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Abstract. The amount of stored information in modern database ap-
plications increased tremendously in recent years. Besides their sheer
amount, the stored data objects are also more and more complex. There-
fore, classification of these complex objects is an important data mining
task that yields several new challenges. In many applications, the data
objects provide multiple representations. E.g. proteins can be described
by text, amino acid sequences or 3D structures. Additionally, many real-
world applications need to distinguish thousands of classes. Last but
not least, many complex objects are not directly expressible by feature
vectors. To cope with all these requirements, we introduce a novel ap-
proach to classification of multi-represented objects that is capable to
distinguish large numbers of classes. Our method is based on k nearest
neighbor classification and employs density-based clustering as a new ap-
proach to reduce the training instances for instance-based classification.
To predict the most likely class, our classifier employs a new method to
use several object representations for making accurate class predictions.
The introduced method is evaluated by classifying proteins according to
the classes of Gene Ontology, one of the most established class systems
for biomolecules that comprises several thousand classes.

Keywords: Multi-represented objects, classification, instance based learn-
ing, k nearest neighbor classifier.

1 Introduction

Modern information systems are collecting enormous amounts of data every day.
In addition to the sheer amount of data, the complexity of data objects increases
as well. Companies store more detailed information about their costumers, satel-
lites take pictures with additional frequency spectra, and HTML-documents pro-
vide embedded multimedia content which makes them much more complicated
? Supported by the German Ministery for Education, Science, Research and Technol-

ogy (BMBF) under grant no. 031U212 within the BFAM (Bioinformatics for the
Functional Analysis of Mammalian Genomes) project which is part of the German
Genome Analysis Network (NGFN).

Proc. 10th Int. DASFAA, Bejing, China, 2005. 



than ordinary text documents. The analysis of large collections of complex ob-
jects yields several new challenges to data mining algorithms.

One of the most important tasks of data mining is classification. Classifica-
tion learns a function Cl : O → C that maps each object o ∈ O to the class c ∈ C
that it most likely belongs to. The class set C is a predefined set of categories.
In order to make a class prediction, a classifier has to be trained. For the clas-
sification of complex objects, there are various important applications, e.g. the
classification of proteins into functional catalogues or secure personal identifica-
tion using several biometric characteristics. These applications yield interesting
challenges to novel classification techniques.

First of all, the more complex a data object is, the more feature transforma-
tions exist that can be used to map the object to a representation suitable for
data mining. Furthermore, many objects are describable by different aspects, e.g.
proteins can be described by text annotations and amino acid sequences. This
yields a problem for data mining in general because it is not clear which of these
aspects is most suited to fulfill the given task. Therefore, it would be beneficial if
a classification algorithm could employ all of the given representations of an ob-
ject to make accurate class predictions. Another important aspect is that many
classification algorithms rely on an object representation providing feature vec-
tors. However, complex objects are often represented in a better way by treating
them as sequences, trees or graphs. Last but not least, the number of classes
in the given example applications can be exceptionally high. Gene Ontology [1],
one of the most established class systems for proteins, currently has more then
14,000 classes and biometric databases will have to identify one special person
among thousands of people. Though this problem is not directly connected to the
complexity of the given data objects, it often co-occurs in the same application
and should therefore be considered when selecting the classification method.

To cope with these challenges, we introduce a new classification technique
based one k nearest neighbor (kNN) classification [2]. A kNN classifier decides
the class of an object by analyzing its k nearest neighbors within the training
objects. kNN classifiers are well-suited to solve the given problem because they
do not have to spend additional effort for distinguishing additional classes. The
new training objects are simply added to the training database and are only
considered for classification if they are among the nearest neighbors of the object
to be classified. Additionally, kNN classifiers can be applied to any type of object
representation as long as a distance measure is available. Unfortunately, kNN
classification has a major drawback as well. The efficiency of classification is
rapidly decreasing with the number of training objects. Though the use of index
structures such as the M-tree [3] or the IQ-Tree [4] might help to reduce query
times in some cases, it does not provide a general solution. Another approach to
limit the problem is the reduction of the training objects to some basic examples
as proposed in [5]. However, these approaches are aimed at limited training data
and are therefore very inefficient when applied to large training sets.

Thus, to apply kNN classification to the described classification scenario, we
introduce a more efficient method to speed up kNN classification by employing
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density-based clustering to reduce the necessary training instances. Afterwards,
we introduce a new method for the classification of multi-represented (MR)
objects. The idea of the method is to determine the k nearest neighbors in a
database for each representation. Then, the class prediction is derived by con-
sidering the normalized distances within each result. To demonstrate the good
performance, we apply our new method to four scenarios of protein classification.
Each protein is represented by an amino acid sequence and a text annotation.
Our results demonstrate that density-based clustering outperforms other meth-
ods of reducing the training set for kNN classification. Furthermore, the achieved
results indicate that our new decision rule for multi-represented kNN classifica-
tion yields better accuracy than other classification methods that are suitable
for large class sets.

The rest of the paper is organized as follows. In section 2, we discuss related
work on speeding up kNN classification and classification of multi-represented
objects. Section 3 describes the use of density-based clustering to reduce the
number of training instances without losing essential concepts. Additionally, our
new approach to combine multi-represented classification is introduced. Section
4 provides an experimental evaluation based on protein data that consists of
sequential and text representations. The last section sums up the introduced
solutions and gives some directions for future work.

2 Related Work

k Nearest Neighbor Classifier. The k nearest neighbor (kNN) classification [2]
mentioned above classifies a new data object o by finding its k nearest neighbors
with respect to a suitable distance function. In its basic form, kNN classification
predicts the class that provides the most training objects within the k-nearest
neighbors. To the best of our knowledge, there exists no form of kNN classifica-
tion that is directly applicable to multi-represented data objects. The common
approach to apply kNN classification to this kind of data is to build a joint dis-
tance measure on the complete MR object. However, we argue that this method
is not suitable to derive good results because it is not capable to weight the
different representations on the basis of the given object.

Instance Reduction. In the last decades, the research community introduced
several methods for instance reduction [5–9]. All approaches try to reduce the
number of instances in the training set in a way that the classifier provides
comparable or even better accuracy and demands less processing time. In [8]
the authors discuss several reduction techniques and [10] illustrates an experi-
mental evaluation of these algorithms on 31 data sets. This evaluation demon-
strates that the RT3 algorithm [8] outperforms other techniques of instance
reduction for many data sets. Another approach to instance reduction is called
iterative case filtering (ICF)[5]. This novel and effective approach to data reduc-
tion employs two steps. The first step performs so-called ”Wilson editing”. It
detects all instances that are classified incorrectly by the kNN classifier. These
instances are afterwards removed. The second step calculates for each remain-
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ing object the so-called reachability and coverage [5]. Every object o with
|reachable(o)| < |coverage(o)| is removed. The second step is iterated until no
removable object exists. A broad experimental evaluation [11] on 30 databases
compares ICF with the reduction technique RT3 [8]. Both algorithms achieve the
highest degree of instance reduction while maintaining classification accuracy.

GDBSCAN. GDBSCAN [12] is a density-based clustering algorithm. Clusters
are considered as dense areas that are separated by sparse areas. Based on two
input parameters (ε and MINPTS), GDBSCAN defines dense regions by means
of core objects. An object o ∈ DB is called core object, if its ε-neighborhood
contains at least MINPTS objects. Usually clusters contain several core objects
located inside a cluster and border objects located at the border of the cluster. In
addition, the objects within a cluster must be “density-connected”. GDBSCAN
is able to detect clusters by one single pass over the data. The algorithm uses
the fact, that a density-connected cluster can be detected by finding one of its
core-objects o and computing all objects which are density-reachable from o. To
determine the input parameters, a simple and effective method is described in
[13]. This method can be generalized and used for GDBSCAN as well.

Classifier Fusion. The task of learning from objects, when more than a single
classifier has beeen trained, has recently drawn some attention in the pattern
recognition community [14–16]. In [15], the author describes the method of clas-
sifier fusion to combine the results from multiple classifiers for one and the same
object. Furthermore, [15] surveys the four basic combination methods and intro-
duces a combined learner to achieve combination rules offering better accuracy.
In [17], a method for the hierarchical classification of MR objects was introduced.
Though this method provides superior accuracy to the compared methods, it is
not suitable for our described scenario because the efficiency of the method re-
lies on the existence of a class hierarchy that can be exploited. Furthermore, the
proposed classifier is based on Support Vector Machines that are not as generally
applicable as kNN classification.

3 kNN Classification of Complex Objects

As mentioned in the introduction, classification of complex objects into large
class sets yields the following challenges. First of all, the selected classification
approach has to cope with the large number of classes without losing perfor-
mance. Second, complex objects might be described by multiple representations.
Furthermore, these representations might consist of varying object types, e.g.
vectors, sequences and graphs. A good approach to handle these problems is
kNN classification which does not need to spend additional efforts for distin-
guishing additional classes. Another benefit of kNN classifiers is that they do
not rely on a special data type but can cope with any object type as long as
there is a distance function. A drawback of kNN classification is that the classi-
fication time strongly depends on the number of training objects. Therefore, the
number of training objects should be kept as low as possible to ensure efficient
classification. In this paper, we discuss a method to reduce training instances
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based on density-based clustering. Furthermore, we introduce a new method for
the classification of multi-represented objects that is capable of achieving signif-
icantly better accuracy than the classification based on only one representation
or related methods of classification.

In the following, we present a brief problem description. Afterwards, we intro-
duce an approach to reduce the given training data with the help of density-based
clustering. Finally, we use multiple object representations to derive accurate class
predictions.

3.1 Problem Definition

In our given application scenario, we want to find a classifier Cl : O → C that
maps each data object o ∈ O to its correct class c ∈ C. The data space O is given
by the cartesian product of m representations R1×. . .×Rm. Each representation
Ri consists of a feature space Fi∪{−}. A feature space Fi may consist of varying
data types. For comparing two objects u, v ∈ Fi, there exists a distance measure
disti : Fi×Fi → R+

0 . To apply our method, it is necessary that disti is symmetric
and reflexive. The symbol {−} denotes that a particular object representation
is missing. However, for a usable class prediction a tuple should provide at least
one instance ri ∈ Fi. To conclude, the task of multi-represented classification is
to find a function Clmr : (R1 × . . . × Rm) → C that maps as many objects o
to their correct class c ∈ C as possible. For training, a set T of tuples (o, c) of
objects o = (r1, . . . , rm) and their correct classes c are given to the classifier, the
so-called training set. We denote in further sections the correct class of an object
o by c(o) and the class detected by multi-represented classification as Clmr(o).

3.2 Density-based Instance Reduction

The performance of kNN classification depends on the number of objects in
the training set. Though a lot of methods that reduce the training data for kNN
classification have been proposed so far, most of these techniques perform poorly
for large amounts of training data. In order to reduce the number of available
training objects more efficiently, we suggest a novel approach – density-based
instance reduction (DBIR).

The DBIR-algorithm works as follows. For each representation and each class,
the training data is clustered by using the algorithm GDBSCAN. Let us note that
the input parameters can be chosen as described in [13]. GDBSCAN provides
a set of clusters Clust = {Clust1, . . . , Clustj , . . . , Clustl}, where j = 1, . . . , l
is the index of the cluster, and additionally a set of objects N that are noise,
i.e. objects that cannot be associated with any clusters. An important charac-
teristic of GDBSCAN for our problem is that the number of found clusters l
is not predefined, but a result of the clustering algorithm. Thus, the number of
important concepts is determined by the algorithm and not manually. Another
important advantage of GDBSCAN is that it is capable to cluster any data type
as long as there is a reflexive and symmetric distance measure to compare the
objects. After clustering, DBIR iterates through the set Clust and determines
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Let C={     ,     ,     } be a class set. Representant NoiseΩ
After applying of DBIR:

C
CΩ

d d

Fig. 1. (a) Objects before data reduction, (b) Objects after reduction by using of DBIR.
The density-based cluster C can be reduced to a representant ΩC . The noise object d
is not removed. However, it can not change the decision of a kNN classifier with k > 2.

for each cluster Clustj a representant Ωj . The representant Ωj is the centroid
of the cluster Clustj in the case of a representation given by a vector space and
the medoid of the cluster Clustj otherwise. Afterwards, all objects belonging to
the set Clustj \Ωj are removed from the data set.

Like most other instance reduction methods, we assume that the training
data for each class contains all important examples to specify a given class.
To reduce the number of training objects without losing accuracy, we have to
discard the training objects that are likely to represent a concept that is not
typical for the given class. Furthermore, if a typical concept is described by
several training objects, we reduce the representatives of this concept to a single
one to save classification time. We argue that a density-based clustering of the
training objects for a given class is sufficient to decide both cases. Objects that
are not typical for a given class do not have any close neighbors and are usually
separated from the rest of the training set. Thus, the noise objects in a density-
based clustering are likely to correspond to these objects. Of course, it is possible
that a noise object alone is an important concept. However, a single object is
not likely to change the decision of a kNN classifier and the decision would
most likely be wrong even without the deletion. Important concepts that are
represented by several training objects are usually located very closely to each
other in the feature space. Thus, these concepts are likely to correspond to
a density-connected cluster in our density-based clustering. For each of these
clusters it is sufficient that the training set contains a single object to represent
it. Figure 1 displays both effects in a two dimensional example.

Proc. 10th Int. DASFAA, Bejing, China, 2005. 



Our method has a runtime complexity of O(
∑

cj∈C |{o ∈ O | c(o) = cj}|2)
for the case that it is not supported by index structures. ICF has a runtime
complexity of O(2× (#Iteration)× |DB|2) where #Iteration is the number of
iterations (in our experiments it was between 9 and 12) and |DB| is the size of
the database. Thus, our method is considerably faster than other state of the
art feature reduction techniques.

As described above, we apply the DBIR-algorithm separately to the training
objects in one representation and for one class. Afterwards we integrate all in-
stances of a representation i into one training database DBi. Let us note that
it is possible to speed up k nearest neighbor queries in each of these training
databases as long as there are suitable index structures for the given object type.
For example, if the distance function is metric it might be beneficial to further
increase the classification time by employing a metric tree like the M-Tree [3].

3.3 kNN-Classification of multi-represented objects

Based on the training databases for each representation, we apply the follow-
ing method of kNN-based classification. To classify a new data object o =
(ri, . . . , rm), the kNN sphere spherei(o, k) in each representation with ri 6= ”−”
is determined. Formally, the spherei(o, k) can be described as follows:

spherei(o, k) = {o1, . . . , ok | o1, . . . , ok ∈ DBi ∧ @o
′
∈ DBi \ {o1, . . . , ok}

∧@ξ, 1 6 ξ 6 k : disti(o
′
, ri) 6 disti(oξ, ri)}

To combine these kNN spheres and achieve accurate classification, we first of
all derive a confidence vector cvi(o) from each available spherei(o, k). Let c(o)
denote the correct class of object o and let dnorm

i (u, v) be a normalized distance
function. Then the confidence vector for an object o with respect to its kNN
sphere spherei(o, k) for the representation i is defined as follows:

cvi(o) = (cvi,1(o), . . . , cvi,|C|(o)), (1)

∀j, 1 6 j 6 |C| : cvi,j(o) =

∑
u∈spherei(o,k)∧c(u)=cj

1
dnorm

i (o,u)2∑|C|
k=1 cvi,k(o)

(2)

To normalize our distance function for each representation, we apply the
following modification:

dnorm
i (o, u) =

disti(o, u)
maxv∈spherei(o,k) disti(o, v)

(3)

where disti is the distance function between two objects in the i-th repre-
sentation. The normalization in formula 3 maps the distance values for each
representation to the range [0, 1] with respect to the radius of spherei(o, k).
Thus, the confidence vector of the i-th representation at the j-th position (cf.
formula 2) is a normalized sum of the inverse quadratic distances.
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Set 1 Set 2 Set 3 Set 4

Name Enzyme Ac-
tivity

Metabolism Transferase Cell
Growth

Number of
Goal Classes

267 251 62 37

References to
proteins

16815 19639 4086 4401

Table 1. Details of the test environments

After we have determined the confidence vectors cvi(o) for each representa-
tion i, we use a weighted linear combination for combining them. Let us note that
the combination of confidence vectors to achieve multi-represented classification
has been proposed in [15]. However, the used weights in the former approaches
do not adjust to the individual classification object. We argue that in order to
use each representation in a best possible way, a multi-represented decision rule
must weight the influence of all available representations individually for each
object.

To achieve this individual weighting, our classification rule is built as follows:

Clmr(o) = max
j=1,...,|C|

m∑
i=1

wi · cvi,j(o) (4)

where m is the number of representations and

wi =

0 , if ri = ”− ”
1+

∑|C|
j=1(cvi,j(o)·log|C| cvi,j(o))∑m

k=1(1+
∑|C|

j=1(cvk,j(o)·log|C| cvk,j(o)))
, otherwise

(5)

The idea of our method is that a kNN sphere containing only a small number
of classes and several objects of one special class is ”purer” than a kNN sphere
containing one or two objects for each of the classes. Thus, the ”purer” a kNN-
sphere for a representation is, the better is the quality of the class prediction
that can be derived from this representation. To measure this effect, we employ
the entropy with respect to all possible classes. The weight is now calculated by
normalizing the entropy of its kNN sphere with respect to the entropy of the
kNN spheres in all representations. As a result the weights of all representations
add up to one. In conclusion, our decision rule for multi-represented objects
measures the contribution of each available representation by the entropy in the
local kNN spheres of all available representations.

4 Experimental Evaluation

4.1 Test Bed

In order to demonstrate the advantages of our approach, we carried out a versa-
tile experimental evaluation. All algorithms are implemented in Java and were
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Classification Accuracy (in %)

Set 1,
Rep. 1

Set 2,
Rep. 1

Set 3,
Rep. 1

Set 4,
Rep. 1

Set 1,
Rep. 2

Set 2,
Rep. 2

Set 3,
Rep. 2

Set 4,
Rep. 2

kNN 64.43 61.41 72.01 76.2 46.6 43.9 47.48 62.92

kNN
DBIR

61.95 60.29 72.56 73.91 44.5 45.5 48.97 56.58

kNN
ICF

46.44 35.56 47.92 40.72 37.85 33.21 31.37 34.58

Runtime of Instance Reduction (in sec.)

DBIR 163.0 253.9 8.0 27.5 275.9 1069.6 36.6 119.9

ICF 12,809.1 15,616.7 590.0 632.0 93,416.8 112,248.2 4,258.0 3,772.0

Reduction Rate (in %)

DBIR 26.1 27.4 33.1 32.0 28.1 22.9 33.8 35.0

ICF 57.0 64.3 71.8 77.7 37.8 46.5 64.0 65.5

Table 2. Experimental results Classification accuracy (in %) of kNN classifier on:
unreduced data, data reduced by DBIR and ICF. Rune time (in sec.) and reduction
rate (in %) reached by DBIR and ICF. (Using two representations Rep. 1 and Rep. 2.)

tested on a work station that is equipped with a 1.8 GHz Opteron processor
and 8 GB main memory. We used the classification accuracy to measure the
effectiveness of algorithms and 5-fold cross-validation to avoid overfitting.

The properties of each test bed are shown in table 1. The 4 test beds consist
of 37 to 267 Gene Ontology[1] classes. The corresponding objects were taken
from the SWISS-PROT [18] protein database and consist of a text annotation
and an amino acid sequence of a protein. In order to obtain a flat class-system
with sufficient training objects per class, the original environment was pruned.

We employed the approach described in [19] to extract features from the
amino acid sequences. The basic idea is to use local (20 amino acids) and global (6
exchange groups) characteristics of a protein sequence. To construct a meaningful
feature space, we formed all possible 2-grams for each kind of characteristic,
which generated us the 436 dimensions of our sequence feature space. For text
descriptions, we employed a TFIDF [20] vector for each description that was
built of 100 extracted terms. We used the cosine distance function as distance
measure for both representations.

4.2 Experimental Results

To demonstrate that DBIR is suitable for large data sets w.r.t. efficiency, we
compared the run time needed for data reduction by using DBIR and ICF on
single-represented data. As presented in table 2, the DBIR outperforms ICF in
terms of efficiency, e.g. on the 1st representation of data set 1, DBIR needed
only 163 sec. whereas ICF spends 12,809.1 sec. for the data reduction.

To show the effectiveness of DBIR, we compared the classification accuracy
achieved by the kNN classifier on unreduced data, data reduced by DBIR and
data reduced by ICF (cf. table 2). All these experiments were performed on
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Classification accuracy (in %)

Set 1 Set 2 Set 3 Set 4

1st Representation, kNN DBIR 61.95 60.29 72.56 73.91

2nd Representation, kNN DBIR 44.5 45.5 48.97 56.58

1st and 2nd Representations, MR-kNN DBIR 67.65 65.17 75.52 76.8

1st Representation, NB 43.45 39.95 58.41 41.08

2nd Representation, NB 28.44 22.36 32.87 31.35

1st and 2nd Rep., NB with sum rule fusion 39.64 35.47 51.15 36.03

1st and 2nd Rep., kNN classifier fusion by sum rule 62.1 63.18 64.14 74.67

Average classification time per object (in msec.)

1st Representation, kNN DBIR 196.1 198.87 38.22 39.86

2nd Representation, kNN DBIR 740.5 907.78 160.42 161.88

1st and 2nd Rep., MR-kNN DBIR 1,005.4 1,105.4 198.3 201.6

1st Representation, NB 45.06 43.54 15.4 9.04

2nd Representation, NB 155,91 150,75 48,34 29,62

1st and 2nd Rep., NB with sum rule fusion 206.37 198.3 61.54 36.73

1st and 2nd Rep., kNN classifier fusion by sum rule 1,251.3 1,456.2 295.6 316.8

Table 3. Classification accuracy (in %) and average classification time per object (in
msec.) of our approach (MR-kNN DBIR) compared to: kNN on single representations
reduced by DBIR; Naive Bayes (NB) on single representations and on multiple repre-
sentations combined by sum rule [15]; kNN classifiers combined by sum rule.

single-represented data. The accuracy achieved by the kNN classifier on data
reduced by using DBIR was for all of the data sets comparable to the unreduced
data set. In contrast to these results, the classification accuracy achieved while
using ICF was considerably lower. E.g. on the 1st representation of data set 1,
the kNN classification on the data reduced by DBIR reaches 61.95% accuracy,
whereas the kNN classification on the data reduced by ICF reaches only 46.44%
accuracy. Though the reduction rate achieved by ICF is higher than that of
DBIR, the clearly superior accuracy that is achieved by using DBIR indicates
that ICF removed important information from the training data set.

In order to demonstrate the effectiveness of the proposed multi-represented
kNN classifier (MR-kNN DBIR), we compared it to the kNN classifier on single
representations, naive Bayes (NB) on unreduced single-represented data, NB
classification combined by the sum rule and kNN classification combined by
the sum rule. The sum rule described in [15] adds up the confidence vectors
delivered by classifiers responsible for single representations. Table 3 illustrates
the experimental results of this comparison. Our method showed the highest
classification accuracy on all data sets and achieved a significant increase of
accuracy in comparison to single-represented classification, e.g. on the first set
the kNN classifier delivered 61.95% accuracy on the first and 44.5% accuracy on
the second representation whereas our approach achieved a significantly higher
accuracy of 67.65%. NB showed in our experiments low accuracy both on single
representations and when combining single NB classifiers employing the sum
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rule. Our method outperforms also the combination of kNN classifiers using the
sum rule in all test environments (cf. table 3).

5 Conclusions

In this paper, we proposed a novel approach for classifying multi-represented
data objects into flat class-systems with many classes. Our method aims at a
common application scenario that can be described by the following characteris-
tics: First, objects in modern applications often provide multiple representations
which are derived from multiple views of the same data object. Second, complex
objects might be described by representations that are not necessarily in feature
vector form. Thus, a classifier should cope with a variety of data types. Last but
not least, novel applications often provide large class sets that distinguish huge
amounts of classes. Therefore, classifiers should be able to distinguish additional
classes with a minimum of additional training and classification effort. To cope
with these requirements, our new method for classification of multi-represented
objects employs kNN classification because this approach is naturally able to
handle the last two requirements. An important contribution of our method is a
new way of instance reduction to limit the number of employed training objects
and thus to speed up classification time without significantly loosing accuracy.
To integrate the information of several representations, we present a new deci-
sion rule that employs a weighted combination of confidence values to derive a
class prediction. The idea of the used weighting is to measure the entropy of each
kNN sphere and thus representations are weighed in a different way for different
data objects. In our experimental evaluation, we compared our new instance re-
duction technique called DBIR to one of the best performing instance reduction
techniques so far, ICF. Our results indicate that DBIR is capable to reduce the
training database faster and provides better accuracy than ICF. To demonstrate
the effectiveness of our multi-represented kNN classifier, we compared the clas-
sification accuracy using related methods and employing classification based on
single representations. The results demonstrate that our new method is capa-
ble of outperforming the compared approaches and significantly increases the
accuracy by integrating all representations.

For future work, we plan to examine the use of various index structures
to speed up classification. Furthermore, we plan to apply our method on the
second application area mentioned in the introduction, biometric identification.
This area yields several individual challenges like the combination of different
classification methods. For example, facial features can be checked by kNN clas-
sification. However, in order to recognize a person by its speech pattern other
ways like hidden Markov models are reported to provide better accuracy. Thus,
a flexible model should support different classification algorithms. Another in-
teresting direction is to further speed up classification by employing only some of
the representations. For example, it might be unnecessary to query the sequence
database if the text database provides sufficient confidence.
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