
The Pruning Power: Theory and Heuristics for Mining 
Databases with Multiple k-Nearest-Neighbor Queries

Christian Böhm, Bernhard Braunmüller, Hans-Peter Kriegel

University of Munich, Oettingenstr. 67, D-80538 Munich, Germany
{boehm,braunmue,kriegel}@informatik.uni-muenchen.de

Abstract. Numerous data mining algorithms rely heavily on similarity
queries. Although many or even all of the performed queries do not
depend on each other, the algorithms process them in a sequential way.
Recently, a novel technique for efficiently processing multiple similarity
queries issued simultaneously has been introduced. It was shown that
multiple similarity queries substantially speed-up query intensive data
mining applications. For the important case of multiple k-nearest
neighbor queries on top of a multidimensional index structure the
problem of scheduling directory pages and data pages arises. This aspect
has not been addressed so far. In this paper, we derive the theoretic
foundation of this scheduling problem. Additionally, we propose several
scheduling algorithms based on our theoretical results. In our experimen-
tal evaluation, we show that considering the maximum priority of pages
clearly outperforms other scheduling approaches. 

1.  Introduction
Data mining is a core information technology and has been defined as the major step in
the process of Knowledge Discovery in Databases [9]. Many data mining algorithms are
query intensive, i.e. numerous queries are initiated on the underlying database system.
In the prominent case of multidimensional data spaces, similarity queries, particularly k-
nearest neighbor (k-nn) queries, are the most important query type [17]. The process of
finding the k-nearest neighbors of a given query object is a CPU and I/O intensive task
and the conventional approach to address this problem is to use some multidimensional
index structure [16], [10].

While several sophisticated solutions have been proposed for single k-nn queries, the
problem of efficiently processing multiple k-nn queries issued simultaneously is rela-
tively untouched. However, there are many applications where k-nn queries emerge
simultaneously. The proximity analysis algorithm proposed in [13], for instance, per-
forms a k-nn query for each of the “top-k” neighbor objects of any identified cluster in
the database. The outlier identification algorithm proposed in [6] performs a k-nn query
with a high value of k for each database object. Another example is the classification of
a set of objects which can efficiently be done by using a k-nn query for each unclassified
object [14]. In all these algorithms k-nn queries are processed sequentially, i.e. one after
another. However, since many or even all queries do not depend on each other, they can
easily be performed simultaneously which offers much more potential for query optimi-
zation. In [2], a novel technique for simultaneous query processing called multiple sim-
ilarity queries has been introduced. The authors present a syntactical transformation of
a large class of data mining algorithms into a form which uses multiple similarity que-
ries. For the efficient processing of the transformed algorithms, the authors propose to
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load a page once and immediately process it for all queries which consider this page as
a candidate page. It has been shown that this results in a significant reduction of the total
I/O cost. By applying the triangle inequality in order to avoid expensive distance calcu-
lations, further substantial performance improvements can be achieved. If the underly-
ing access method is scan-based, this scheme is straightforward. However, when per-
forming multiple k-nn queries on top of a multidimensional index structure, the
important question emerges in which order the pages should be loaded. This problem
has not been addressed in [2]. In this paper, we study the theoretical background of this
scheduling problem. In particular, by developing a stochastic model, we find the expect-
ed distance to a nearest neighbor candidate located in a considered page to be the key
information in order to solve the scheduling problem. Then we propose and evaluate
several scheduling techniques which are based on our theoretical results.

The rest of this paper is organized as follows. In section 2, we describe the general
processing of multiple k-nn queries. In section 3, we study the theoretical background of
the scheduling problem, and in section 4, we propose several scheduling techniques.
The experimental evaluation is presented in section 5, and section 6 concludes the paper.

2.  Multiple k-Nearest Neighbor Queries

We shortly describe the algorithm for processing multiple k-nn queries (cf. Fig. 1) which
is based on the HS single k-nn algorithm proposed in [12]. The algorithm starts with m
query specifications each consisting of a query point qi and an integer ki. For each query
an active page list (APL) is created. An APL is a priority queue containing the index
pages in ascending order of the minimum distance MINDIST between the correspond-
ing page regions and the query point. In contrast to single query processing, the multiple
k-nn algorithm maintains not one APL at a time but m APLs simultaneously. While at
least one k-nn query is running, the algorithm iteratively chooses a page P and each
query qi which has not pruned P from its APLi (i.e. P is still enlisted in APLi or P was
not yet encountered) processes this page immediately. Thus, we only have one loading
operation even if all queries process P. When processing a page P, the algorithm addi-
tionally saves valuable CPU time by avoiding distance calculations which are the most
expensive CPU operations in the context of k-nn search. The method process(P, qj) does
not directly calculate the distances d(qj, os) between objects os located on P and a query
object qj, but instead, it first tries to disqualify as many objects os as possible by applying
the triangle inequality in the following way: if

 holds, then  is
true and the distance d(qj, os) needs not to be calculated. The inter-query distances
d(qi, qj) are precalculated and knn_dist(qj) denotes the k-nn distance of query qj deter-
mined so far. For all objects which cannot be disqualified, the distance to qj is computed
and stored in the buffer dist_buffer. Note that disqualified distances cannot be used to
avoid distance computations of other query objects. Obviously, the method
choose_candidate_page() is crucial for the overall performance of the algorithm, since
a bad choice results in unnecessary and expensive processing of pages. Thus, it is impor-
tant to find a schedule which minimizes the total number of processing operations. 
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3.  The Pruning Power Theory

The HS algorithm for processing single k-nn queries loads exactly those pages which are
intersected by the k-nn sphere in ascending order of the MINDIST. In its basic form, the
HS algorithm is heavily I/O bound. This behavior changes if we are moving from pro-
cessing single k-nn queries to processing multiple k-nn queries. To explain this fact, we
have to consider the loading operation load(P) and the processing operation
process(P, qi). When P is a data page, the processing operation determines the distances
between the query point qi and all data points on page P which cannot be avoided by
applying the triangle inequality (cf. section 2). In the worst case, the total number of dis-
tance computations to be performed for a page P with capacity Ceff is m · Ceff, i.e. no
distance computation could be avoided. The cost for loading P, on the other hand, is
independent of the number of queries which actually process this page and therefore
remains constant. As a consequence, the algorithm may switch from I/O bound to CPU
bound. This switch, however, does not only depend on the number m of simultaneous
queries but also on the question, how early the algorithm is able to exclude pages from
processing.

3.1  Problem Description

Whenever the distance of the k-nn candidate for some query qi ( ) decreases, all
pages Pj having a MINDIST larger than the new k-nn candidate distance are excluded
from being processed for this query (they are pruned off APLi). If a page is pruned for
many queries but a few, the effort of the loading operation must be performed whereas

Fig. 1. Multiple k-nearest neighbor algorithm

DB::multiple_knn_queries(q1, ..., qm: query_object,
 k1, ..., km: integer)

begin
precalculate_interquery_distances([q1, ..., qm]);
for i from 1 to m do create_APL(qi);
while queries_running([q1, ..., qm]) do

P = choose_candidate_page([APL1, ..., APLm]);
for i from 1 to m do APLi.delete(P);
load(P);
initialize_dist_buffer();
for i from 1 to m do

if isa_candidate_page(P, qi) then
process(P, qi, ...);

return ([kNN1, ..., kNNm]);
end.

DB::process(page P, query_object qi, ...)
begin

foreach object o in P do
if not avoid_dist_computation(o, qi, dist_buffer) then

dist_buffer[o][qi] = distance(o, qi);
if dist_buffer[o][qi] ≤ knn_dist(qi) then

if isa_directory_page(P) then APLi.insert(o);
else (* P is a data page *)

kNNi.insert(o);
if kNNi.cardinality() > ki then

kNNi.remove_last_object();
APLi.prune_pages();

return;
end.

1 i m≤ ≤



many processing operations are avoided in advance. Therefore, pruning saves valuable
processing time and the algorithm switches back to I/O bound.

The central question we have to address is, what is a suitable order of pages that
prunes as many processing operations process(Pj, qi) as possible? For showing that this
is not a trivial task, let us consider the following example in Fig. 2. Applying the HS
algorithm for 1-nn queries, query q1 would first access page P3 and then P1. Query q2
would access the page sequence P2, P1, and P3. Finally, q3 would only access P3 and
then stop immediately. In multiple query processing, all three pages must be loaded into
main memory, because each page is relevant for at least one query. Considering the
sequence, however, makes a big difference with respect to the processing operations.
For instance, a very bad choice is to start with P2. After loading P2, we have to perform
all distance calculations between the points on P2 and all query points since using the
triangle inequality cannot avoid any distance calculation. Additionally, the data points
found on page P2 do not exclude any of the remaining pages P1 and P3 from any query,
because the current 1-nn candidates still have a high distance from the query points.
Therefore, the pruning distances are bad, or in other words, P2 does not yield a high
pruning power. A much better choice is P3 since once P3 is loaded and processed, P1 and
P2 are pruned for query q3, because the pruning distance of q3 becomes fairly low. If P1
is loaded next, P2 can additionally be pruned for q1. Finally, P2 is loaded, but only the
distances to q2 must be determined since P2 is pruned for all other queries. Thus, we
have saved 3 out of 9 processing operations compared to a scheduling sequence starting
with page P2.

3.2  The Pruning Power Definition
This simple example already demonstrates that a good page schedule is essential in
order to further improve the processing of multiple k-nn queries. Thus, our general
objective is to load pages which have a high pruning power. We define the pruning
power as follows:

Definition 1: Pruning Power

The pruning power of a page Pr is the number of processing operations process(Ps, qi),
1≤s≤num_pages, s≠r, 1≤i≤m, which can be avoided if page Pr is loaded and processed.

According to this definition, the pruning power of a page is exactly known only at the
time when the page has been processed. Recall that processing operations can be avoid-
ed only if the k-nn candidate (and, thus, the pruning distance) for some query changes.

q1
q2

q3

P1

P2

P3

Fig. 2. Example



In general, it is not possible to determine in advance whether such a change occurs.
Therefore, our goal is first to capture more precisely the conditions under which a page
has a high pruning power, and then to develop heuristics which select pages that obey
these conditions. The core problem is to determine an expected value rprune for the
radius for which the intersection volume contains a number k’ of points:

, (1)

where k’ is the number of points which are needed to have a set of k points in total. A
difficult task here is to determine the intersection volume, which can be solved by a
tabulated Montecarlo integration [7]. Although tabulation makes this numerical method
possible, the performance is not high enough, since eq. (1) must be evaluated often.

A promising approach to address such problems is to introduce heuristics which in-
herently follow the optimal solution. When considering single k-nn algorithms proposed
in the literature, e.g. [12], [15], we can extract two substantial measures which are asso-
ciated with the pruning power: the minimum distance MINDIST and the priority of a
page in the corresponding APL. Both measures have been successfully used to schedule
pages for a single k-nn query. Additionally, it has been shown that other measures, e.g.
the minimum of the maximum possible distances from a query point to a face of a
considered page region, perform only poorly. Thus, we develop three heuristics in the
following section which select pages with a high pruning power on the basis of these two
measures, i.e., using the priority of pages in APLs and using the distance MINDIST.

4.  Pruning Power Scheduling Strategies

4.1  Average Priority Technique
This heuristic is based on the observation that a page can only have a high pruning power
if it has a high local priority in several APLs. If the page has a low priority in most of the
APLs, it is obviously very unlikely that this page yields a high pruning power. When
selecting the next page to process, for each page Pj the ranking numbers RN(APLi, Pj)
in all queues APLi are determined and summed up. If, for instance, P1 is at the first posi-
tion for q1, at the fifth position for q2 and at the 13th position for q3, we get a cumulated
ranking number of 19 for P1. This number is divided by the number (3 in this example)
of APLs that contain P1 in order to form an average and to avoid the underestimation of
pages that are already pruned for many queries. The page with the lowest average rank-
ing P is selected to be loaded and processed next. With npqi we denote the number of
priority queues which contain page Pi.

4.2  Average Distance Technique
The average distance strategy is similar to the average priority heuristic. The focus of
this approach is not the position of a page in the APLs, but directly the minimum dis-
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tance MD(qi, Pj) between a page region Pj and a query point qi. The motivation is the
observation that the pruning power of a page is monotonically decreasing with increas-
ing distance to the query point, i.e. when a page is located far away from most query
points, this page probably has a low pruning power. For each page, the distances to all
query points (except those for which the considered page is already pruned) are deter-
mined and summed up. Again, the average is formed by dividing the cumulated distance
by the number of all queries that did not yet prune the page. The page with the least aver-
age distance P is selected for being processed next.

4.3  Maximum Priority Technique
The motivation for this strategy is the observation that pages with maximum priority
(i.e. they are at the top position) in one or more priority queues often have a high pruning
power even if they have very low priority for other queries. The reason is that pages with
maximum priority generally are more likely to contain one of the k nearest neighbors
than the pages on the following positions. Therefore, a page which is at the first position
for few queries may outperform a page that is at the second position for many queries.
Like the average priority technique, the maximum priority technique determines the
ranking of all pages with respect to the position in the priority queues. In contrast to the
average priority technique, it counts the number MPC(APL1, ..., APLm, Pj) of queries
qi, for which the page Pj has the maximum priority. The page yielding the highest count
P is selected as the next page to be processed. When two or more pages have an equal
count, we consider position-two (and subsequent) counts as a secondary criterion.

5.  Experimental Evaluation
In order to determine the most efficient scheduling technique we performed an extensive
experimental evaluation using the following databases:
•  Synthetic database: 1,600,000 8-d random points following a uniform distribution.
•  CAD database: 16-d Fourier points corresponding to contours of 1,280,000 indus-

trial parts used in the S3-system [4].
•  Astronomy database: 20-d feature vectors of 1,000,000 stars and galaxies which are 

part of the so-called Tycho catalogue [11].
All experiments presented in this section were performed on an Intel Pentium II-300

workstation under Linux 6.0. The index structure we used was a variant of the X-tree
where the directory consists of one large supernode. We used a block size of 32 KBytes
for the X-tree and the cache size was set to 10% of the X-tree size.

For index structures with a hierarchically organized directory, the proposed schedul-
ing techniques can be applied as dynamic approaches or as hybrid approaches (sequenc-
es of static schedules). However, with the directory consisting of one large supernode,
we are able to apply the techniques in a purely static way: Since we can completely
construct the APL once a query point is provided, we can also determine a page schedule
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before we start query processing. While this is straightforward for the average priority
and the average distance technique, we have to slightly modify the maximum priority
technique. First, we determine all pages having a maximum priority and sort them with
respect to their counts. Assuming that those pages are already processed, we consider all
pages located on the second position of any APL as pages with maximum priority and
again sort them. This step iterates until all pages are enlisted in the schedule. Addition-
ally, for all static approaches we check if a chosen page is still needed by any query
before loading the page. We experimentally evaluate the following page scheduling
techniques (cf. section 4):

•  Static and Dynamic Average Priority (denoted as SAvgPos and DAvgPos)

•  Static and Dynamic Average Distance (denoted as SAvgDist and DAvgDist)

•  Static and Dynamic Maximum Priority (denoted as SMaxPrio and DMaxPrio)

We first investigate the effect of the query size using the CAD database. The maximum
number m of multiple k-nn queries in the system is set to 20 and we make the simplifying
assumption that at any time there are enough queries in a queue waiting to be processed
to load the system completely. The query size k varies and Fig. 3 depicts the average
query cost including the CPU and I/O cost. We can observe that DMaxPrio clearly out-
performs all other scheduling techniques for all values of k. Compared to the second best
technique DAvgDist, the DMaxPrio approach exhibits 85% of the average query cost for
k = 1 and 83% of the average query cost for k = 100. Considering the SAvgPos and the
SAvgDist approaches (their performance plots are almost identical), the average query
cost of DMaxPrio is only 32% (70%) of the corresponding average query cost for
1- (100-) nearest neighbor queries. All dynamic techniques outperform the static
approaches up to k = 50. For k> 50, SMaxPrio starts to outperform the DAvgPos
approach. With increasing k, the performance gain of DMaxPrio compared to the other
techniques decreases. The reason is that with increasing query size, the distance to the
k-nn (pruning distance) increases and fewer distance calculations can be avoided by
applying the triangle inequality. However, even for high values of k the DMaxPrio
approach saves 12% - 30% of the query cost compared to the other techniques.
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The same experiment is performed on the synthetic database (cf. Fig. 5). As before,
the DMaxPrio approach yields the best overall performance and leads to an average
query cost of 36% - 59% for k = 1 and 7% - 34% for k = 100 of the average query cost
of the other scheduling techniques except for DAvgDist. In this experiment, the
DAvgDist approach shows a comparative performance as DMaxPrio and even outper-
forms DMaxPrio for k = 50. For all values of k, the dynamic techniques provide a much
better performance than the static techniques. Considering only the static approaches,
we observe that SMaxPrio outperforms SAvgPos and SAvgDist.

Next, we analyze the impact of the database size on the scheduling techniques. We
used the CAD database and increased the number of Fourier points from 12,800 up to
1,280,000. We kept the maximum number m of multiple k-nn queries at 20 and per-
formed 10-nn queries (cf. Fig. 6). For small database sizes, all scheduling techniques
show similar performance. When increasing the database size, this situation changes
drastically: For database sizes larger than 16 MBytes, the performance of SAvgPos and
SAvgDist degenerates whereas DMaxPrio and DAvgDist show a comparatively moder-
ate increase of the average query cost (DMaxPrio again outperforms DAvgDist). This
can be explained by the following observation: With increasing database size, the aver-
age length of the APLs also increases and the static approaches more and more suffer
from the lack of information resulting from processing candidate pages. The average
query cost of SMaxPrio shows an acceptable increase up to 48 MBytes. For 80 MBytes,
however, also this approach exhibits poor performance. Considering the dynamic sched-
uling techniques, DAvgPos has the worst performance for large database sizes.

Since dynamic approaches generally introduce some computational overhead for de-
termining the page schedule, we also investigated the system parameter m which typi-
cally depends on hardware aspects and on the underlying application. We used the as-
tronomy database and performed 20-nn queries while increasing the maximum number
m of multiple queries (cf. Fig. 7). For all scheduling techniques, the average query cost
clearly decreases with increasing m which underlines the effectiveness of the multiple
query approach. Again, DMaxPrio yields the best overall performance (it outperforms
all other techniques for m ≥ 5). An important result is the following observation: While

Fig. 7. # of mult. queries (Astronomy db)
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for small values of m the dynamic approaches obviously outperform the static approach-
es, we observe that SAvgPos and SAvgDist outperform DAvgPos and DAvgDist for
m = 60. The reason for this result is the increasing cost of dynamically calculating the
scheduling criterion since the number of APLs that must be analyzed is directly propor-
tional to the number of queries in the system. The DMaxPrio approach, on the other
hand, exhibits excellent performance even for high values of m due to the fact that the
decision criterion can be evaluated at almost no extra cost, since in average only the top
elements of each APL have to be analyzed.

The objective of our last experiment is to show the efficiency of our approach in general.
We compared the most efficient pruning power scheduling technique (DMaxPrio) with
the multiple queries technique using an efficient variant of the linear scan, namely the VA-
file [17], and we compared it with conventional query processing using the X-tree. For this
experiment, we used the CAD database, set m to 20 and varied the query parameter k from
1 to 100. The average query cost with respect to k is depicted in Fig. 8. Our new scheduling
technique clearly outperforms the conventional X-tree query processing by speed-up fac-
tors ranging from 2.72 for 1-nn queries to 1.78 for 100-nn queries. Considering the VA-file
using the multiple query scheme (VA-file mult. queries), we can observe that the average
query cost of DMaxPrio is less than the average query cost of the multiple query VA-file
for all values of k. However, this does not hold for all scheduling techniques. For instance,
using DAvgPos or a static approach (e.g. SMaxPrio) for the page scheduling, the multiple
query VA-file outperforms the multiple query X-tree already for k > 10 (compare with
Fig. 3). This result underlines the importance of finding an efficient and robust scheduling
technique in order to maximize the performance improvement resulting from the multiple
query scheme.

6.  Conclusions
In this paper, we have studied the problem of page scheduling for multiple k-nn query pro-
cessing prevalent in data mining applications such as proximity analysis, outlier identifica-
tion or nearest neighbor classification. We have derived the theoretic foundation and found
that the pruning power of a page is the key information in order to solve the scheduling
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problem. The pruning power results from the distance between the k-nn candidates located
in a data page and the query points. We have proposed several scheduling algorithms which
base on the pruning power theory. An extensive experimental evaluation demonstrates the
practical impact of our technique. For future work, we plan to analyze our technique in par-
allel and distributed environments.
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