
Data Bubbles: Quality Preserving Performance Boosting
for Hierarchical Clustering

Markus M. Breunig†, Hans-Peter Kriegel†, Peer Kröger†, Jörg Sander‡

† Institute for Computer Science ‡ Department of Computer Science
University of Munich University of British Columbia

Oettingenstr. 67, D-80538 Munich, Germany Vancouver, BC V6T 1Z4 Canada

{ breunig | kriegel | kroegera }
@dbs.informatik.uni-muenchen.de jsander@cs.ubc.ca

ABSTRACT
In this paper, we investigate how to scale hierarchical clustering
methods (such as OPTICS) to extremely large databases by utilizing
data compression methods (such as BIRCH or random sampling).
We propose a three step procedure: 1) compress the data into suit-
able representative objects; 2) apply the hierarchical clustering al-
gorithm only to these objects; 3) recover the clustering structure for
the whole data set, based on the result for the compressed data. The
key issue in this approach is to design compressed data items such
that not only a hierarchical clustering algorithm can be applied, but
also that they contain enough information to infer the clustering
structure of the original data set in the third step. This is crucial be-
cause the results of hierarchical clustering algorithms, when applied
naively to a random sample or to the clustering features (CFs) gen-
erated by BIRCH, deteriorate rapidly for higher compression rates.
This is due to three key problems, which we identify. To solve these
problems, we propose an efficient post-processing step and the con-
cept of a Data Bubble as a special kind of compressed data item. Ap-
plying OPTICS to these Data Bubbles allows us to recover a very
accurate approximation of the clustering structure of a large data set
even for very high compression rates. A comprehensive perfor-
mance and quality evaluation shows that we only trade very little
quality of the clustering result for a great increase in performance.

Keywords
Database Mining, Clustering, Sampling, Data Compression.

1. INTRODUCTION
Knowledge discovery in databases (KDD) is the non-trivial process
of identifying valid, novel, potentially useful, and understandable
patterns in large amounts of data. One of the primary data analysis
tasks which should be applicable in this process is cluster analysis.

There are different types of clustering algorithms for different types
of applications. The most common distinction is between partition-
ing and hierarchical clustering algorithms (see e.g. [7]). Examples
of partitioning algorithms are the k-means [8] and the k-medoids [7]
algorithms which decompose a database into a set of k clusters.
Most hierarchical clustering algorithms such as the single link
method [9] and OPTICS [1] on the other hand compute a represen-
tation of the data set which reflects its hierarchical clustering struc-
ture. Whether or not the data set is then decomposed into clusters
depends on the application.

In general, clustering algorithms do not scale well with the
size of the data set. However, many real-world databases contain
hundred thousands or even millions of objects. To be able to per-
form a cluster analysis of such databases, a very fast method is re-
quired (linear or near-linear runtime). Even if the database is medi-
um sized, it makes a large difference for the user if he can cluster
his data in a couple of seconds or in a couple of hours (e.g. if the
analyst wants to try out different subsets of the attributes without
incurring prohibitive waiting times). Therefore, improving cluster-
ing algorithms has received a lot of attention in the last few years.

A general strategy to scale-up clustering algorithms (without the
need to invent a new cluster notion) is to draw a sample or to apply
a kind of data compression (e.g. BIRCH [10]) before applying the
clustering algorithm to the resulting representative objects. This ap-
proach is very effective for k-means type of clustering algorithms.
For hierarchical clustering algorithms, however, the success of this
approach is limited. Hierarchical clustering algorithms are based on
the distances between data points which are not represented well by
the distances between representative objects, especially when the
compression rate increases.

In this paper, we analyze in detail the problems involved in the ap-
plication of hierarchical clustering algorithms to compressed data.
In order to solve these problems, we generalize the idea of a so-
called Data Bubble introduced in [3] which is a more specialized
kind of compressed data items, suitable for hierarchical clustering.
We present two ways of generating Data Bubbles efficiently, either
by using sampling plus a nearest neighbor classification or by uti-
lizing BIRCH. Furthermore, we show that our method is efficient
and effective in the sense that an extremely accurate approximation
of the clustering structure for a very large data sets can be produced
from a very small set of corresponding Data Bubbles. Thus, we
achieve high quality clustering results for data sets containing hun-
dred thousands of objects in a few minutes.

Proc. ACM SIGMOD 2001 Int. Conf. on Management of Data, Santa Barbara, CA, 2001

The rest of the paper is organized as follows. In section 2, we dis-
cuss data compression techniques for clustering, and give a short
review of BIRCH. Hierarchical clustering is reviewed in section 3,
including a short presentation of OPTICS. In section 4, we identify
three key problems with a “naive” application of a hierarchical
clustering algorithm to representative objects, called “size distor-
tion”, “lost objects”, and “structural distortion”. The size distortion
problem and the lost objects problem have a rather straightforward
solution which is presented in section 5. However, this solution can
be fully effective only if the structural distortion problem is solved.
For this purpose, the general concept of a Data Bubble is introduced
in section 6. To recover the intrinsic clustering structure of an orig-
inal data set even for extremely high compression rates, Data
Bubbles integrate an estimation of the distance information needed
by hierarchical clustering algorithms. In section 7, the notion of a
Data Bubbles is specialized to Euclidean vector data in order to
generate Data Bubbles very efficiently (by utilizing BIRCH or by
drawing a sample plus a k-nearest neighbor classification).
Section 8 presents an application of OPTICS to these Data Bubbles
which indicates that all three problems are solved. In section 9, this
observation is confirmed by a systematic experimental evaluation.
Data sets of different sizes and dimensions are used to compare the
clustering results for Data Bubbles with the results for the underly-
ing data set. Section 10 concludes the paper.

2. DATA COMPRESSION FOR CLUSTERING
Random sampling is probably the most widely used method to
“compress” a large data set in order to scale expensive data mining
algorithms to large numbers of objects. The basic idea is rather sim-
ple: choose a subset of the database randomly and apply the data
mining algorithm only to this subset instead of to the whole data-
base. The hope is that if the number of objects sampled (the sample
size) is large enough, the result of the data mining method on the
sample will be similar enough to the result on the original database.

More specialized data compression methods have been developed
recently to scale up k-means type clustering algorithms. The suffi-
cient statistics intended to support clustering algorithms are basi-
cally the same for all these compression methods. As an example,
we give a short description of BIRCH and discuss the major differ-
ences and the common features for the other methods in this sec-
tion. BIRCH [10] uses a specialized tree-structure for clustering
large sets of d-dimensional vectors. It incrementally computes
compact descriptions of subclusters, called Clustering Features.

Definition 1: (Clustering Feature, CF)
Given a set of n d-dimensional data points {Xi}, 1 ≤ i ≤ n.

The Clustering Feature (CF) for {Xi} is defined as the triple

CF = (n, LS, ss), where is the linear sum and

 the square sum of the points.

The CF-values are sufficient to compute information about the sets
of objects they represent like centroid, radius and diameter. They
satisfy an important additivity condition, i.e. if CF1 = (n1, LS1, ss1)

and CF2 = (n2, LS2, ss2) are the CFs for sets of points S1 and S2 re-

spectively, then CF1 + CF2 = (n1 + n2, LS1 + LS2, ss1 + ss2) is the

clustering feature for the set S1 ∪ S2.

The CFs are organized in a balanced tree with branching factor B
and a threshold T (see figure 1). A non-leaf node represents a sub-
cluster consisting of all the subclusters represented by its entries. A
leaf node has to contain at most L entries and the diameter of each
entry in a leaf node has to be less than T.

BIRCH performs a sequential scan over all data points and builds a

CF-tree similar to the construction of B+-trees. A point is inserted
by inserting the corresponding CF-value into the closest leaf. If an
entry in the leaf can absorb the new point without violating the
threshold condition, its CF is updated. Otherwise, a new entry is
created in the leaf node, and, if the leaf node then contains more
than L entries, it and maybe its ancestors are split. A clustering al-
gorithm can then be applied to the entries in the leaf nodes of the
CF-tree. The number of leaf nodes contained in a CF-tree can be
specified by a parameter in the original implementation.

In [2] another compression technique for scaling up clustering al-
gorithms is proposed. Their method produces basically the same
type of compressed data items as BIRCH, i.e. triples of the form
(n, LS, ss) as defined above. The method is, however, more special-
ized to k-means type clustering algorithms than BIRCH in the sense
that the authors distinguish different sets of data items: A set of
compressed data items DS which is intended to condense groups of
points unlikely to change cluster membership in the iterations of the
(k-means type) clustering algorithm, a set of compressed data items
CS which represents tight subclusters of data points, and a set of
regular data points RS which contains all points which cannot be
assigned to any of the compressed data items. While BIRCH uses
the diameter to threshold compressed data items, [2] apply different
threshold conditions for the construction of compressed data items
in the sets DS and CS respectively.

A very general framework for compressing data has been intro-
duced recently in [4]. Their technique is intended to scale up a large
collection of data mining methods. In a first step, the data is
grouped into regions by partitioning the dimensions of the data.
Then, in the second step, a number of moments are calculated for
each region induced by this partitioning (e.g. means, minima, max-

ima, second order moments such as Xi
2 or XiXj, and higher order

moments depending on the desired degree of approximation). In the
third step, they create for each region a set of squashed data items
so that its moments approximate those of the original data falling in
the region. Obviously, information such as clustering features for
the constructed regions, to speed-up k-means type clustering algo-
rithms, can be easily derived from this kind of squashed data items.

For the purpose of clustering, we can also compute sufficient statis-
tics of the form (n, LS, ss) efficiently based on a random sample
since we can assume that a distance function is defined for the ob-
jects in the data set. This allows us to partition the data set using a

LS Xi
i 1…n=

∑=

ss Xi
2

i 1…n=
∑=

CF6=CF1+CF2+CF3 CF7=CF4+CF5

CF1 CF2 CF3 CF4 CF5

Figure 1: CF-tree structure

CF8=CF6+CF7
. . .

. . .

. . .

. . .

k-nearest neighbor classification. This method has the advantages
that we can control exactly the number of representative objects for
a data set and that we do not rely on other parameters (like diameter,
or bin-size) to restrict the size of the partitions for representatives
given in the form (n, LS, ss). The method works as follows:

1. Draw a random sample of size k from the database to ini-
tialize k sufficient statistics.

2. In one pass over the original database, classify each original
object o to the sampled object s it is closest to and incremen-
tally add o to the sufficient statistics initialized by s, using
the additivity condition given above.

The application of k-means type clustering algorithms to com-
pressed data items (n, LS, ss) is rather straightforward. The k-means
algorithm represents clusters by the mean of the points contained in
that cluster. It starts with an assignment of data points to k initial
cluster centers, resulting in k clusters. Then it iteratively performs
the following steps while the cluster centers change: 1) Compute
the mean for each cluster. 2) Re-assign each data point to the closest
of the new cluster centers. When using sufficient statistics the algo-
rithm just has to be extended so that it treats the triplets (n, LS, ss)
as data points LS/n with a weight of n when computing cluster
means, i.e. the mean of m compressed points LS1/n1, ..., LSm/nm is

calculated as (LS1/n1+ ...+LSm/nm) / n1+ ...+nm.

3. HIERARCHICAL CLUSTERING
Typically, hierarchical clustering algorithms represent the cluster-
ing structure of a data set D by a dendrogram, i.e. a tree that itera-
tively splits D into smaller subsets until each subset consists of one
object. In such a hierarchy, each node of the tree represents a cluster
of D. The dendrogram can either be created bottom-up (agglomer-
ative approach) or top-down (divisive approach) by merging, re-
spectively dividing clusters at each step.

There are a lot of different algorithms producing the same hierar-
chical structure (see e.g. [9], [6]). In general, they are based on the
inter-object distances and on finding the nearest neighbors of ob-
jects and clusters. Therefore, the runtime complexity of these clus-

tering algorithms is at least O(n2), if all inter-object distances for an
object have to be checked to find its nearest neighbor. Agglomera-
tive hierarchical clustering algorithms, for instance, basically keep
merging the closest pairs of objects to form clusters. They start with
the “disjoint clustering” obtained by placing every object in a
unique cluster. In every step the two “closest” clusters in the current
clustering are merged. For this purpose, they define a distance mea-
sure for sets of objects. For the so-called “single link method”, for
example the distance between two sets of objects is defined as the
minimal distance between their objects (see figure 2 for an illustra-
tion of the single link method).

OPTICS [1] is another hierarchical clustering method that has been
proposed recently. This method is based on a different algorithmic
approach which reduces some of the shortcomings of traditional hi-
erarchical clustering algorithms. It weakens the so called “single
link effect”; it computes information, that can be displayed in a di-
agram that is a more appropriate for very large data sets than a den-
drogram; and it is specifically designed to be based on range que-
ries, which can be efficiently supported by index-based access
structures. This results in a runtime complexity of O(n log n) under
the condition that the underlying index structure works well.

In the following we give a short review of OPTICS [1], since we
will use this algorithm to evaluate our method for hierarchical clus-
tering using compressed data items. The method itself can be easily
adapted to work with classical hierarchical clustering algorithms as
well.

First, the basic concepts of neighborhood and nearest neighbors are
defined in the following way.

Definition 2: (ε-neighborhood and k-distance of an object P)
Let P be an object from a database D, let ε be a distance value,
let k be a natural number and let d be a distance metric on D.
Then, the ε-neighborhood Nε(P) is a set of objects X in D with

d(P,X) ≤ ε:
Nε(P) = { X ∈ D | d(P,X) ≤ ε },

and the k-distance of P, k-dist(P), is the distance d(P, O) be-
tween P and an object O ∈ D such that at least for k objects
O’ ∈ D it holds that d(P, O’) ≤ d(P, O), and for at most k-1 ob-
jects O’ ∈ D it holds that d(P, O’) < d(P, O). Note that k-dist(P)
is unique, although the object O which is called ‘the’ k-nearest
neighbor of P may not be unique. When clear from the context,
Nk(P) is used as a shorthand for Nk-dist(P)(P).

The objects in the set Nk(P) are called the “k-nearest-neighbors of

P” (although there may be more than k objects contained in the set
if the k-nearest neighbor of P is not unique).

OPTICS is based on a density-based notion of clusters introduced
in [5]. For each object of a density-based cluster, the ε-neighbor-
hood has to contain at least a minimum number of objects. Such an
object is called a core object. Clusters are defined as maximal sets
of density-connected objects. An object P is density-connected to
Q if there exists an object O such that both P and Q are density-
reachable from O (directly or transitively). P is directly density-
reachable from O if P ∈ Nε(O) and O is a core object. Thus, a “flat”

partitioning of a data set into a set of clusters is defined, using glo-
bal density parameters. OPTICS extends this density-based cluster-
ing approach to create an augmented ordering of the database rep-
resenting its density-based clustering structure. The cluster-
ordering contains information which is equivalent to the density-
based clusterings corresponding to a broad range of parameter set-
tings. This cluster-ordering of a data set is based on the notions of
“core-distance” and “(density-)reachability-distance”.

Definition 3: (core-distance of an object P)
Let P be an object from a database D, let ε be a distance value
and let MinPts be a natural number. Then, the core-distance of
P is defined as

core-distε,MinPts(P) = .

Figure 2: Single link clustering of n = 9 objects

1

1

5

5

1
3
2 4 6

5

7
8 9

1 2 3 4 5 6 7 8 9
0

1

distance
between
clusters

2

∞ if |Nε P()| MinPts<,

MinPts-dist P() otherwise,





The core-distance of an object P is the smallest distance ε’ ≤ ε such
that P is a core object with respect to ε’ and MinPts - if such a dis-
tance exists, i.e. if there are at least MinPts objects within the ε-
neighborhood of P. Otherwise, the core-distance is ∞.

Definition 4: (reachability-distance of an object P w.r.t. O)
Let P and O be objects, P ∈ Nε(O), let ε be a distance value and

MinPts be a natural number. Then, the reachability-distance of
P with respect to O is defined as

reach-distε,MinPts(P,O) = .

Intuitively, reach-dist(P,O)
is the smallest distance such
that P is directly density-
reachable from O if O is a
co re ob jec t . The re fo re
reach-dist(P,O) cannot be
smaller than core-dist(O)
because for smaller distanc-
es no object is directly den-
sity-reachable from O. Oth-
erwise, if O is not a core
object, reach-dist(P,O) is ∞.
(See figure 3.)

Using the core- and reachability-distances, OPTICS computes a
“walk” through the data set, and assigns to each object O its core-
distance and the smallest reachability-distance reachDist with re-
spect to an object considered before O in the walk (see [1] for de-
tails). This walk satisfies the following condition: Whenever a set
of objects C is a density-based cluster with respect to MinPts and a
value ε’ smaller than the value ε used in the OPTICS algorithm,
then the objects of C (possibly without a few border objects) form
a subsequence in the walk. The reachability-plot consists of the
reachability values (on the y-axis) of all objects, plotted in the or-
dering which OPTICS produces (on the x-axis). This yields an easy
to understand visualization of the clustering structure of the data
set. The “dents” in the plot represent the clusters because objects
within a cluster typically have a lower reachability-distance than
objects outside a cluster. A high reachability-distance indicates a
noise object or a jump from one cluster to another cluster.

Figure 4 shows the reachability-plot for two 2-dimensional syn-
thetic data sets, DS1 and DS2, which we will use in the following
sections to evaluate our approach. DS1 contains one million points
grouped into several nested clusters of different densities and dis-
tributions (uniform and Gaussian) and noise objects. DS2 contains
100,000 objects in 5 Gaussian clusters of 20,000 objects each. The
figure also shows the result of applying the basic OPTICS algo-
rithm to these data sets. The “dents” in the plots represent the clus-
ters, clearly showing the hierarchical structure for DS1.

4. PROBLEMS WITH A NAIVE APPLICA-
TION TO RANDOM SAMPLES OR TO
CF CENTERS

When we want to apply a hierarchical clustering algorithm to a
“compressed” data set, it is not clear whether we will get satisfac-
tory results if we treat clustering features (n, LS, ss) as data points
LS/n, or if we simply use a random sample of the database. Hierar-
chical clustering algorithms do not compute any cluster centers but

compute a special representation of the distances between points
and between clusters. This information, however, may not be well
reflected by a reduced set of points such as cluster feature centers
or random sample points. We present this application to discuss the
major problems involved in hierarchical clustering of compressed
data sets. The algorithmic schema for the application of OPTICS to
both CFs and a random sample is depicted in figure 5.

We assume that the number of representative objects k is small
enough to fit into main memory. We will refer to these algorithms
as “OPTICS-CFnaive” and “OPTICS-SAnaive” for the naive appli-
cation of OPTICS to CFs and to a random SAmple, respectively.
Figure 6 shows the results of the algorithms OPTICS-SAnaive and
OPTICS-CFnaive on DS1 for three different sample sizes: 10,000
objects, 1,000 objects and 200 objects. For the large number of rep-
resentative objects (10,000 objects, i.e. compression factor 100),
the quality of the reachability-plot of OPTICS-SAnaive is compara-
ble to the quality of applying OPTICS to the original database. For
small values of k, however, the quality of the result suffers consid-
erably. For a compression factor of 1,000, the hierarchical cluster-
ing structure of the database is already distorted, for a compression
factor of 5,000, the clustering structure is almost completely lost.
The results are even worse for OPTICS-CFnaive: none of the reach-
ability-plots even crudely represents the clustering structure of the
database. We will call this problem “structural distortions”.

Figure 7 shows the results on DS2 for both algorithms for 100 rep-
resentative objects. For larger number of representative objects the

max core-distε MinPts, O() d O P,(),()

ε

o

p1

p2

co
re

(o
)

r(p2)

r(p1)

Figure 3: core-dist(O),
reach-dists r(P1,O), r(P2,O)

MinPts=4
Figure 4: Databases DS1 and DS2 and the original OPTICS
reachability-plots. The runtimes using the basic OPTICS-al-

gorithm were 16,637sec and 993sec.

(a) data set DS1 and its reachability-plot

(b) data set DS2 and its reachability-plot

1. Either (CF): Execute BIRCH and extract the centers of
the k leaf CFs as representative objects.

Or (SA): Take a random sample of k objects from
the database as representative objects.

2. Optional: Build an index for the representative objects
(used by OPTICS to speed up range queries).

3. Apply OPTICS to the representative objects.

Figure 5: Algorithm OPTICS-CFnaive and OPTICS-SAnaiveFigure 5: Algorithm OPTICS-CFnaive and OPTICS-SAnaive

results of both algorithms are quite good, due to fact that the clus-
ters in this data set are well separated. However, even for such sim-
ple data sets as DS2 the results of a naive application deteriorate
with high compression rates. OPTICS-SAnaive preserves at least the
information that 5 clusters exist while OPTICS-CFnaive loses one
cluster. But for both algorithms, we see that the sizes of the clusters
are distorted, i.e. some clusters seem larger than they really are and
others seem smaller. The reachability-plots are stretched and
squeezed. We will call this problem “size distortions”.

Apart from the problems discussed so far, there is another problem
if we want to apply clustering as one step in a larger knowledge dis-
covery effort, in which the objects are first assigned to clusters and
then further analyzed: we do not have direct clustering information
about the database objects. Only some (in case of sampling) or even
none (when using CFs) of the database objects are contained in the
reachability-plot. This problem will be called “lost objects”.

In order to apply hierarchical clustering algorithms to highly com-
pressed Data, we have to solve these three problems. We will see
that the size distortion problem and the lost objects problem have a
rather straightforward solution. However, solving these problems
in isolation improves the clustering results only by a minor degree.
The basic problem is the structural distortion which requires a more
sophisticated solution.

5. SOLVING THE SIZE DISTORTION AND
THE LOST OBJECT PROBLEM

In order to alleviate the problem of size distortions, we can weigh
each representative object with the number n of objects they actu-
ally represent. When plotting the final cluster ordering we can sim-
ply repeat the reachability value for a representative object n times,
which corrects the observed stretching and squeezing in the reach-
ability-plots. (Note that we can apply an analogous technique to ex-
pand a dendrogram produced by other hierarchical algorithms.)

When using BIRCH, the weight n of a representative object is al-
ready contained in a clustering feature (n, LS, ss). When using a
random sample, we can easily determine theses numbers for the
sample points by classifying each original object to the sample
point which is closest to it (using a nearest-neighbor classification).

This solution to the size distortion problem also indicates how to
solve the lost objects problem. The idea is simply to apply the clas-
sification step not only in the sampling based approach but also to
clustering features to determine the objects which actually “be-
long” to a representative object. When generating the final cluster
ordering, we store with the reachability values that replace the val-
ues for each representative object sj the identifiers of the original

objects classified to sj. By doing so, we, on the one hand, correct the

stretching and squeezing in the reachability-plot, i.e. we solve the
size distortions problem, and, on the other hand, insert all original
objects into the cluster ordering, thus solving the lost objects prob-
lem at the same time. The algorithmic schema for both methods is
given in figure 8.

We will refer to these algorithms as “OPTICS-CFweighted” and

“OPTICS-SAweighted”, depending on whether we use OPTICS with

weighted CFs or with weighted random sample points. The differ-
ence to the naive schema lies only in step 4 and 5 where we do the
nn-classification and adapt the reachability plot. We read each orig-
inal object oi and classify it by executing a nearest neighbor query

in the sampled database. If we have built an index on the sampled
database in step 2, we can reuse it here. To understand step 5, let the
nearest neighbor of oi be sj. We set the core-distance of oi to the

k=10,000 k=1,000 k=200

(a) OPTICS-SAnaive

(b) OPTICS-CFnaive

Figure 6: DS1-results of OPTICS-SAnaive an OPTICS-CFnaive for 10,000, 1,000 and 200 representative objects

Figure 7: DS2-results of OPTICS-SAnaive
and OPTICS-CFnaive for 100 objects

OPTICS-CFnaiveOPTICS-SAnaive

Figure 8: Algorithm OPTICS-CFweighted
and algorithm OPTICS-SAweighted

1. Either (CF): Execute BIRCH and extract the centers of
the k leaf CFs as representative objects.

Or (SA): Take a random sample of k objects from
the database as representative objects.

2. Optional: Build an index for the representative objects
(used by OPTICS to speed-up range queries).

3. Apply OPTICS to the representative objects.

4. For each database object compute the representative object
it is closest to (using a nearest-neighbor query).

5. Replace the representative objects by the corresponding
sets of original objects in the reachability plot.

core-distance of sj and the position of oi in the reachability plot to

the position of sj plus the number of objects which have already

been classified to sj. If oi is the first object classified to sj, we set the

reachability of oi to the reachability of sj, otherwise we set oi.reach-

Dist to min{sj.reachDist, (sj+1).reachDist}. The motivation for this

is that sj.reachDist is the reachability we need to first get to sj but

once we are there, the reachabilities of the other objects will be ap-
proximately the same as the reachability of the next object in the
cluster ordering of the sample. Then we write oi back to disc. Thus,

we make one pass (reading and writing) over the original database.
Finally, we sort the original database according to the position
numbers, thus bringing the whole database into the cluster ordering.

Figure 9(a) shows the results for DS1 of the OPTICS-SAweighted

for three different sample sizes: 10,000 objects, 1,000 objects and
200 objects. Figure 9(b) shows the same information for the OP-
TICS-CFweighted algorithm. The results of both algorithms look

very similar to the results of the naive versions of the algorithms.
Although we have corrected the size distortion in both cases, the
structural distortion dominates the visual impression. Both ver-
sions, however, have the advantage that all original database ob-
jects are now actually represented in the cluster ordering.

That the post-processing step really solves the size distortions prob-
lem is visible in figure 10 which shows the results for DS2. The re-
sult of OPTICS-SAweighted is quite good: all five clusters are clear-

ly visible and have the correct sizes. The cluster ordering generated
by OPTICS-CFweighted has also improved as compared to OPTICS-

SAnaive. Obviously, post-processing alleviates the size distortion

problem and solves the lost objects problem. However, the lost
cluster cannot be recovered by OPTICS-CFweighted. Weighing the

representative objects and classifying the database can be fully ef-
fective only when we solve the structural distortion problem.

6. DATA BUBBLES AND ESTIMATED DIS-
TANCES: SOLVING THE STRUCTURAL
DISTORTION PROBLEM

The basic reason for the structural distortion problem when using
very high compression rates is that the distance between the origi-
nal data points is not represented well by only the distance between
representative objects. Figure 11 illustrates the problem using two
extreme situations. In these cases, the distance between the repre-
sentative points rA and rB is the same as the distance between the
representative points rC and rD. However, the distance between the
corresponding sets of points which they actually represent is very
different. This error is one source for the structural distortion. A
second source for structural distortion is the fact that the true dis-
tances (and hence the true reachDists) for the points within the
point sets are very different from the distances (and hence the
reachDists) we compute for their representatives. This is the reason
why it is not possible to recover clusters by simply weighing the
representatives with the number of points they represent. Weighing
only stretches certain parts of the reachability-plot by using the
reachDist values of the representatives. For instance, assume that
the reachDist values for the representative points are as depicted in
figure 11. When expanding the plot for rD, we assign to the first ob-
jects classified to belong to rD the reachDist value reachDist(rD).
Every other object in D is then assigned the value reachDist(rY)
which is, however, almost the same as the value reachDist(rD).
Weighing the representative object will be more effective, if we use
at least a close estimate of the true reachability values for the ob-

Figure 9: DS1-results of OPTICS-SAweighted an OPTICS-CFweighted for 10,000, 1,000 and 200 representative objects

k=10,000 k=1,000 k=200

(a) OPTICS-SAweighted

(b) OPTICS-CFweighted

Figure 10: DS2-results of OPTICS-SAweighted
and OPTICS-CFweighted for 100 objects

OPTICS-SAweighted OPTICS-CFweighted

dist(rA, rB)

rA rB

Figure 11: Illustration for the structural distortion problem

dist(rC, rD)

rC rD

A
B

C
D

rX

rY

reachDist(rB) reachDist(
rX)

reachDist(rD)
reachDist(r

Y)

X

Y

jects in a data set. Only then, we will be able to recover the whole
cluster D: the reachability value for rD would then be expanded by
a sequence of very small reachability values which appear as a
“dent” (indicating a cluster) in the reachability plot.

To solve the structural distortion problem we need a better distance
measure for compressed data items and we need a good estimation
of the true reachability values within sets of points. To achieve this
goal, we first introduce the concept of Data Bubbles summarizing
the information about point sets which is actually needed by a hier-
archical clustering algorithm to operate on. Then we give special
instances of such Data Bubbles for Euclidean vector spaces and
show how to construct a cluster ordering for a very large data set
using only a very small number of Data Bubbles. We define Data
Bubbles as a convenient abstraction summarizing the sufficient in-
formation on which hierarchical clustering can be performed.

Definition 5: (Data Bubble)
Let X={Xi} 1 ≤ i ≤ n be a set of n objects.

Then, the Data Bubble B w.r.t. X is defined as a tuple
BX = (rep, n, extent, nnDist), where

- rep is a representative object for X
(which may or may not be an element of X);

- n is the number of objects in X;
- extent is a real number such that “most” objects of X are

located within a “radius” extend around rep;
- nnDist is a function denoting the estimated average k-nearest

neighbor distances within the set of objects X for
some values k, k=1, ..., k = MinPts. A particular expected
knn-distance in BX is denoted by nnDist(k, BX).

Using the radius extent and the expected nearest neighbor distance,
we can define a distance measure between two Data Bubbles that is
suitable for hierarchical clustering.

Definition 6: (distance between two Data Bubbles)
Let B=(repB, nB, eB, nnDistB) and C=(repC, nC, eC, nnDistC)

be two Data Bubbles.
Then, the distance between B and C is defined as dist(B, C) =

Besides the case that B = C (in which the distance obviously has to
be 0), we have to distinguish the two cases shown in figure 12. The
distance between two non-overlapping Data Bubbles is the distance
of their centers minus their radii plus their expected nearest neigh-
bor distances. If the Data Bubbles overlap, we take the maximum

of their expected nearest neighbor distances as their distance. Intu-
itively, this distance definition is intended to approximate the dis-
tance of the two closest points in the Data Bubbles.

When applying a classical hierarchical clustering algorithm such as
the single link method to Data Bubbles, we do not need more infor-
mation than defined above. For the algorithm OPTICS, however,
we have to define additionally the appropriate notion of a core-dis-
tance and a reachability-distance.

Definition 7: (core-distance of a Data Bubble B)
Let B=(repB, nB, eB, nnDistB) be a Data Bubble, let ε be a distance

value, let MinPts be a natural number and let N = {X | dist(B, X) ≤
ε}. Then, the core-distance of B is defined as

core-distε,MinPts(B) = ,

where C and k are given as follows: C ∈ N has maximal dist(B, C)

such that , and .

This definition is based on a similar notion as the core-distance for
data points. For points, the core-distance is ∞ if the number of
points in the ε-neighborhood is smaller than MinPts. Analogously,
the core-distance for Data Bubbles is ∞ if the sum of the numbers
of points represented by the Data Bubbles in the ε-neighborhood is
smaller than MinPts. For points, the core-distance (if not ∞) is the
distance to the MinPts-neighbor. For Data Bubble B, it is the esti-
mated MinPts-distance for the representative repB of B. Data Bub-
bles usually summarize at least MinPts points. Note that in this
case, the core-distε,MinPts(B) is equal to nnDist(MinPts, B) accord-
ing to the above definition. Only in very rare cases, or when the
compression rate is extremely low, a Data Bubble may represent
less than MinPts points. In this case we estimate the MinPts-dis-
tance of repB by taking the distance between B and the closest Data
Bubble C so that B and C and all Data Bubbles which are closer to
B than C contain together at least MinPts points. To this distance we
then add an estimated nearest k-neighbor distance in C, where k is
computed by subtracting from MinPts the number of points of all
Data Bubbles which are closer to B than C (which by selection of C
do not add up to MinPts).

Given the core-distance, the reachability-distance for Data Bubbles
is defined in the same way as the reachability-distances on data
points.

Definition 8: (reachability-distance of a Data Bubble B w.r.t. Data
Bubble C)

Let B=(repB, nB, eB, nnDistB) and C=(repC, nC, eC, nnDistC)

be Data Bubbles, let ε be a distance value, let MinPts be a nat-
ural number, and let B ∈ NC, where NC = {X | dist(C, X) ≤ ε}.

Then, the reachability-distance of B w.r.t. C is defined as

reach-distε,MinPts(B,C)= .

Using these distances, OPTICS can be applied to Data Bubbles in
a straight forward way. However, we also have to change the values
which replace the reachDist values of the representative objects
when generating the final reachability plot. When replacing the
reachDist for a Data Bubble B, we plot for the first original object

dist(repB, repC)

repB
repC

dist(B,C)

repB

Figure 12: Distance between Data Bubbles

repC

(a) non-overlaping
Data Bubbles

(b) overlapping
Data Bubbles

0 if B C=

dist repB repC,() eB eC+()– nnDist 1 B,() nnDist 1 C,()+ +

 if dist repB repC,() e1 e2+()– 0≥

max nnDist 1 B,() nnDist 1 C,(),() otherwise







∞ if n

X r n e d, , ,() N∈=
∑ 

 
 

MinPts<

dist B C,() nnDist k C,() otherwise+







n
X N∈

dist B X,() dist B C,()<

∑ MinPts< k MinPts n

X N∈
dist B X,() dist B C,()<

∑–=

max core-distε MinPts, C() dist C B,(),()

the reachDist of B (marking the jump to B) followed by (n-1)-times
an estimated reachability value for the n-1 remaining objects that B
describes. This estimated reachability value is called the “virtual
reachability of B”, and is defined as follows:

Definition 9: (virtual reachability of a Data Bubble B)
Let B = (repB, nB, eB, nnDistB) be a Data Bubble and MinPts a

natural number. The virtual reachability of the nB points de-

scribed by B is then defined as

virtual-reachability(B)= .

The intuitive idea is the following: if we assume that the points de-
scribed by B are more or less uniformly distributed in a sphere of
radius eB around repB, and B describes at least MinPts points, the

true reachDist of most of these points would be close to their
MinPts-nearest neighbor distance. If, on the other hand, B contains
less than MinPts points, the true reachDist of any of these points
would be close to the core-distance of B.

7. DATA BUBBLES FOR EUCLIDEAN
VECTOR SPACES

Data Bubbles provide a very general framework for applying a hi-
erarchical clustering algorithm, and in particular OPTICS, to com-
pressed data items created from an arbitrary data set - assuming
only that a distance function is defined for the original objects. In
the following, we will specialize these notions and show how Data
Bubbles can be efficiently created for data from Euclidean vector
spaces using sufficient statistics (n, LS, ss).

To create a Data Bubble BX=(rep, n, extent, nnDist) for a set X of n

d-dimensional data points, we have to determine the components in
BX. A natural choice for the representative object rep is the mean of

the vectors in X. If these points are approximately uniformly dis-
tributed around the mean rep, the average pairwise distance be-
tween the points in X is a good approximation for a radius around
rep which contains most of the points in X. Under the same assump-
tion, we can also compute the expected k-nearest neighbor distance
of the points in B in the following way:

Lemma 1: (expected k-nn distances for Euclidean vector data)
Let X be a set of n d-dimensional points. If the n points are uniform-
ly distributed inside a sphere with center c and radius r, then the
expected k-nearest neighbor distance inside X is equal to

.

Proof: The volume of a d-dimensional sphere of radius r is

 (Γ is the Gamma-Function). If the n points

are uniformly distributed inside the sphere, we expect one point in
the volume VS(r) / n and k points in the volume k VS(r) / n. Thus,

the expected k-nearest neighbor distance is equal to a radius r’ of a
sphere having this volume k VS(r) / n. By simple algebraic transfor-

mations it follows that r’ = . ♦

Using these notions, we can define a Data Bubble for a set of Eu-
clidean vector data in the following way:

Definition 10: (Data Bubble for Euclidean vector data)
Let X={Xi}, 1 ≤ i ≤ n be a set of n d-dimensional data points.

Then, a Data Bubble BX for X is given by the tuple

BX = (rep, n, extent, nnDist), where

 is the center of X,

 is the radius of X, and

nnDist is defined by .

Data Bubbles can be generated in many different ways. Given a set
of objects X, they can be straight forwardly computed. Another pos-
sibility is to compute them from sufficient statistics (n, LS, ss) as
defined in definition 1:

Corollary 1:
Let BX = (rep, n, extent, nnDist) be a Data Bubble for a set X={Xi},

1 ≤ i ≤ n, of n d-dimensional data points. Let LS be the linear sum
and ss the square sum of the points in X.

Then, , and .

For our experimental evaluation of Data Bubbles we compute them
from sufficient statistics (n, LS, ss). One algorithm is based on the
CFs generated by BIRCH, the other algorithm is based on random
sampling, as described in section 2.

8. CLUSTERING HIGHLY COMPRESSED
DATA USING DATA BUBBLES

In this section, we present the algorithms OPTICS-CFBubbles and

OPTICS-SABubbles to evaluate whether or not our Data Bubbles ac-

tually solve the structural distortion problem. OPTICS-CFBubbles

uses Data Bubbles which are computed from the leaf CFs of a CF-
tree created by BIRCH. OPTICS-SABubbles uses Data Bubbles

which are computed from sufficient statistics based on a random
sample plus nn-classification. Both algorithms are presented using
again one algorithmic schema, which is given in figure 13.

nnDistB MinPts B,() if nB MinPts≥

core-dist B() otherwise



k
n
--- 

  1 d⁄
r⋅

VS r() πd

Γ d
2
--- 1+ 

 
---------------------- r

d⋅=

k
n
--- 

  1 d⁄
r⋅

rep Xi
i 1…n=

∑
 
 
 

n⁄=

extent

Xi Xj–()
j 1 ..n=
∑

i 1..n=
∑

2

n n 1–()⋅
--=

nnD ist k B,() k
n
--- 

  1 d⁄
extent⋅=

rep
LS
n

------= extent 2 n ss 2 LS
2⋅–⋅ ⋅

n n 1–()⋅
--=

Figure 13: Algorithm OPTICS-CFBubbles
and algorithm OPTICS-SABubbles

1. Either (CF): execute BIRCH and extract the CFs.
Or (SA): sample k objects from the database randomly

and initialize k sufficient statistics.
Classify the original objects to the closest
sample object, computing sufficient statistics.
Save classification information for use in the
last step.

2. Compute Data Bubbles from the sufficient statistics.

3. Apply OPTICS to the Data Bubbles.

4. If (CF): classify the original objects to the closest
Data Bubble.

5. Replace the Data Bubbles by the corresponding sets of
original objects.

Step 1 is different for the two algorithms. For OPTICS-CFBubbles

we execute BIRCH, and extract the CFs from the leaf nodes of the
CF-tree. For OPTICS-SABubbles we draw a random sample of size

k and initialize a tuple (n, LS, ss) for each sampled object s with this
object, i.e. n=1, LS=s and ss equals the square sum of s. Then, we
read each object oi from the original database, classify oi to the

sample object it is closest to, and update (n, LS, ss) for the corre-
sponding sample point. We save the classification information by
writing it to a file, as we can use it again in step 5. This is cheaper
than to re-do the classification.

In step 2 and 3, we compute Data Bubbles from the sufficient sta-
tistics by applying Corollary 1, and apply OPTICS to them. Be-
cause of the rather complex distance measure between Data Bub-
bles, we cannot use an index to improve the time complexity of this
step and it runs in O(k*k). However, the purpose of our approach is
to make k very small so that this is acceptable.

Step 4 applies to OPTICS-CFBubbles only, as we do not have infor-

mation about which objects contribute to a Data Bubble. Thus, to
solve the lost objects problem, we need to classify the original ob-
jects to the closest Data Bubble.

Finally, in step 5 we replace each Data Bubble by the sets of origi-
nal objects classified to it in a similar way as we did for the weight-
ed versions of our algorithms in section 5. The only difference is
that we make use of the virtual reachabilities instead of using the
reachDist values of the Data Bubbles. We read each object oi and

its classification information from the original database. Let oi be

classified to sj and Bj be the Data Bubble corresponding to sj. Now

we set the position of oi to the position of Bj. If oi is the first object

classified to sj, we set the reachDist of oi to the reachDist of Bj, oth-

erwise we set the reachDist to virtual-reachability(B). Then we
write oi back to disc. Thus, we make one sequential pass (reading

and writing) over the original database. As the last action in step 5,
we sort the file according to the positions of the objects to generate
the final cluster ordering.

Figure 14(a) shows the results of OPTICS-SABubbles for DS1 using

sample sizes k=10,000, k=1,000, and k=200. Figure 14(b) shows
the same information for OPTICS-CFBubbles. Both algorithms ex-

hibit very good quality for large and medium numbers of Data Bub-
bles. For very small values of k, the quality of OPTICS-CFBubbles

begins to suffer. The reason for this is the heuristics for increasing
the threshold value in the implementation of BIRCH. In phase 2,
when compressing the CF-tree down to the maximal number of CFs
k, the last increase in the threshold value is chosen too large. Thus,
BIRCH generates only 75 Data Bubbles, while sampling produced
exactly 200.

Figure 15 shows the results for DS2 and 100 Data Bubbles in which
case both algorithms produce excellent results.

Obviously, both OPTICS-SABubbles and OPTICS-CFBubbles solve
all three problems (size distortions, structural distortions and lost
objects) for high compression rates. OPTICS-SABubbles scales
slightly better to extremely high compression rates.

9. DETAILED EXPERIMENTAL
EVALUATION

In this section, we will discuss both the runtime and the quality is-
sues incurred by compressing the original database into Data Bub-
bles, and compare them to the original implementation of OPTICS.
All experiments were performed on a Pentium III workstation with
450 MHz containing 256MB of main memory and running Linux.
All algorithms are implemented in Java and were executed on the
Java Virtual Machine Version. 1.3.0beta from Sun. We used ap-
proximately 20 GB of space on a local hard disc.

9.1 Runtime Comparison

Runtime and Speed-Up w.r.t. Compression Factor
In figure 16, we see the runtime and the speed-up factors for the da-
tabase DS1 for different compression factors. Recall that DS1 con-
tains 1 million objects. We used compressions factors of 100, 200,
1,000 and 5,000, corresponding to 10,000, 5,000, 1,000 and 200
representative objects, respectively. Both algorithms are very fast,
especially for higher compression rates, with speed-up factors of up
to 151 for OPTICS-SABubbles and 25 for OPTICS-CFBubbles. Fur-

thermore, we can observe that OPTICS-SABubbles is by a factor of

5.0 to 7.4 faster than OPTICS-CFBubbles.

Figure 14: DS1-results for 10,000, 1,000 and 200 representative objects

k=1,000 k=200

(a) OPTICS-SABubbles

(b) OPTICS-CFBubbles

k=10,000

Figure 15: DS2-result for 100 Data Bubbles.

(a) OPTICS-SABubbles
(b) OPTICS-CFBubbles

Runtime and Speed-Up w.r.t. the Database Size
Figure 17 shows the runtime and the speed-up factors obtained for
different sized databases. The databases were random subsets of
DS1. All algorithms scale approximately linearly with the size of
the database. An important observation is that the speed-up factor
as compared to the original OPTICS algorithm becomes larger (up
to 119 for OPTICS-SABubbles and 19 for OPTICS-CFBubbles) as the

size of the database increases. This is, however, to be expected for
a constant number of representative objects, i.e. using one of the
proposed methods, we can scale hierarchical cluster ordering by
more than a constant factor. Again, OPTICS-SABubbles outper-

forms OPTICS-CFBubbles, by a factor of 6.3 to 8.6.

Runtime and Speed-Up w.r.t. the Dimension
To investigate the behavior of the algorithms when increasing the
dimension of the data set, we generated synthetic databases con-
taining 1 million objects in 15 Gaussian clusters of random loca-
tions and random size. The databases were generated such that the
10-dim data set is equal to the 20-dim data set projected onto the

first 10 dimensions, and the 5-dim is the 10-dim projected onto the
first 5 dimensions. Figure 18 shows the runtime and the speed-up
factors for these databases. OPTICS-SABubbles scales linearly with
the dimension of the database, OPTICS-CFBubbles also contains a
linear factor, which is offset by the decreasing number of CFs gen-
erated. The speed-up factor for 20-dimensions is not shown be-
cause we were unable to run the original algorithm due to main
memory constraints. For OPTICS-SABubbles, the speedup increases
from 160 for 2-dimensional databases to 289 for 10-dimensional
databases, for OPTICS-CFBubbles from 31 to 121.

To understand, why BIRCH generated fewer CFs with increasing
number of dimensions, recall that BIRCH builds a CF-tree contain-
ing CFs in two phases. In phase 1, the original data objects are in-
serted one by one into the CF-tree. The CF-tree is a main memory
structure. This implies that the maximal number of entries in the
CF-tree is bounded by main memory. To do this, BIRCH maintains
a threshold value. When adding an object to the CF-tree, BIRCH
finds the CF-entry which is closest to the new objects. If adding the
object to this CF-entry violates the threshold value, the CF-tree is
rebuilt by increasing the threshold value and re-inserting all CF-en-
tries into a new CF-tree. Once all original objects are in the CF-tree,
BIRCH reduces the number of CFs to a given maximum in phase
2. The CF-tree is repeatedly rebuilt by increasing the threshold val-
ue and re-inserting all CFs into a new tree until such a new tree con-
tains no more than the maximal allowed number of CFs. BIRCH
uses heuristics to compute the increase in the threshold value. For
higher dimensions, this increase is higher, and fewer CFs are gen-
erated (429 in the 2-dimensional case, 371 for 5 dimensions, 267
for 10 dimensions and only 16 for the 20-dimensional data set). We
used the original heuristics of BIRCH, although, it may be possible
to improve the heuristics and thereby solve this problem.

9.2 Quality Evaluation
In the previous sections, we evaluated the quality of the different
methods with respect to the compression factor (c.f. figure 14 and
figure 15) by comparing the different reachability plots. But are the
objects in the clusters really the same objects as in the original plot?
In this subsection we take a closer look at this question, and we will
also investigate the scalability of the methods with respect to the di-
mension of the data.

0

400

800

1200

1600

2000

0 1000 2000 3000 4000 5000

compression factor

ti
m

e
[s

ec
]

0

40

80

120

160

0 1000 2000 3000 4000 5000
compression factor

sp
ee

d
-u

p
 f

ac
to

r

CF (Bubbles)

SA (Bubbles)

Figure 16: Runtime and speed-up w.r.t. compression factor.

Test database:

DS1

0

20

40

60

80

100

120

0 200 400 600 800 1000

n [*1000]

sp
ee

d
-u

p
 f

ac
to

r

CF (Bubbles)

SA (Bubbles)

0

200

400

600

800

1000

0 200 400 600 800 1000

n [*1000]

ti
m

e
[s

ec
]

Figure 17: Runtime and speed-up w.r.t. database size.

Test database:

DS1

compression
to 1000 rep-
resentatives

0

300

600

900

0 5 10 15 20
dimension

ti
m

e
[s

ec
]

0

100

200

300

0 5 10
dimension

sp
ee

d
-u

p
 f

ac
to

r

CF (Bubbles)

SA (Bubbles)

Figure 18: Runtime w.r.t. the dimension of the database.

Test databases:

1 million objects

15 randomly genreated
Gaussian clusters,
randomly sized.

Compressed to 1,000
representative objects

Correctness using Confusion Matrixes
To investigate the correctness or accuracy of the methods, we com-
puted a confusion matrix for each algorithm. A confusion matrix is
a two-dimensional matrix. On one dimension are the cluster ids of
the original algorithm and on the other dimension are the ids of the
algorithm to validate. We used the 5-dimensional data sets from the
previous section, containing 15 Gaussian clusters, which we ex-
tracted from the plots. The original algorithm found exactly 15
clusters (with cluster ids 0 to 14). It also found 334 noise objects,
i.e. objects not belonging to any cluster.

To compare OPTICS-SABubbles and OPTICS-CFBubbles, we com-
pressed the data to 200 objects. Both algorithms found all 15 clus-
ters, which corresponded exactly with the original clusters. The
original noise objects are distributed over all clusters. Since the
confusion matrixes are in fact identical, we present only the matrix
for OPTICS-SABubbles in figure 19 (due to space limitations). From
left to right we show the clusters found in the original reachability-
plot of OPTICS. From top to bottom, we show the clusters found
by the OPTICS-SABubbles. The rows are reordered so that the larg-
est numbers are on the diagonal.

Quality w.r.t. the Dimension of the Database
Figure 20 shows the reachability-plots for the different dimensional
databases, which we already used for the runtime experiments.
Both algorithms find all 15 clusters with the correct sizes, with the
OPTICS-SABubbles being about twice as fast as OPTICS-CFBubbles.

Also, the quality of OPTICS-SABubbles is slightly better: it shows
the gaussian shape of the clusters, and OPTICS-CFBubbles does not.

9.3 Real-World Database
To evaluate our compression techniques on a real-world database,
we used the Color Moments from the Corel Image Features avail-
able from the UCI KDD Archive at kdd.ics.uci.edu/databases/
CorelFeatures/CorelFeatures.html. This database contains image
features (color moments) extracted from a Corel image collection.
We used the first order moments in the HSV color scheme, as the
Euclidean distance can be used to measure distance in this feature
database containing 68,040 images.Figure 21 (a) shows the result
of OPTICS on the whole data set. This data set is particularly chal-
lenging for a clustering algorithm using data compression because
in this setting it contains no significant clustering structure, apart
from two very small clusters, i.e. the two tiny clusters are embed-
ded in an area of lower, almost uniform density.

For OPTICS-CFBubbles and OPTICS-SABubbles we used 1,000 rep-
resentative objects, i.e. a compression by a factor of 68. The runt-
ime of OPTICS was 4,562sec, OPTICS-CFBubbles took 76sec and
OPTICS-SABubbles 20sec to generate the cluster ordering. Thus, the
speedup-factors were 60 and 228 respectively. The result of
OPTICS-CFBubbles (which generated only 547 CFs by setting the
parameter for the desired number of leaf nodes to 1000) approxi-
mates the general structure of the data set, but looses both clusters.
The result of OPTICS-SABubbles nicely shows the general distribu-
tion of the data objects and also recovers both clusters.

Figure 19: Confusion matrix: OPTICS vs. OPTICS-SABubbles for a 5-dim database with 1 million objects in 15 Gaussian clusters

bs noise 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
noise 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 40702 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 50 0 69395 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 69174 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 79242 0 0 0 0 0 0 0 0 0 0 0
12 1 0 0 0 0 126617 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 45875 0 0 0 0 0 0 0 0 0
4 7 0 0 0 0 0 0 63198 0 0 0 0 0 0 0 0
7 57 0 0 0 0 0 0 0 93313 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 50318 0 0 0 0 0 0
6 101 0 0 0 0 0 0 0 0 0 65977 0 0 0 0 0
9 113 0 0 0 0 0 0 0 0 0 0 58545 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 38823 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 74603 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14469 0
10 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 109415

original

SABubbles

CFBubbles

Figure 20: Results for different dimensional databases (1 mio objects, compressed to 200 representatives)

out of
memory!

20105dimension

To validate that the two clusters in
fact contain the same objects, we
extracted them manually and com-
puted the confusion matrix (cf.
figure 22, columns = OPTICS,
rows = OPTICS-SABubbles). The
clusters are well-preserved, i.e. no objects switched from one clus-
ter to the other one. Due to the general structure of the database,
some of the objects bordering the clusters are assigned to the clus-
ters or not assigned to the clusters, depending on the algorithm
used. This example shows, that OPTICS-SABubbles can even find
very small clusters embedded in a very noisy database.

9.4 Discussion
If we wish to analyze groups of objects in a very large database, af-
ter applying a hierarchical clustering algorithm to compressed data,
we must use at least the weighted versions of our algorithms, be-
cause of the “lost objects problem”. We did not include the runt-
imes of these algorithms in our diagrams because they are almost
indistinguishable from the runtimes using Data Bubbles. However,
we have seen that the weighted versions work well only for very
low compression factors, which results in a much larger runtime as
compared to using Data Bubbles - for a result of similar quality.

10. CONCLUSIONS
In this paper, we developed a version of OPTICS using data com-
pression in order to scale OPTICS to extremely large databases. We
started with the simple and well-known concept of random sam-
pling and applying OPTICS only to the sample. We compared this
with executing the BIRCH algorithm and applying OPTICS to the
centers of the generated Clustering Features. Both methods incur
serious quality degradations in the result. We identified three key
problems: lost objects, size distortions and structural distortions.

Based on our observations, we developed a post-processing step
that enables us to recover some of the information lost by sampling
or using BIRCH, solving the lost objects and size distortions prob-

lems. This step classifies the original objects according to the clos-
est representative and replaces the representatives in the cluster or-
dering by the corresponding sets of original objects.

In order to solve the structural distortions, we introduced the gener-
al concept of a Data Bubble as a more specialized kind of com-
pressed data items, suitable for hierarchical clustering. For Euclid-
ean vector data we presented two ways of generating Data Bubbles
efficiently, either by using sampling plus a nearest neighbor classi-
fication or by utilizing BIRCH. We performed an experimental
evaluation showing that our method is efficient and effective in the
sense that we achieve high quality clustering results for data sets
containing hundred thousands of vectors in a few minutes.

In the future, we will investigate methods to efficiently generate
Data Bubble from non-Euclidean data, i.e. data for which only a
distance metric is defined. In this setting, we can no longer use a
method such as BIRCH to generate sufficient statistics, but we can
still apply sampling plus nearest neighbor classification to produce
data sets which can in principle be represented by Data Bubbles.
The challenge, however, is then to efficiently determine a good rep-
resentative, the radius and the average k-nearest neighbor distances
needed to represent a set of objects by a Data Bubble.

References
[1] Ankerst M., Breunig M. M., Kriegel H.-P., Sander J.:

“OPTICS: Ordering Points To Identify the Clustering
Structure”, Proc. ACM SIGMOD Int. Conf. on Management
of Data, Philadelphia, PA, 1999, pp 49-60.

[2] Bradley P. S., Fayyad U., Reina C.: “Scaling Clustering
Algorithms to Large Databases”, Proc. 4th Int. Conf. on
Knowledge Discovery and Data Mining, New York, NY,
AAAI Press, 1998, pp. 9-15.

[3] Breunig M., Kriegel H.-P., Sander J.: “Fast Hierarchical
Clustering Based on Compressed Data and OPTICS”, Proc.
4th European Conf. on Principles and Practice of Knowledge
Discovery in Databases, LNCS Vol. 1910, Springer Verlag,
Berlin, 2000, pp. 232-242.

[4] DuMouchel W., Volinsky C., Johnson T., Cortez C., Pregibon
D.: “Sqashing Flat Files Flatter”, Proc. 5th Int. Conf. on
Knowledge Discovery and Data Mining, San Diego, CA,
AAAI Press, 1999, pp. 6-15.

[5] Ester M., Kriegel H.-P., Sander J., Xu X.: “A Density-Based
Algorithm for Discovering Clusters in Large Spatial
Databases with Noise”, Proc. 2nd Int. Conf. on Knowledge
Discovery and Data Mining, Portland, OR, AAAI Press, 1996,
pp. 226-231.

[6] Jain A. K. and Dubes R. C.: “Algorithms for Clustering Data”,
Prentice-Hall, Inc., 1988.

[7] Kaufman L., Rousseeuw P. J.: “Finding Groups in Data: An
Introduction to Cluster Analysis”, John Wiley & Sons, 1990.

[8] MacQueen J.: “Some Methods for Classification and Analysis
of Multivariate Observations”, Proc. 5th Berkeley Symp.
Math. Statist. Prob., 1967, Vol. 1, pp. 281-297.

[9] Sibson R.: “SLINK: an optimally efficient algorithm for the
single-link cluster method”, the Computer Journal Vol. 16, No.
1, 1973, pp. 30-34.

[10] Zhang T., Ramakrishnan R., Linvy M.: “BIRCH: An Efficient
Data Clustering Method for Very Large Databases”, Proc.
ACM SIGMOD Int. Conf. on Management of Data, Montreal,
Canada, ACM Press, New York, 1996, pp. 103-114.

Figure 22: Confusion Matrix

noise 0 1
noise 67087 59 19

0 75 253 0
1 20 0 527

Figure 21: Results for the Corel Image Features database

(a) result of OPTICS for the whole data set,
runtime=4,562sec

(c) result of OPTICS-SABubbles, runtime=20sec

(b) result of OPTICS-CFBubbles, runtime=76sec

. . .

. . .

. . .

