not be well
reflected by a reduced set of points such as cluster feature centers
or random sample points. We present this application to discuss the
major problems involved in hierarchical clustering of compressed
data sets. The algorithmic schemafor the application of OPTICSto
both CFs and arandom sample is depicted in figure 5.

We assume that the number of representative objects k is small
enough to fit into main memory. We will refer to these algorithms
as “OPTICS-CF e’ and “OPTICS-SA4ve for the naive appli-
cation of OPTICS to CFs and to a random SAmple, respectively.
Figure 6 shows the results of the agorithms OPTICS-SA 5ive and
OPTICS-CF4ye On DSL for three different sample sizes: 10,000
objects, 1,000 objects and 200 objects. For the large number of rep-
resentative objects (10,000 objects, i.e. compression factor 100),
the quality of the reachability-plot of OPTICS-SA iveiS compara-
ble to the quality of applying OPTICSto the original database. For
small values of k, however, the quality of the result suffers consid-
erably. For acompression factor of 1,000, the hierarchical cluster-
ing structure of the databaseis already distorted, for acompression
factor of 5,000, the clustering structure is almost completely lost.
The results are even worse for OPTICS-CF e NOne of the reach-
ability-plots even crudely represents the clustering structure of the
database. We will call this problem “structural distortions”.

Figure 7 shows the results on DS2 for both algorithms for 100 rep-
resentative objects. For larger number of representative objects the

1. Either (CF): Execute BIRCH and extract the centers of
the k leaf CFs as representative objects.
Or (SA): Take arandom sample of k objects from
the database as representative objects.

2. Optiona: Build an index for the representative objects
(used by OPTICS to speed up range queries).

3. Apply OPTICS o the representative objects.

Figure5: Algorithm OPTICS-CF e and OPTICS-SA5ive

k=10,000

k=1,000 k=200

(2) OPTICS-SA pgive

(b) OPTICS-CFrgive -

Figure 6: DS1-results of OPTICS-SA | 5ive @1 OPTICS-CF4jye for 10,000, 1,000 and 200 r epr esentative objects

results of both algorithms are quite good, due to fact that the clus-
tersin this data set are well separated. However, even for such sim-
ple data sets as DS2 the results of a naive application deteriorate
with high compression rates. OPTICS-SA e Preservesat least the
information that 5 clusters exist while OPTICS-CF,,e l0ses one
cluster. But for both algorithms, we see that the sizes of the clusters
are distorted, i.e. some clusters seem larger than they really are and
others seem smaller. The reachability-plots are stretched and
squeezed. We will cal this problem “size distortions”.

Apart from the problems discussed so far, there is another problem
if wewant to apply clustering asone step in alarger knowledge dis-
covery effort, in which the objects are first assigned to clusters and
then further analyzed: we do not have direct clustering information
about the database objects. Only some (in case of sampling) or even
none (when using CFs) of the database objects are contained in the
reachability-plot. This problem will be called “lost objects’.

In order to apply hierarchica clustering algorithms to highly com-
pressed Data, we have to solve these three problems. We will see
that the size distortion problem and the lost objects problem have a
rather straightforward solution. However, solving these problems
inisolation improves the clustering results only by aminor degree.
The basic problem is the structural distortion which requiresamore
sophisticated solution.

5. SOLVING THE SIZE DISTORTION AND
THE LOST OBJECT PROBLEM

In order to alleviate the problem of size distortions, we can weigh
each representative object with the number n of objects they actu-
ally represent. When plotting the final cluster ordering we can sim-
ply repeat the reachability value for arepresentative object n times,
which corrects the observed stretching and sgueezing in the reach-
ability-plots. (Note that we can apply an anal ogous techniqueto ex-
pand a dendrogram produced by other hierarchical agorithms.)

0

OPTICS-SA give OPTICS-CFpaive

Figure 7: DS2-results of OPTICS-SAn,ive
and OPTICS-CFjye for 100 objects

When using BIRCH, the weight n of a representative object is al-
ready contained in a clustering feature (n, LS, ss). When using a
random sample, we can easily determine theses numbers for the
sample points by classifying each original object to the sample
point whichisclosest toit (using anearest-neighbor classification).

This solution to the size distortion problem aso indicates how to
solve the lost objects problem. Theideais simply to apply the clas-
sification step not only in the sampling based approach but also to
clustering features to determine the objects which actually “be-
long” to arepresentative object. When generating the final cluster
ordering, we store with the reachability values that replace the val-
ues for each representative object § the identifiers of the original
objectsclassified to 5. By doing so, we, on the one hand, correct the
stretching and squeezing in the reachability-plot, i.e. we solve the
size distortions problem, and, on the other hand, insert al original
objects into the cluster ordering, thus solving the lost objects prob-
lem at the same time. The algorithmic schema for both methods is
giveninfigure 8.

We will refer to these algorithms as “OPTICS-CFggnted” and
“OPTICS-SAgighted” » depending on whether we use OPTICS with
weighted CFs or with weighted random sample points. The differ-
ence to the naive schemalies only in step 4 and 5 where we do the
nn-classification and adapt the reachahility plot. Weread each orig-
inal object o; and classify it by executing a nearest neighbor query
in the sampled database. If we have built an index on the sampled
databasein step 2, wecan reuseit here. To understand step 5, let the
nearest neighbor of o; be 5. We set the core-distance of o to the

1. Either (CF): Execute BIRCH and extract the centers of
the k leaf CFs as representative objects.
Or (SA): Take arandom sample of k objects from
the database as representative objects.

2. Optional: Build an index for the representative objects
(used by OPTICS to speed-up range queries).

Apply OPTICS to the representative objects.

For each database object compute the representative object
it is closest to (using a nearest-neighbor query).

5. Replace the representative objects by the corresponding
sets of original objectsin the reachability plot.

Figure8: Algorithm OPTICS-CFyeighted
and algorithm OPTICS-SA yggnted

k=10,000

k=1,000

k=200

15

(a) OPTI CS'SAweighted

(b) OPTICS-CFyeighted

Figure 9: DS1-results of OPTICS-SAygighted a1 OPTICS-CFygignted for 10,000, 1,000 and 200 r epr esentative objects

core-distance of S and the position of o; in the reachability plot to
the position of S plus the number of objects which have already
been classified to 5. If o; isthefirst object classified tos;, we set the
reachability of o; to the reachability of 5, otherwisewe set o;.reach-
Dist tomin{ q.reachDist, (§+1).reachDist} . Themotivation for this
is that s;.reachDist is the reachability we need to first get to s; but
once we are there, the reachabilities of the other objectswill be ap-
proximately the same as the reachability of the next object in the
cluster ordering of the sample. Then we write o; back to disc. Thus,
we make one pass (reading and writing) over the original database.
Finally, we sort the original database according to the position
numbers, thus bringing thewhol e database into the cluster ordering.

Figure 9(a) shows the results for DS1 of the OPTICS-SAgighted
for three different sample sizes: 10,000 objects, 1,000 objects and
200 objects. Figure 9(b) shows the same information for the OP-
TICS-CFyeighted agorithm. The results of both algorithms look
very similar to the results of the naive versions of the algorithms.
Although we have corrected the size distortion in both cases, the
structurd distortion dominates the visua impression. Both ver-
sions, however, have the advantage that all original database ob-
jects are now actually represented in the cluster ordering.

That the post-processing step really solvesthe size distortions prob-
lemisvisiblein figure 10 which showstheresultsfor DS2. There-
sult of OPTICS-SAyeighted iS quite good: all five clusters are clear-

ly visible and have the correct sizes. The cluster ordering generated
by OPTICS-CF,gighteq hasalsoimproved as compared to OPTICS-

SAnzive Obvioudy, post-processing aleviates the size distortion
problem and solves the lost objects problem. However, the lost
cluster cannot be recovered by OPTICS-CFygighteg- Weighing the
representative objects and classifying the database can be fully ef-
fective only when we solve the structura distortion problem.

1

a 55
°r
% 30
= 25
=

2
=

15
15
0 10
s s
o o

OPTICS-SA eighted OPTICS-CFyeighted

Figure 10: DS2-results of OPTICS -SAeighted
and OPTICS-CF,yggnteq for 100 objects

6. DATA BUBBLESAND ESTIMATED DIS
TANCES: SOLVING THE STRUCTURAL
DISTORTION PROBLEM

The basic reason for the structura distortion problem when using
very high compression ratesis that the distance between the origi-
nal datapointsisnot represented well by only the distance between
representative objects. Figure 11 illustrates the problem using two
extreme situations. In these cases, the distance between the repre-
sentative points rA and rB is the same as the distance between the
representative pointsrC and rD. However, thedistance between the
corresponding sets of points which they actually represent is very
different. This error is one source for the structurd distortion. A
second source for structural distortion is the fact that the true dis-
tances (and hence the true reachDists) for the points within the
point sets are very different from the distances (and hence the
reachDists) we computefor their representatives. Thisisthe reason
why it is not possible to recover clusters by smply weighing the
representatives with the number of pointsthey represent. Weighing
only stretches certain parts of the reachability-plot by using the
reachDist values of the representatives. For instance, assume that
thereachDist valuesfor the representative points are as depicted in
figure 11. When expanding the plot for rD, we assign to the first ob-
jects classified to belong to rD the reachDist value reachDist(rD).
Every other object in D is then assigned the value reachDist(rY)
which is, however, ailmost the same as the value reachDist(rD).
Weighing the representative object will be more effective, if weuse
at least a close estimate of the true reachability values for the ob-

Figure11: Illustration for the structural distortion problem

-———————- P
I dist(repg, repc)

aS(B0)

(a) non-overlaping
Data Bubbles

(b) overlapping
Data Bubbles

Figure 12: Distance between Data Bubbles

jectsin a data set. Only then, we will be able to recover the whole
cluster D: the reachability value for rD would then be expanded by
a sequence of very small reachability values which appear as a
“dent” (indicating a cluster) in the reachability plot.

To solve the structura distortion problem we need abetter distance
measure for compressed data items and we need agood estimation
of the true reachability values within sets of points. To achieve this
goal, we first introduce the concept of Data Bubbles summarizing
the information about point sets which is actually needed by ahier-
archica clustering algorithm to operate on. Then we give specia
instances of such Data Bubbles for Euclidean vector spaces and
show how to construct a cluster ordering for a very large data set
using only avery smal number of Data Bubbles. We define Data
Bubbles as a convenient abstraction summarizing the sufficient in-
formation on which hierarchica clustering can be performed.

Definition 5: (Data Bubble)

Let X={X} 1<i<nbeasetof nobjects.

Then, the Data Bubble Bw.r.t. X is defined as atuple

By = (rep, n, extent, nnDist), where

- rep is arepresentative object for X
(which may or may not be an element of X);

- nisthe number of objectsin X;

- extent isareal number such that “most” objects of X are
located within a“radius” extend around rep;

- nnDist is afunction denoting the estimated average k-nearest
neighbor distances within the set of objects X for
some values k, k=1, ..., k =MinPts. A particular expected
knn-distance in By is denoted by nnDist(k, By).

Using the radius extent and the expected nearest neighbor distance,
we can define adistance measure between two Data Bubblesthat is
suitable for hierarchica clustering.

Definition 6: (distance between two Data Bubbles)

Let B=(repg, Ng, g, NnDistg) and C=(repc, Nc, ec, NNDistc)
be two Data Bubbles.
Then, the distance between B and C is defined as dist(B, C) =

0 ifB=C

dist(repg, repc) —(eg + €c) + nnDist(L, B) + nnDist(1, C)
if dist(repg,repc)—(ee,)=0

max(nnDist(1, B), nnDist(1, C)) otherwise

Besides the case that B = C (in which the distance obviously has to
be 0), we have to distinguish the two cases shown in figure 12. The
distance between two non-overl apping Data Bubblesisthe distance
of their centers minustheir radii plus their expected nearest neigh-
bor distances. If the Data Bubbles overlap, we take the maximum

of their expected nearest neighbor distances as their distance. Intu-
itively, this distance definition is intended to approximate the dis-
tance of the two closest pointsin the Data Bubbles.

When applying aclassical hierarchical clustering algorithm such as
the singlelink method to Data Bubbles, we do not need more infor-
mation than defined above. For the algorithm OPTICS, however,
we have to define additionally the appropriate notion of acore-dis-
tance and a reachability-distance.

Definition 7: (core-distance of a Data Bubble B)

Let B=(repg, ng, g, NNDistg) be a DataBubble, let € be a distance
vaue, let MinPts be a natural number and let N = { X | dist(B, X) <
€}. Then, the core-distance of B is defined as

. _ if (2 n] < MinPts
core-diste pinpts(B) = = hade N ,
dist(B, C) + nnDist(k, C) otherwise

where C and k are given asfollows: C € N has maximal dist(B, C)

such that zn< MinPts, and k = MinPts—Zn

Xe N Xe N
dist(B, X) < dist(B, C) dist(B, X) <dist(B, C)

This definition is based on asimilar notion as the core-distance for
data points. For points, the core-distance is o if the number of
pointsin the e-neighborhood is smaller than MinPts. Analogously,
the core-distance for Data Bubbles is « if the sum of the numbers
of pointsrepresented by the Data Bubblesin the e-neighborhood is
smaller than MinPts. For points, the core-distance (if not «) is the
distance to the MinPts-neighbor. For Data Bubble B, it is the esti-
mated MinPts-distance for the representative repg of B. Data Bub-
bles usually summarize at least MinPts points. Note that in this
case, the core-dist; \inpie(B) is equal to nnDist(MinPts, B) accord-
ing to the above definition. Only in very rare cases, or when the
compression rate is extremely low, a Data Bubble may represent
less than MinPts points. In this case we estimate the MinPts-dis-
tance of repg by taking the distance between B and the closest Data
Bubble C so that B and C and all Data Bubbles which are closer to
B than C contain together at least MinPts points. To this distance we
then add an estimated nearest k-neighbor distancein C, wherekis
computed by subtracting from MinPts the number of points of all
Data Bubbleswhich are closer to B than C (which by selection of C
do not add up to MinPts).

Given the core-distance, the reachability-distance for Data Bubbles
is defined in the same way as the reachability-distances on data
points.
Definition 8: (reachability-distance of a Data Bubble B w.r.t. Data
BubbleC)
Let B=(repg, Ng, €, NnDistg) and C=(repc, N¢, €c, NNDistc)
be Data Bubbles, let € be adistance vaue, let MinPts be a nat-
ural number, and let B e N¢, where Ne = { X | dist(C, X) < ¢€}.
Then, the reachability-distance of B w.r.t. Cisdefined as
reach-distg pinpts(B,C)=max(core-di st Minptd©)s dist(C,B)).

Using these distances, OPTICS can be applied to Data Bubbles in
astraight forward way. However, we also haveto change the values
which replace the reachDist values of the representative objects
when generating the final reachability plot. When replacing the
reachDist for a Data Bubble B, we plot for the first original object

the reachDist of B (marking the jump to B) followed by (n-1)-times
an estimated reachability value for the n-1 remaining objects that B
describes. This estimated reachability value is called the “virtual
reachability of B”, and is defined as follows:

Definition 9: (virtual reachability of aData Bubble B)
Let B = (repg, N, g, NNDistg) be a Data Bubble and MinPtsa
natural number. The virtual reachability of the ng points de-
scribed by B is then defined as
. . {nnDistB(MinPts, B) if ng >MinPts
virtual-reachability(B)= .
core-dist(B) otherwise
Theintuitiveideaisthe following: if we assume that the points de-
scribed by B are more or less uniformly distributed in a sphere of
radius eg around repg, and B describes at least MinPts points, the
true reachDist of most of these points would be close to their
MinPts-nearest neighbor distance. If, on the other hand, B contains
less than MinPts points, the true reachDist of any of these points
would be close to the core-distance of B.

7. DATA BUBBLESFOR EUCLIDEAN
VECTOR SPACES

Data Bubbles provide a very generd framework for applying a hi-
erarchical clustering algorithm, and in particular OPTICS, to com-
pressed data items created from an arbitrary data set - assuming
only that adistance function is defined for the original objects. In
the following, we will specialize these notions and show how Data
Bubbles can be efficiently created for data from Euclidean vector
spaces using sufficient statistics (n, LS, s9).

To create a Data Bubble By=(rep, n, extent, nnDist) for aset X of n
d-dimensional data points, we have to determine the componentsin
By. A natural choice for the representative object rep is the mean of
the vectors in X. If these points are approximately uniformly dis-
tributed around the mean rep, the average pairwise distance be-
tween the pointsin X is a good approximation for a radius around
rep which contains most of the pointsin X. Under the same assump-
tion, we can also compute the expected k-nearest neighbor distance
of the pointsin B in the following way:

Lemma 1: (expected k-nn distancesfor Euclidean vector data)

Let X beaset of n d-dimensional points. If then pointsare uniform-
ly distributed inside a sphere with center ¢ and radius r, then the
expected k-nearest neighbor distance inside X isequal to

k\17d
(-) T
n

Proof: The volume of a d-dimensional sphere of radiusr is
JTJ
N

d
r(a 1)

are uniformly distributed inside the sphere, we expect one point in
the volume V(r) / n and k points in the volume k V(r) / n. Thus,

the expected k-nearest neighbor distanceis equal to aradiusr’ of a
sphere having thisvolumek V4(r) / n. By simplea gebraic transfor-

)) Kk 1/d
mationsit followsthat r' = (F\) . e

Vg(r) = rd (T isthe Gamma-Function). If the n points

Using these notions, we can define a Data Bubble for a set of Eu-
clidean vector datain the following way:

1. Either (CF): execute BIRCH and extract the CFs.
Or (SA): samplek objects from the database randomly
and initialize k sufficient statistics.
Classify the original objects to the closest
sampl e object, computing sufficient statistics.
Save classification information for use in the
last step.

Compute Data Bubbles from the sufficient statistics.
3. Apply OPTICS to the Data Bubbles.

If (CF): classify the original objectsto the closest
Data Bubble.

5. Replace the Data Bubbles by the corresponding sets of
original objects.
Figure 13: Algorithm OPTICS-CFgyppjes
and algorithm OPTICS-SAgpples

Definition 10: (Data Bubblefor Euclidean vector data)
Let X={X;}, 1<i < nbeaset of nd-dimensional data points.
Then, a Data Bubble By for X isgiven by the tuple
By = (rep, n, extent, nnDist), where

.n

rep = (2 X;]/n isthe center of X,
i=1..

YT X
i=1l.nj=1.n

istheradius of X, and
n-(n-1)

extent =

1/d
nnDist is defined by nnDist(k, B) = ('ﬁ‘) extent .

Data Bubbles can be generated in many different ways. Given a set
of objects X, they can be straight forwardly computed. Another pos-
sibility is to compute them from sufficient statistics (n, LS, ss) as
defined in definition 1:

Corollary 1:

Let By = (rep, n, extent, nnDist) be a Data Bubble for a set X={ X},
1<i<n, of nd-dimensiona data points. Let LS be the linear sum
and ssthe square sum of the pointsin X.

Then, rep = I‘Fs,and extent = /%2

For our experimental eval uation of Data Bubbles we compute them
from sufficient statistics (n, LS, ss). One algorithm is based on the
CFs generated by BIRCH, the other algorithm is based on random
sampling, as described in section 2.

8. CLUSTERING HIGHLY COMPRESSED
DATA USING DATA BUBBLES

In this section, we present the algorithms OPTICS-CFg ppes and
OPTICS-SA g phies t0 eval uate whether or not our Data Bubbles ac-
tually solve the structural distortion problem. OPTICS-CFg ppjes
uses Data Bubbles which are computed from the leaf CFs of a CF-
tree created by BIRCH. OPTICS-SAg ppies USeS Data Bubbles
which are computed from sufficient statistics based on a random
sample plus nn-classification. Both algorithms are presented using
again one agorithmic schema, which is given in figure 13.

k=10,000

k=1,000 k=200

(a) OPTICS SAg pples

(b) OPTICS-CFgppies

Step 1 is different for the two algorithms. For OPTICS-CFg s
we execute BIRCH, and extract the CFs from the leaf nodes of the
CF-tree. For OPTICS-SAgypples We draw a random sample of size
kandinitidizeatuple (n, LS, ss) for each sampled object swith this
object, i.e. n=1, LS=s and ss equals the square sum of s. Then, we
read each object o, from the original database, classify o, to the
sample object it is closest to, and update (n, LS, ss) for the corre-
sponding sample point. We save the classification information by
writing it to afile, aswe can useit again in step 5. Thisis cheaper
than to re-do the classification.

In step 2 and 3, we compute Data Bubbles from the sufficient sta-
tistics by applying Corallary 1, and apply OPTICS to them. Be-
cause of the rather complex distance measure between Data Bub-
bles, we cannot use an index to improve the time complexity of this
step and it runsin O(k*k). However, the purpose of our approach is
to make k very small so that this is acceptable.

Step 4 applies to OPTICS-CFgyppies ONY, as we do not have infor-
mation about which objects contribute to a Data Bubble. Thus, to
solve the lost objects problem, we need to classify the origina ob-
jectsto the closest Data Bubble.

Finaly, in step 5 we replace each Data Bubble by the sets of origi-
nal objects classified to it in asimilar way aswe did for the weight-
ed versions of our algorithms in section 5. The only difference is
that we make use of the virtua reachabilities instead of using the
reachDist values of the Data Bubbles. We read each object o; and
its classification information from the origina database. Let o; be
classified to s; and B; be the Data Bubble corresponding to 5. Now
we set the position of o to the position of B;. If o; is the first object
classifiedto s, we set thereachDist of o; to thereachDist of B;, oth-
erwise we set the reachDist to virtual-reachability(B). Then we
write o; back to disc. Thus, we make one sequentia pass (reading
and writing) over the original database. Asthe last actionin step 5,
we sort the file according to the positions of the objectsto generate
the final cluster ordering.

(a) OPTICS-SAgyphies (b) OPTICS-CFgjppies
Figure 15: DS2-result for 100 Data Bubbles.

Figure 14: DS1-resultsfor 10,000, 1,000 and 200 r epr esentative objects

Figure 14(a) shows theresults of OPTICS-SAg jyjes fOr DS1 using
sample sizes k=10,000, k=1,000, and k=200. Figure 14(b) shows
the same information for OPTICS-CFgyes: Both algorithms ex-
hibit very good quality for large and medium numbers of DataBub-
bles. For very small values of k, the quality of OPTICS-CFg ypjes
begins to suffer. The reason for thisis the heuristics for increasing
the threshold value in the implementation of BIRCH. In phase 2,
when compressing the CF-tree down to the maximal number of CFs
k, the last increase in the threshold value is chosen too large. Thus,
BIRCH generates only 75 Data Bubbles, while sampling produced
exactly 200.

Figure 15 showstheresultsfor DS2 and 100 Data Bubblesinwhich
case both a gorithms produce excellent results.

Obvi Ously, both OPTICS—SABUbbleS and OPTICS—CFBUbbleS solve
all three problems (size distortions, structura distortions and lost
objects) for high compression rates. OPTICS-SAg ppies SCaAlES
dightly better to extremely high compression rates.

9. DETAILED EXPERIMENTAL
EVALUATION

In this section, we will discuss both the runtime and the qudlity is-
suesincurred by compressing the original database into Data Bub-
bles, and compare them to the original implementation of OPTICS.
All experiments were performed on a Pentium 111 workstation with
450 MHz containing 256MB of main memory and running Linux.
All dgorithms are implemented in Java and were executed on the
Java Virtual Machine Version. 1.3.0beta from Sun. We used ap-
proximately 20 GB of space on alocal hard disc.

9.1 Runtime Comparison

Runtime and Speed-Up w.r.t. Compression Factor

In figure 16, we see the runtime and the speed-up factors for the da-
tabase DS1 for different compression factors. Recall that DS1 con-
tains 1 million objects. We used compressions factors of 100, 200,
1,000 and 5,000, corresponding to 10,000, 5,000, 1,000 and 200
representative objects, respectively. Both algorithms are very fast,
especially for higher compression rates, with speed-up factors of up
to 151 for OPTICS-SAg ppies aNd 25 for OPTICS-CFgjppes FUI-
thermore, we can observe that OPTICS-SAg jphes iS DY afactor of

5.0to 7.4 faster than OPTlCS—CFBubb| s

2000

1600

1200

time [sec]

800 e ———
x -
400 S_
0 - ‘ ‘ ‘ -
0 1000 2000 3000 4000 5000

compression factor Test database:
160 DSl

P—

5 120

& / —..m--- CF (Bubbles)

Q 80 H

3 ——— SA (Bubbles)

g 40

Q

(2]
| —— R

o mR : : : : :

0 1000 2000 3000 4000 5000

compression factor

Figure 16: Runtime and speed-up w.r.t. compression factor.

Runtime and Speed-Up w.r.t. the Database Size

Figure 17 shows the runtime and the speed-up factors obtained for
different sized databases. The databases were random subsets of
DSL1. All agorithms scale approximately linearly with the size of
the database. An important observation is that the speed-up factor
as compared to the origina OPTICS agorithm becomes larger (up
to 119 for OPTICS-SAgppies@nd 19 for OPTICS-CFg e aSthe
size of the database increases. Thisis, however, to be expected for
a constant number of representative objects, i.e. using one of the
proposed methods, we can scale hierarchical cluster ordering by
more than a constant factor. Again, OPTICS-SAg ppies OUtPEr-

forms OPTICS-CFg e Dy afactor of 6.3 to 8.6.

Runtime and Speed-Up w.r.t. the Dimension

To investigate the behavior of the algorithms when increasing the
dimension of the data set, we generated synthetic databases con-
taining 1 million objects in 15 Gaussian clusters of random loca-
tions and random size. The databases were generated such that the
10-dim data set is equal to the 20-dim data set projected onto the

120

100 || —-®--- CF (Bubbles) /
S ——A— SA (Bubbles)
E 80
2 60
3 a0 /
& 20

K —.- &
o N e Test database:
0 200 400 600 800 1000 DS]_
n [*1000])

1000 compression

800 m-—-E to 1000 rep-
_ o resentatives
g 600 =
2, 'S
g 400 s
£ e

200 o

0 200 400 600 800 1000
n [*1000]

Figure 17: Runtime and speed-up w.r.t. database size.

900

@
=]
I=]

time [sec]
w
(=]
o

Test databases:
1 million objects

15randomly genreated
Gaussian clusters,
randomly sized.

0 5 10 15 20
dimension

300 || -+~ CF (Bubbles) Compressed to 1,000
5 —&— SA (Bubbles) representative objects
E 200
3 -
3 100 — T
(2] -

..
I
0 T
0 5 10

dimension

Figure 18: Runtime w.r.t. the dimension of the database.

first 10 dimensions, and the 5-dim isthe 10-dim projected onto the
first 5 dimensions. Figure 18 shows the runtime and the speed-up
factors for these databases. OPTICS-SAg jes Scales linearly with
the dimension of the database, OPTICS-CFg e a0 contains a
linear factor, which is offset by the decreasing number of CFs gen-
erated. The speed-up factor for 20-dimensions is not shown be-
cause we were unable to run the original algorithm due to main
memory constraints. For OPTICS-SAg jypies the speedup increases
from 160 for 2-dimensional databases to 289 for 10-dimensional
databases, for OPTICS-CFg e from 31 to 121.

To understand, why BIRCH generated fewer CFs with increasing
number of dimensions, recall that BIRCH builds a CF-tree contain-
ing CFsin two phases. In phase 1, the original data objects are in-
serted one by one into the CF-tree. The CF-tree is a main memory
structure. This implies that the maxima number of entries in the
CF-treeisbounded by main memory. To do this, BIRCH maintains
athreshold value. When adding an object to the CF-tree, BIRCH
finds the CF-entry which is closest to the new objects. If adding the
object to this CF-entry violates the threshold value, the CF-treeis
rebuilt by increasing the threshold value and re-inserting all CF-en-
triesinto anew CF-tree. Onceall original objectsarein the CF-tree,
BIRCH reduces the number of CFs to a given maximum in phase
2. The CF-tree is repeatedly rebuilt by increasing the threshold val-
ueand re-inserting all CFsinto anew tree until such anew tree con-
tains no more than the maximal allowed number of CFs. BIRCH
uses heuristics to compute the increase in the threshold value. For
higher dimensions, this increase is higher, and fewer CFs are gen-
erated (429 in the 2-dimensional case, 371 for 5 dimensions, 267
for 10 dimensionsand only 16 for the 20-dimensional data set). We
used the original heuristics of BIRCH, athough, it may be possible
to improve the heuristics and thereby solve this problem.

9.2 Quality Evaluation

In the previous sections, we evaluated the quality of the different
methods with respect to the compression factor (c.f. figure 14 and
figure 15) by comparing the different reachability plots. But are the
objectsintheclustersreally the same objectsasintheorigina plot?
In this subsection we take a closer look at this question, and wewill
al so investigate the scal ability of the methods with respect to the di-
mension of the data

bs noise 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
noise 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1140702 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 50 0| 69395 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0] 69174 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0[79242 0 0 0 0 0 0 0 0 0 0 0
12 1 0 0 0 0]126617 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0| 45875 0 0 0 0 0 0 0 0 0
4 7 0 0 0 0 0 0] 63198 0 0 0 0 0 0 0 0
7 57 0 0 0 0 0 0 0] 93313 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0]|50318 0 0 0 0 0 0
6 101 0 0 0 0 0 0 0 0 0] 65977 0 0 0 0 0
9 113 0 0 0 0 0 0 0 0 0 0| 58545 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0] 38823 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0| 74603 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 14469 0
10 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0]109415

Figure 19: Confusion matrix: OPTICS vs. OPTICS-SAg, ppies fOr @ 5-dim database with 1 million objectsin 15 Gaussian clusters

Correctnessusing Confusion Matrixes

To investigate the correctness or accuracy of the methods, we com-
puted a confusion matrix for each algorithm. A confusion matrix is
a two-dimensional matrix. On one dimension are the cluster ids of
the original algorithm and on the other dimension are the ids of the
algorithm to validate. We used the 5-dimensional data setsfrom the
previous section, containing 15 Gaussian clusters, which we ex-
tracted from the plots. The original algorithm found exactly 15
clusters (with cluster ids 0 to 14). It also found 334 noise objects,
i.e. objects not belonging to any cluster.

To compare OPTICS-SA g ppjes aNd OPTICS-CFg e WE COM-
pressed the data to 200 objects. Both algorithms found all 15 clus-
ters, which corresponded exactly with the origina clusters. The
original noise objects are distributed over all clusters. Since the
confusion matrixes arein fact identica, we present only the matrix
for OPTICS-SA gy esin figure 19 (due to space limitations). From
|ft to right we show the clusters found in the original reachability-
plot of OPTICS. From top to bottom, we show the clusters found
by the OPTICS-SApppies: The rows are reordered so that the larg-
est numbers are on the diagonal .

Quality w.r.t. the Dimension of the Database

Figure 20 showsthe reachability-plotsfor thedifferent dimensional
databases, which we aready used for the runtime experiments.
Both algorithms find all 15 clusters with the correct sizes, with the
OPTICS-SA g ppies e NG about twiceasfast as OPTICS-CFgppes

Also, the quality of OPTICS-SAgppes IS Slightly better: it shows
the gaussian shape of the clusters, and OPTICS-CFg, s does not.

9.3 Real-World Database

To evaluate our compression techniques on area-world database,
we used the Color Moments from the Corel Image Features avail-
able from the UCI KDD Archive at kdd.ics.uci.edu/databases/
Corel Features/Corel Features.ntml. This database contains image
features (color moments) extracted from a Corel image collection.
We used the first order moments in the HSV color scheme, as the
Euclidean distance can be used to measure distance in this feature
database containing 68,040 images.Figure 21 (a) shows the result
of OPTICS on the whole data set. This data set is particularly chal-
lenging for a clustering algorithm using data compression because
in this setting it contains no significant clustering structure, apart
from two very small clusters, i.e. the two tiny clusters are embed-
ded in an area of lower, dmost uniform density.

For OPTICS-CFg jpes @Nd OPTICS-SA g ppjes We used 1,000 rep-
resentative objects, i.e. a compression by afactor of 68. The runt-
ime of OPTICS was 4,562sec, OPTICS-CFg ;e 100k 76sec and
OPTICS-SA g, jppies 20seC to generate the cluster ordering. Thus, the
speedup-factors were 60 and 228 respectively. The result of
OPTICS-CFgppies (Which generated only 547 CFs by setting the
parameter for the desired number of leaf nodes to 1000) approxi-
mates the genera structure of the data set, but looses both clusters.
The result of OPTICS-SApppies Nicely shows the general distribu-
tion of the data objects and al so recovers both clusters.

dimension

10

original

|

SABubbles

CFaunbles .

30
20 20
10 10

Figure 20: Resultsfor different dimensional databases (1 mio objects, compressed to 200 r epr esentatives)

(a) result of OPTICS for the whole data set,
runtime=4,562sec

(b) result of OPTICS-CFg pples, untime=76sec

(c) result of OPTICS-SAgpbles: funtime=20sec

Figure 21: Resultsfor the Corel Image Features database

To validate that the two clustersin noise 0 il
fact contain the same objects, we noise | 67087] 59| 19
extracted them manually and com- O 75| 253 0
puted the confusion matrix (cf. 4 20 o 52

figure 22, columns= OPTICS,
rows = OPTICS—SABUbUeS)' The
clusters are well-preserved, i.e. no objects switched from one clus-
ter to the other one. Due to the general structure of the database,
some of the objects bordering the clusters are assigned to the clus-
ters or not assigned to the clusters, depending on the algorithm
used. This example shows, that OPTICS-SAg jpes Can even find
very small clusters embedded in avery noisy database.

Figure 22: Confusion Matrix

9.4 Discussion

If we wish to analyze groups of objectsin avery large database, af-
ter applying a hierarchical clustering algorithm to compressed data,
we must use at least the weighted versions of our algorithms, be-
cause of the “lost objects problem”. We did not include the runt-
imes of these algorithms in our diagrams because they are amost
indistinguishable from the runtimes using Data Bubbles. However,
we have seen that the weighted versions work well only for very
low compression factors, which resultsin amuch larger runtime as
compared to using Data Bubbles - for aresult of similar quality.

10. CONCLUSIONS

In this paper, we developed a version of OPTICS using data com-
pressionin order to scale OPTICSto extremely large databases. We
started with the simple and well-known concept of random sam-
pling and applying OPTICS only to the sample. We compared this
with executing the BIRCH algorithm and applying OPTICS to the
centers of the generated Clustering Features. Both methods incur
serious quality degradations in the result. We identified three key
problems: lost objects, size distortions and structura distortions.

Based on our observations, we developed a post-processing step
that enables us to recover some of the information lost by sampling
or using BIRCH, solving the | ost objects and size distortions prob-

lems. This step classifies the original objects according to the clos-
est representative and replaces the representativesin the cluster or-
dering by the corresponding sets of original objects.

In order to solve the structural distortions, we introduced the gener-
a concept of a Data Bubble as a more specialized kind of com-
pressed data items, suitable for hierarchical clustering. For Euclid-
ean vector data we presented two ways of generating Data Bubbles
efficiently, either by using sampling plus a nearest neighbor classi-
fication or by utilizing BIRCH. We performed an experimental
evaluation showing that our method is efficient and effectivein the
sense that we achieve high quality clustering results for data sets
containing hundred thousands of vectorsin afew minutes.

In the future, we will investigate methods to efficiently generate
Data Bubble from non-Euclidean data, i.e. data for which only a
distance metric is defined. In this setting, we can no longer use a
method such as BIRCH to generate sufficient statistics, but we can
still apply sampling plus nearest neighbor classification to produce
data sets which can in principle be represented by Data Bubbles.
The challenge, however, isthen to efficiently determine agood rep-
resentative, the radius and the average k-nearest neighbor distances
needed to represent a set of objects by a Data Bubble.

References

[1] Ankerst M., Breunig M.M., Kriegel H.-P, Sander J.:
“OPTICS Ordering Points To Identify the Clustering
Sructure’, Proc. ACM SIGMOD Int. Conf. on Management
of Data, Philadelphia, PA, 1999, pp 49-60.

[2] Bradley P S, Fayyad U., Reina C.: “Scaling Clustering
Algorithms to Large Databases’, Proc. 4th Int. Conf. on
Knowledge Discovery and Data Mining, New York, NY,
AAAI Press, 1998, pp. 9-15.

[3] Breunig M., Kriege H.-P, Sander J.: “Fast Hierarchical
Clustering Based on Compressed Data and OPTICS’, Proc.
4th European Conf. on Principles and Practice of Knowledge
Discovery in Databases, LNCS Vol. 1910, Springer Verlag,
Berlin, 2000, pp. 232-242.

[4] DuMouche W., Valinsky C., Johnson T., Cortez C., Pregibon
D.: “Sgashing Flat Files Flatter”, Proc. 5th Int. Conf. on
Knowledge Discovery and Data Mining, San Diego, CA,
AAAI Press, 1999, pp. 6-15.

[5] Ester M., Kriegel H.-P, Sander J., Xu X.: “ A Density-Based
Algorithm for Discovering Clusters in Large Spatial
Databases with Noise”, Proc. 2nd Int. Conf. on Knowledge
Discovery and DataMining, Portland, OR, AAAI Press, 1996,
pp. 226-231.

[6] JainA.K.andDubesR.C.: “Algorithmsfor Clustering Data”,
Prentice-Hall, Inc., 1988.

[71 Kaufman L., Rousseeuw P. J.: “ Finding Groupsin Data: An
Introduction to Cluster Analysis’, John Wiley & Sons, 1990.

[8] MacQueenJ.: “ Some Methodsfor Classification and Analysis
of Multivariate Observations’, Proc. 5th Berkeley Symp.
Math. Statist. Prob., 1967, Vol. 1, pp. 281-297.

[9] Sibson R.: “SLINK: an optimally efficient algorithm for the
single-link cluster method”, the Computer Journa Vol. 16, No.
1, 1973, pp. 30-34.

[10] Zhang T., Ramakrishnan R., Linvy M.: “ BIRCH: An Efficient
Data Clustering Method for \Very Large Databases’, Proc.
ACM SIGMOD Int. Conf. on Management of Data, Montrea,
Canada, ACM Press, New York, 1996, pp. 103-114.

