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Abstract. Determining the convex hull of apoint set isabasic operation for many
applications of pattern recognition, image processing, statistics, and datamining.
Although the corresponding point sets are often large, the convex hull operation
has not been considered much in a database context, and state-of-the-art algo-
rithms do not scalewell to non main-memory resident data sets. In this paper, we
propose two convex hull agorithms which are based on multidimensiond index
structures such as R-trees. One of them traversesthe index depth-first. The other
algorithm assignsapriority to each active node (nodeswhich are not yet accessed
but known to the system), which corresponds to the maximum distance of the
node region to the tentative convex hull. We show both theoreticaly aswell as
experimentally that our algorithmsoutperform competitive techniquesthat do not
exploitindexes.

1. Introduction

Multidimensional datasetsare prevalent in many modern database applications such as multime-
dia[12], CAD [20], medical imaging [24], molecular biology [23], and the analysis of time se-
quence data [1]. In these applications complex objects are usudly trandated into vectors of a
multidimensional space by a feature transformation [31]. The distance between two different
feature vectors is a measure for the smilarity of the corresponding objects. Therefore, feature
vectors are often used in similarity search systems [3] where the central task is the search for
objects which are most similar to a given query object. Similarity queries are transformed into
neighborhood queriesin thefeature space, which can beefficiently supported by multidimension-
al index structures. Therefore, multidimensional indexes are often maintained to support modern
database applications.

If the user wants to get adeeper insight into theintrinsic structure of the datatored in the da
tabase, the similarity search is not sufficient. The user will rather want to run statistical analyses
or apply data mining methods such as classification [25], clustering [29], outlier detection [22],
trend detection [11], or the generation of association rules[2]. Several of the corresponding algo-
rithmsuse similarity queries as database primitives, othersmainly rely on other basic operations.

Thedetermination of the convex hull isan exampleof aprimitive operation which isuseful for
many analysis methods and has successfully been applied in application domains such as pattern
recognition [4], image processing [28] or stock cutting and allocation [13]. The convex hull of a
point set in the planeis defined as the smallest convex polygon containing al points. Intuitively,
the convex hull is obtained by spanning a rubber band around the point set. Both, the points
touched by the rubber band aswell asthe shape of the resulting polygon are called the convex hull
of thedataset (cf. fig. 1). In 3 and higher dimensional data spaces, the convex hull isana ogoudy
defined as the minimum convex polyhedron (polytope) of the point set.

We briefly sketch afew applications of the convex hull: The convex
hull is an exact and comprehensive description of the shape of a cluster
of datapointsand can therefore be used asapostprocessing step to cluster
analysisalgorithms[29]. Several clustering agorithmseven usethecon-
vex hull inthedefinition of the notion of acluster: E.g. [7] definesaclus-
ter tobeaset of pointswith minimum diameter of the corresponding con-
vex hull. The determination of the convex hull becomesthusaprimitive
operation for the clustering algorithm. Another application of theconvex  Fig. 1. Convex hull.



hull isthe robust estimation [15]. A robust estimator (or Gastwirth-estimator) is based on the ob-
servation that pointsin the “inner” of a point set are generally more trustable than the extreme
points. Therefore, the points of the convex hull are removed from the data set as a preprocessing
step [19]. A further application of convex hull istheisotonic regression. Regression methods ap-
proximate point sets by functions from agiven class, e.g. linear functions, such that the gpproxi-
mation error (least square) is minimized. In theisotonic regression, the function class are mono-
tonic staircase functions. Theisotonic regression of apoint set can befound using the convex hull
of thepointsafter atransformation. A recent application of the convex hull isthe Onion Technique
[9] for linear optimization queries. This method is based on a theorem that a point which maxi-
mizes an arbitrary multidimensional weightening function can be found on the convex hull of the
data set. The authors improve the search for such maximum points by separately indexing the
points of the convex hull of the data set. Borzsdnyi, Kossmann and Stocker propose the Skyline
technique [5] which isaconcept smilar to the convex hull. The skyline of a dataset can be used
to determine various poitn of adata setswhich could optimize an unknown objectiveintheuser’s
intentions. E.g. users of abooking system may search for hotels which are cheap and closeto the
beach. The skyline of such aquery contains al possible results regardless how the user weights
hiscriteriabeach and cost. The skylinecan bedeterminedinavery similar way asthe convex hull.
The agorithms proposed in this paper can also be adapted for the skyline.

Dueto the high practical relevance of the convex hull, alarge number of agorithmsfor deter-
mining the convex hull in 2 and higher dimensiona space has been proposed [4, 7, 8, 10, 16, 17,
21,26, 27, 30]. Most of thesea gorithms, however, requirethe dataset to beresident in main mem-
ory. In contrast, wewill propose two a gorithmsto determine the convex hull of apoint set stored
inamultidimensiona index. Inthispaper, wefocusontheimportant caseof point setsintheplane.

Theremainder of this paper isorganized asfollows: In section 2, weintroduce two agorithms
determining the convex hull of a point set in amultidimensiona index and state some important
properties of our solutions. Section 3 evaluates our technique experimentaly and section 4 con-
cludesthe paper.

2. Convex Hullsin Large Databases

In this section, wewill introduce our two algorithmsfor the determination of the convex hull of a
large point set whichisstored inamultidimensiona index. For our methods, we need hierarchical
index structures such as the R-tree [18] or its variants. Our algorithms, however, do not exploit
particular properties of R-trees such as the fact that the page regions are minimum bounding
rectangles. Therefore, our agorithms are easily adaptable to index structures which use non-
bounding rectangles or other shapes such as spheres or polygons. Basic operationswhich must be
efficiently supported are the intersection with polylines, and the minimum distance to polylines
and points. We will first concentrate on the distance-priority agorithm and later introduce the
depth-first gorithm. In both cases, wewill proveimportant properties of the a gorithms. Wewill
show that the distance priority agorithm yields a minimum number of page accesses. For the
depth-first algorithm, we will provide worst-case bounds for the worst case time complexity

For dl agorithms, we apply the following simplification: max-y-point
Before starting the actua convex hull agorithm, we search the
pointswhich are extreme (maximum and minimum) in x- and y-
direction (cf. figure 2). These 4 points, caled min-x-point, min-
y-point, max-x-point, and max-y-point, are guaranteed to be in-
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cluded in the convex hull. These points define 4 quadrants in 5
1S

]
which the convex hull is searched separately. In our description, \\.,//
wewill restrict ourselvesto the part of the convex hull between min-y-point
themin-x-point and themin-y-point. Theadvantageisthat every
linesegment of thehull isoriented from upper lefttolower right.  Fig. 2. Quadrant Restriction
Similar propertiesare valid for the other quadrants.

2.1 TheDistance Priority Algorithm

For developing dgorithmsfor query processing upon multidimensiona index structuresit isrec-
ommendable to determine the conditions under which a page must be accessed. Figure 3 shows

min-X-point




thesituations before (upper) and after (lower) the run of aconvex hull agorithm. Initialy only the
min-x-point and the min-y-point is known. This knowledge, however, is enough to exclude pg
definitely from processing, because ps cannot contain a point on the right of the current convex
hull. On the lower side of figure 3 we recognize that al points of the convex hull are located on
thepagesp, and p,. These pagesare obvioudy necessary for the determination of the convex hull.
Buit it is aso necessary to know the content of page ps to decide whether the result is correct,
because p3 could contain apoint in the shaded areanear by thelower |eft corner which belongsto
the convex hull. The pages p, and ps, in contrast, are topologically completely contained in the
convex hull polygon and are, therefore, not able to hold any points which could be part of the
convex hull. Thisobservation leads usto thefirst lemma:

Lemma 1. A correct convex hull algorithm must access at | east the pageswhich aretopologically
not completely contained in the convex hull polygon.

Proof. If apage which isnot completely contained in the convex hull polygon, isnot access-
ed, this page could store a point which is also not contained in the determined convex poly-
gon. Then, the determined polygon is hot the convex hull. a

With our restriction to the quadrant between the min-x-point and the min-y-point it is easy to
determinethe pageswhich are not completely contained in the convex hull: Thelower |eft corner
of suchregionsisawaysleft fromtheconvex hull. If the convex hull isorganized by e.g. an AVL-
tree, the corresponding line segment can befound in O(log n) time.

Lemma 1 provides astopping criterion for CH agorithms on a multidimensiona index: We
aredonewhenever al pages have been processed which are not contained in the convex hull. Our
next lemmawill give usthe sort order in which the pages must be accessed. Thislemmaidentifies
the distance between the lower left corner of the page region and the tentative convex hull to be
thekey information. Thetentative convex hull (TCH) isdwaysthe convex hull of al pointswhich
have aready been processed. At the beginning, it isinitialized with the line segment connecting
themin-x-point and the min-y-point.

Lemma 2. If there is more than one page which is not completely contained inthe TCH it isnot
possible that the page with the highest distance from the TCH is excluded by the convex hull.

Proof. To exclude a page p, from processing requires an unprocessed point v which has a
higher distance from the TCH than the lower left corner of p,. Let p, be the page on which
thev is stored. Then, the distance between the TCH and the lower left corner of p, isat least
as high as the distance between v and the TCH. Such a page cannot exist, because the lower
|eft corner of p; has maximum distance from the TCH among all pages. a

Lemma2 can also bevisudized with figure 3. Page p, isthefarthest pagefromthe TCH. Itis
not possiblethat any point on p,, ps, P4, OF Ps extendsthe TCH so much that p, will be completely
contained. We use the result of lemma 2 for our first algorithm (cf. figure 3) which manages an
activepagelist (APL) for dl pageswhich are not excluded by the TCH. The pagesare ordered by
decreasing distance between thelower left corner and the TCH. Datapageswhicharenot excluded
arebasicaly processed asin Preparata sonline agorithm [26] by determining al pointswhich are
outside the TCH. Such points are inserted into the TCH in which case it could be necessary to
discard neighboring points from the TCH to remove inconvexities. The correctness of our ago-
rithm can be guaranteed by showing that at least al points of the convex hull are passed to the
Preparata’s a gorithm, which has been shown to be correct elsewhere[27].

Lemma 3. Theagorithm distance_priority_chiscorrect.

Proof. Asthe TCH isaways the convex hull of agrowing subset of the actual set of points,
no point of the TCH can be |eft from the actual convex hull. Every page is processed unless
it has been pruned or one of its hierarchical predecessors has been pruned. If the page has
been pruned, then it must have been right from the TCH at some stage of processing, and,
therefore, it must be right from the actual convex hull. If one of the predecessors has been
discarded, the predecessor must be right from the actual convex hull. If apredecessor isright
from the convex hull, the page must also be right from it, because the region of the pageis
completely contained in the region of the predecessor. Thus, each page which is not com-



min-x-point ALGORITHM distance_priority_ch (root: page)
Y apl :={root} ;
% minxpoint := search database for minimum x ;

Pa minypoint := search database for minimumy ;
tch := { minxpoint,minypoint} ;
WHILENOT is_empty (apl)
Ps3 b := lement of apl with max. distancetotch;
DEQUEUE b FROM apl ;
LOADbFROM DISK ;
IFis_data page (b)
FOR EACH vELEMENT OFb

PLTRN
IFis left (v, tch)

min-x-point tch:=tchUNION v;
WHILE NOT convex (tch)
\ % REMOV E next(v) FROM tch;
P3

ELSE
s

$:=SET OF CHILD PAGESOFb;
Fig. 3. The distance priority algorithm for the CH

min-y-point

apl :=apl UNION s;
FORALL PAGESpELEMENT OF apl
IFis right (p,tch)
apl :=apl\p;

min-y-point

pletely contained in the convex hull, is processed. Every point of the convex hull is contained
in a page that is not completely contained in the convex hull. Therefore, every point of the
convex hull plus some additional pointsfrom the data set are fed into Preparata’ s algorithm.
Therefore, the correctnessis guaranteed. a

Now we will discuss the performance of our agorithm from atheoretical point of view. Our
first statement isthat our agorithm yields an optimum number of page accesses when assuming
that theindex isgiven.

L emma 4. Thedistance priority agorithm yieldsaminimum number of page accesses.

Proof. According to lemma 1, all pages must be processed which are not completely con-
tained in the convex hull. In each step of the agorithm, the page pin, with the highest dis-
tance between the convex hull and the lower left corner of pyin is processed. According to
lemma 2, the convex hull cannot be extended such that py,in, is contained in it. The algorithm
accesses exactly the pages which are not completely contained in the convex hull. a

Finaly, we will show that our distance priority algorithm yields a worst-case complexity of
O(nlog n) for the CPU-time. This complexity is aso the lower bound for agorithmswhich are
not based on an index.

Lemma 5. The CPU time complexity of distance_priority_chisinO(nlog n).

Proof. In each step of the algorithm, one page of theindex isprocessed. The number of index
pages is linear in the number of stored points. We assume the APL to be organized in a
priority queue, which requires O(log n) time for each inserted or removed element. The
tentative convex hull is organized in an AVL-tree or 2-3-tree which allows fast access in
O(log n) time to the y-coordinates of the stored points. Therefore, insertions and deletions
can be performed in O(log n) time. The decision whether anew point isleft or right from the
tentative convex hull can be made in O(log n) time, because it requires the search of the
pointsinthe TCH with the next higher and the next lower y-candidates. If the point isinserted
to the TCH, some neighboring points may be deleted from the TCH, which requires again
O(log n) time for each deletion. During the run of the complete algorithm, at most n points
can beinserted and del eted from the TCH. Taking together, both the management of the APL
and the management of the TCH require O(n log n) time during the compl ete runtime of the
algorithm. a



2.2 TheDepth-First Algorithm

Although the distance priority agorithm can be proven (93
to be optima with respect of the number of accessed
P1 \\-

pages, it does not affect the worst-case boundaries for
the CPU runtimewhichareO(n log n) for our dgorithm
aswell asfor known algorithmswhich arenot database-
agorithms. Thereis atheoretical result that O(n log n)
isalso the lower limit for the worst-case complexity of
the convex hull operation.This limit, however, is only
valid for points which are not stored in an index. We kg 4. Front pages and excl. pages.
may wonder whether the existence of a multidimen-

siona index enables usto improve theworst-case complexity? Thiswould be no contradiction to
the theoretical result, because constructing an index requires O(n log n) time. Additionaly, it is
possibleto extract the pointsin the order of ascending x- or y-coordinatesfrom anindex in linear
time. The question is, whether al of the worst-case complexity is subsumed in the operation of
index congtruction, or if thereisasubstantial remaining worst-case compl exity. It seemsintuitive-
ly clear that we cannot do better than O(n), because nisthe size of the result set in the worst case.
In this section, we will develop our depth-first algorithm, and we will show that this agorithm
runsin O(n) time in theworst case. The generd ideaiis to process the pages in a sequence order
that correspondsto the sequence order of the pointsin the convex hull, starting at the min-x-point
and ending at the min-y-point.

Therefore, the points are inserted into and deleted from the tentative convex hull only at the
end, and no points up to the end point is ever accessed. This savesthe O(log n) factor in the man-
agement of thetentative convex hull (TCH). Theother O(log n) factor for the management of the
activepagelistissaved by thedepth-first traversal itself. Inthiscontext, themost thrilling question
iswhether or not asequence order of pages corresponding to the sequence order of theconvex hull
exigs at al and whether or not this sequence order is compatible with a depth-firgt traversal
throughthetree. Both questionsare not self-evident, becausethe pageregionsareobjectsyielding
agpatial position and extension which makesit difficult to apply any ordering to them. E.g. points
could beuniquely ordered by x- or y-coordinate or by their angleand distancewith respect to some
appropriate reference point. Such kinds of ordering have been successfully applied for traditional
convex hull agorithms. For extended spatial objects, however, thex- and y-projectionsof different
objectsoverlap, aswell asthe corresponding angle does. Wewill develop inthefirst two lemmata
anew appropriateordering for pageregionsand show that itiscompati blewith the sequence order
of the convex hull. For these two lemmas, we assume overlap-freeindexes. Note that someindex
structures alow overlap among sibling page regions to improve the adaptation to the data distri-
bution in the presence of heavy update to the database. For unlimited overlap (i.e. arbitrarily bad
indexes), obvioudy our method cannot guarantee a general O(n) time complexity in the worst
case. Our lemma gives us a statement to exclude some pages from processing evenif the TCH in
thisareaisnot yet known. Westill restrict our convex hull to the quadrant between the min-x-point
and the min-y-point. For other quadrants, anal ogous properties hold.

Lemmaé. If apagep, iscompletely in the sector above and right from another page p,, this page
cannot contain any point of the convex hull.

Proof. The convex hull cannot beleft or below from any point which is stored in the page p;.
Therefore, p; iseither completely contained in the convex hull or it isintersected by it. In our
guadrant, all line segments of the convex hull yield a negative skew. Therefore, the convex
hull cannot intersect ps. a

For anillustration of lemma 6, cf. the pagesp; and p, infigure4. In any set of non-overlapping
pages, some pagesexcludeother pagesfrom processing according tolemma6. Wecall those pages
which are not excluded the frontpages of the set. We know for each frontpage p; that no other
frontpageiscompletely in the sector aboveand right (such asp,) or completely inthe sector below
and left (suchasps) of the page. Inthefirst case, p, isexcluded by p;. Inthe second case, p; would
exclude p; such that p; cannot be afrontpage.

t P3

1

impossibleif p;
isafrontpage




Definition 1 (Frontpage ordering):
A frontpage p, is greater than a frontpage p; (or equal) with respect to frontpage ordering
(P2 20 Py) if @t least one of the following conditions hold:
* pyiscompletely right from py
* p,iscompletely below from p;
* p;andp, areidentical
Lemma7. Therelation “p, 2, 1" for non-overlapping frontpages p, and p, isatotal ordering.

We briefly sketch the idea of the proof which istechnically complex but not very interesting.
Thereflexivity isobvious. The antisymmetry isnot given for pageswhich yield overlap or which
don not fulfill thefrontpage property: If, for instance, p, isboth, above andright from p,, we have
P2 2fpo P1 @0 Py ¢ P2 Which would violate the antisymmetry. For overlap-free frontpages, in
contrast it fol Iowst?noat p, iseither above, or right from p, but not both (in this case, p, would ex-
clude p;). Smilarly, p, iseither below or left from p; but not both. In &l cases, we cannot have
P2 2fpo P1aNA Py 20 P2 for two different pagesp, and ps,. For thetransitivity, asimilarly complex
argumentation wi th many case distinctionsis necessary, but viable,

Next, wewill prove the most important lemmafor our depth-first agorithm which claimsthat
the frontpage ordering is compatible with the ordering of pointsin the convex hull. The conse-
quenceisthat if we process the pages by ascending frontpage ordering, we get the points of the
convex hull intheright order.

L emmaa. For two pointsv,=(X;,y1) ad vo=(X,,y,) of the convex hull which are stored on differ-
ent pages p; and ps, the following statements are equivalent:

(1) P22poP1

(2) X2 > Xl
R Yosyi
Proof.

(2) & (3): Theequivaenceof statement (2) and (3) isanimmediate consequence of the prop-
erties of the convex hull and our restriction to the quadrant between the min-x-point and the min-
y-point.

(1) = (2): Cese (a): py is completely right from p,. In this case, &l points stored on p, have
higher x-coordinates than any point stored in p;, and therefore, x5 > x4.

Case (b): p, iscompletely below p,. Inthiscase, al points stored on p, have lower y-coordi-
nates than any point stored in p;, and therefore, y, < y;. Dueto the equivalence of statement (2)
and (3), we know that X, > X4.

(2) = (1): Weknow that p, storesapoint with a higher x-coordinate than apoint that isstored
inp,. Therefore, p, cannot be completely |eft from p;. Dueto “ (2)<(3)” wefurther know that p,
storesapoint with alower y-coordinate than apoint that isstoredin p;. So p, cannot becompletely
above p;. In order to be overlap-free, p, must either be completely right from p; or compl etely
below. In both casesit followsthat py 2f,, P1.

Last beforeweareready to present our depth-first algorithm, we state that the frontpage order-
ing is compatible with the depth-first traversal of thetree:

Lemma. If pa 2¢p, Py (bUt NOt P = py) then Ao €y 2¢y, €y for al child pagescy j of py and ¢y
of p, which are frontpages.

Proof. Follows from definition 1 and as child pages are contained in the region of their
parent. a

From our set of lemmeatait followsthat we can traversethetreein adepth-first fashion, in each
node calling those child nodes which are front pages, ordered by the frontpage order. If we do so,
wefind the points of the convex hull intheright order. This property isexploited in our dgorithm
depth_first_ch(cf. figure6). Here, the part of the al gorithm which correspondsto the conventional
hull determination (IF is_data page...) corresponds to Graham’s scan. The part of the algorithm



ALGORITHM depth first_ch (b: page) EL SE (* directory page*)
LOAD b FROM DISK ; P :=set of child pagesof b;
IFis_data_page (b) (* retrict P to the frontpages: *)

\é;DsEEtRO{/pgytfgggsgt:ASCENDl NG; FOREACH p ELEMENT OF P
FOR EACH vELEMENT OFV FOTFEQEEdZEI(_qu'\;I ENTOFP
| :=linesegment connecting the last REM OVE, qFROM P;
point of the tch with minypoint ; o ’
IFis left (v, 1) ORDERP BY “2p,,” ASCENDING;
m:= linesegment connecting v with FOR EACH PELEMENT QF P
the point before last point of tch | := linesegment connecting the last
WHILE s right (last paint of tch, m) point of the tch with minypoint ;
DELETE last point FROM tch;; IFNOT is _right (p,l)
APPEND vTOtch; depth_first_ch(p);

Fig. 6. The depth first algorithm for the CH

for the directory pagesfirst determinesthose child pageswhich are frontpages. Then these pages

are ordered according to the frontpage ordering relation and accessed unlessthey can be pruned.
This section is concluded by two lemmata stating the correctness and the worst-case runtime

of theagorithm whichis proven to bein O(n).

Lemma 10. Thealgorithm depth_first_chiscorrect.

Proof. Analogously to lemma 3, we can show that every point of the convex hull is passed to

the conventional convex hull agorithm. Thevariant used in our algorithm requiresthe points

of the convex hull to be passed in the appropriate order, i.e. with ascending x-coordinates and

descending y-coordinates. Thisisfollowsfrom lemmata8 and 9. a

Lemma 11. The agorithm depth_first_ch runsin O(n) time in the worst casg, if the data set is
stored in an overlgp-free multidimensional index.

Proof. In the worst case, each page of the index is accessed once. The number of pagesis
linear in n. For each page, only aconstant number of operationsisraised. The only exception
is the deletion of the last point of the TCH (in constant time) which is repeated until the
convexity of the TCH is maintained. The total number of deletions during the run of the
algorithm, however, isalso restricted by n. a

3. Experimental Evaluation

To demonstrate the practica relevance of our technique and the superiority over competitive
approaches we implemented our distance priority agorithm, two variants of depth-first algo-
rithms, and two related approaches, the scal able variants of Graham's scan aswell as Preparatals
online algorithm. For efficiency all variants have been coded in C and tested on HP C160 work-
stationsunder HP-UX 10.12. Thedataset wasstored on adisk with 5 msseek time, 5 msrotation-
al delay, and atransfer rate of 4 MByte per second.

All implementations of our new index-based a gorithms operate on bottom-up constructed X -
trees [6]. We implemented two variants of depth-first algorithms. The first variant processesthe
child nodes of the current node ordered by the front-page ordering as described in section 2.2 (in
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Fig. 5. Convex hulls and their characteristics: circle, gaussian and square



the following called depth-first with FPO). In the second variant the child nodes are ordered by
their maximum distance to the TCH (depth-first with priority). In contrast to the distance priority
algorithm, thisalgorithm traversesthe index depth-first, i.e. every branch is completed before the
next branch can bestarted. Therefore, itisnot necessary to manageapriority-queue. To bescalable
to non-memory databases, Graham'’s scan [16] was implemented using the mergesort algorithm

For our experiments we used 3 data setswith 4,000,000 data points with different distribution
characteristics. The first dataset contains points which are uniformly distributed in a unit circle.
The points of the second data set are normally distributed (Gaussian data set). Thethird set con-
tainsuniformly distributed pointsin the unit square. All datasetsand their convex hulls(for 1,000
points) aredepictedinfigure 5. The characteristicsof the convex hull are depicted ontheright side
of figure 5. The number of pointsin the convex hull of the circle data set is fast yet sublinearly
increasing with increasing data set Size. In contrast the number of pointsin the convex hull of the
other data setsis not much influenced by the database size.

In dl subsequent experiments, the number of data points varied between 500,000 and
4,000,000. The block size of the index and data files was consistently set to 2 KBytes. Graham's
scanistheonly agorithm which needs apage cachefor processing (for the sorting step). We con-
stantly allowed 800 database pagesin cache which is between 5% and 40% of the database.

Figure 7 depi ctstheresults of the experimentson the circle dataset. Intheleft figure, the num-
ber of page accesses of the different algorithms is compared. On the circle data set, the distance
priority agorithm and the two depth-first algorithms required exactly the same number of page
accesses (up to 530). In contrast, Graham’ s scan needs 48,000 page accessesfor sorting of thedata
set. The online agorithm by Preparataiswith 16,000 block accesses aso clearly outperformed.
The diagram in the middle shows the CPU times. Here the depth-first variant with frontpage or-
dering yields the best performance with 1.1 seconds for 4,000,000 data points. Asthe circle data
set hasmany pointsin the convex hull, the reduced effort for the management of the TCH (which
isaconsequence of frontpage ordering because pointsare only inserted or del eted at theend of the
TCH) resultsin substantial performance gains. The depth-first variant needed 4.4 seconds of CPU
timeor four timesasmuch asdepth-first with FPO. Slightly worse (5.1 sec) dueto the management
of the priority queue was the distance priority algorithm. The variants without index, however,
needed with 43 (Preparata) and 110 (Graham) seconds, respectively, a factor of 39 (100) times
more CPU power than our best performing agorithm. Theright diagram showsthetotd time sub-
suming CPU timeand1/Otime. Asall algorithmsarel/O bound the differencesbetween theindex-
based dgorithmsarealleviated. For 4,000,000 datapoints, the FPO a gorithm needed 6.2 seconds,
the other depth-first algorithm needed 9.6 seconds and the distance priority agorithm needed
10.36 seconds. With 200 seconds, the online algorithm was outperformed with factor 32. Theim-
provement factor over Graham's scan (580 seconds) was even 94.
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Fig. 7. Experimental results of the circle data set
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Fig. 8. Experimental results of the square data set

The characterigtic of the square dataset which isdepictedin figure 8 isquite different from the
characterigtic of the circle dataset. The number of pointsin the convex hull iswith 43 very small.
Therefore, the management of the convex hull does not play an important role and the advantage
of frontpage ordering over our other index-based approaches disappears. For this set, the distance
priority algorithm clearly yields the best number (120) of page accesses. With 650 page accesses,
the depth-first algorithm is clearly worse than the distance priority algorithm, but still very good
in comparison with the a gorithms without index. Ordering child pages by priority rather than by
FPO whichisakind of compromise between the other two approachesyields anegligible advan-
tage (630 page accesses). Asthe TCH management does not play animportant role and since pro-
cessing of each page needs CPU power, the distance-priority agorithm yields also the best CPU
performance. With respect to the overal time, the distance priority algorithm outperforms the
depth-first variant with priority ordering by afactor 5.1, thedepth-first a gorithmwith FPO by 5.5,
theonline algorithm by 130, and Graham'’s scan by the factor 420.

Theseresults are e so confirmed by the gauss- 100 T
ian dataset . The corresponding experiment (total € g | . Graham's Scan
timeonly) isshowninfigure 9. With 1.3 sec. (dis- 5’; ol % Preparata Online
tance priority) and 1.2 sec (both depth-first algo- @ - Distance Priority
rithms), respectively, all index based approaches £ 1/ Depth-First (Prio.)
required about thesametime. Incontrast, Preparas . g 2 &~ Depth-First (FPO)
ta's online dgorithm needed 180 seconds, i.e. Eooe
more than 150 times dower than our approaches. 0 2000000 4000000
With 590 seconds, Graham'’s scan is even outper- Number of Points

formed by fector 510. Likeinall our experiments, g 9 Experiments on Gaussian data set
the improvement factors of our new techniques

over competitive techniques was increasing with increasing database sizes. For ingtance, theim-
provement factor over the online agorithm (Gaussian data set) starts with 25 for 500,000 data
points. For 1 million points, the factor increasesto 52, then 89 (2 million points), and finaly 150.
The analogous sequence for the improvement over Graham's scan is (80, 170, 291, 510).

4. Conclusions

In this paper, we have proposed to use multidimensiond index structuresfor the determination of
theconvex hull of apoint database. Indexes can be either traversed depth-first or the access of the
next node is controlled by the priority of the node which corresponds to the maximum distance
between the node and the currently available part of the convex hull. Theanalytica eva uation of
our technique shows that the distance priority algorithm is optimal with respect to the number of
disk accesses. The depth-first algorithm, in contrast, has abetter (i.e. linear) worst-case complex-
ity with respect to CPU time. Our experimenta evaluation demonstrates the superiority over
approachesstoring the point set inflat files. The databaseimplementati on of the most well-known
convex hull agorithm, Graham's scan, isoutperformed by factors up to 510.
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