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Abstract. Determining the convex hull of a point set is a basic operation for many
applications of pattern recognition, image processing, statistics, and data mining.
Although the corresponding point sets are often large, the convex hull operation
has not been considered much in a database context, and state-of-the-art algo-
rithms do not scale well to non main-memory resident data sets. In this paper, we
propose two convex hull algorithms which are based on multidimensional index
structures such as R-trees. One of them traverses the index depth-first. The other
algorithm assigns a priority to each active node (nodes which are not yet accessed
but known to the system), which corresponds to the maximum distance of the
node region to the tentative convex hull. We show both theoretically as well as
experimentally that our algorithms outperform competitive techniques that do not
exploit indexes. 

1.  Introduction
Multidimensional data sets are prevalent in many modern database applications such as multime-
dia [12], CAD [20], medical imaging [24], molecular biology [23], and the analysis of time se-
quence data [1]. In these applications complex objects are usually translated into vectors of a
multidimensional space by a feature transformation [31]. The distance between two different
feature vectors is a measure for the similarity of the corresponding objects. Therefore, feature
vectors are often used in similarity search systems [3] where the central task is the search for
objects which are most similar to a given query object. Similarity queries are transformed into
neighborhood queries in the feature space, which can be efficiently supported by multidimension-
al index structures. Therefore, multidimensional indexes are often maintained to support modern
database applications.

If the user wants to get a deeper insight into the intrinsic structure of the data stored in the da-
tabase, the similarity search is not sufficient. The user will rather want to run statistical analyses
or apply data mining methods such as classification [25], clustering [29], outlier detection [22],
trend detection [11], or the generation of association rules [2]. Several of the corresponding algo-
rithms use similarity queries as database primitives, others mainly rely on other basic operations.

The determination of the convex hull is an example of a primitive operation which is useful for
many analysis methods and has successfully been applied in application domains such as pattern
recognition [4], image processing [28] or stock cutting and allocation [13]. The convex hull of a
point set in the plane is defined as the smallest convex polygon containing all points. Intuitively,
the convex hull is obtained by spanning a rubber band around the point set. Both, the points
touched by the rubber band as well as the shape of the resulting polygon are called the convex hull
of the data set (cf. fig. 1). In 3 and higher dimensional data spaces, the convex hull is analogously
defined as the minimum convex polyhedron (polytope) of the point set.

We briefly sketch a few applications of the convex hull: The convex
hull is an exact and comprehensive description of the shape of a cluster
of data points and can therefore be used as a postprocessing step to cluster
analysis algorithms [29]. Several clustering algorithms even use the con-
vex hull in the definition of the notion of a cluster: E.g. [7] defines a clus-
ter to be a set of points with minimum diameter of the corresponding con-
vex hull. The determination of the convex hull becomes thus a primitive
operation for the clustering algorithm. Another application of the convex Fig. 1. Convex hull.
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hull is the robust estimation [15]. A robust estimator (or Gastwirth-estimator) is based on the ob-
servation that points in the “inner” of a point set are generally more trustable than the extreme
points. Therefore, the points of the convex hull are removed from the data set as a preprocessing
step [19]. A further application of convex hull is the isotonic regression. Regression methods ap-
proximate point sets by functions from a given class, e.g. linear functions, such that the approxi-
mation error (least square) is minimized. In the isotonic regression, the function class are mono-
tonic staircase functions. The isotonic regression of a point set can be found using the convex hull
of the points after a transformation. A recent application of the convex hull is the Onion Technique
[9] for linear optimization queries. This method is based on a theorem that a point which maxi-
mizes an arbitrary multidimensional weightening function can be found on the convex hull of the
data set. The authors improve the search for such maximum points by separately indexing the
points of the convex hull of the data set. Börzsönyi, Kossmann and Stocker propose the Skyline
technique [5] which is a concept similar to the convex hull. The skyline of a dataset can be used
to determine various poitn of a data sets which could optimize an unknown objective in the user’s
intentions. E.g. users of a booking system may search for hotels which are cheap and close to the
beach. The skyline of such a query contains all possible results regardless how the user weights
his criteria beach and cost. The skyline can be determined in a very similar way as the convex hull.
The algorithms proposed in this paper can also be adapted for the skyline.

Due to the high practical relevance of the convex hull, a large number of algorithms for deter-
mining the convex hull in 2 and higher dimensional space has been proposed [4, 7, 8, 10, 16, 17,
21, 26, 27, 30]. Most of these algorithms, however, require the data set to be resident in main mem-
ory. In contrast, we will propose two algorithms to determine the convex hull of a point set stored
in a multidimensional index. In this paper, we focus on the important case of point sets in the plane. 

The remainder of this paper is organized as follows: In section 2, we introduce two algorithms
determining the convex hull of a point set in a multidimensional index and state some important
properties of our solutions. Section 3 evaluates our technique experimentally and section 4 con-
cludes the paper.

2.  Convex Hulls in Large Databases
In this section, we will introduce our two algorithms for the determination of the convex hull of a
large point set which is stored in a multidimensional index. For our methods, we need hierarchical
index structures such as the R-tree [18] or its variants. Our algorithms, however, do not exploit
particular properties of R-trees such as the fact that the page regions are minimum bounding
rectangles. Therefore, our algorithms are easily adaptable to index structures which use non-
bounding rectangles or other shapes such as spheres or polygons. Basic operations which must be
efficiently supported are the intersection with polylines, and the minimum distance to polylines
and points. We will first concentrate on the distance-priority algorithm and later introduce the
depth-first algorithm. In both cases, we will prove important properties of the algorithms. We will
show that the distance priority algorithm yields a minimum number of page accesses. For the
depth-first algorithm, we will provide worst-case bounds for the worst case time complexity

For all algorithms, we apply the following simplification:
Before starting the actual convex hull algorithm, we search the
points which are extreme (maximum and minimum) in x- and y-
direction (cf. figure 2). These 4 points, called min-x-point, min-
y-point, max-x-point, and max-y-point, are guaranteed to be in-
cluded in the convex hull. These points define 4 quadrants in
which the convex hull is searched separately. In our description,
we will restrict ourselves to the part of the convex hull between
the min-x-point and the min-y-point. The advantage is that every
line segment of the hull is oriented from upper left to lower right.
Similar properties are valid for the other quadrants.

2.1 The Distance Priority Algorithm
For developing algorithms for query processing upon multidimensional index structures it is rec-
ommendable to determine the conditions under which a page must be accessed. Figure 3 shows
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the situations before (upper) and after (lower) the run of a convex hull algorithm. Initially only the
min-x-point and the min-y-point is known. This knowledge, however, is enough to exclude p5
definitely from processing, because p5 cannot contain a point on the right of the current convex
hull. On the lower side of figure 3 we recognize that all points of the convex hull are located on
the pages p1 and p2. These pages are obviously necessary for the determination of the convex hull.
But it is also necessary to know the content of page p3 to decide whether the result is correct,
because p3 could contain a point in the shaded area near by the lower left corner which belongs to
the convex hull. The pages p4 and p5, in contrast, are topologically completely contained in the
convex hull polygon and are, therefore, not able to hold any points which could be part of the
convex hull. This observation leads us to the first lemma:

Lemma 1. A correct convex hull algorithm must access at least the pages which are topologically
not completely contained in the convex hull polygon.
Proof. If a page which is not completely contained in the convex hull polygon, is not access-
ed, this page could store a point which is also not contained in the determined convex poly-
gon. Then, the determined polygon is not the convex hull. ❏

With our restriction to the quadrant between the min-x-point and the min-y-point it is easy to
determine the pages which are not completely contained in the convex hull: The lower left corner
of such regions is always left from the convex hull. If the convex hull is organized by e.g. an AVL-
tree, the corresponding line segment can be found in O(log n) time.

Lemma 1 provides a stopping criterion for CH algorithms on a multidimensional index: We
are done whenever all pages have been processed which are not contained in the convex hull. Our
next lemma will give us the sort order in which the pages must be accessed. This lemma identifies
the distance between the lower left corner of the page region and the tentative convex hull to be
the key information. The tentative convex hull (TCH) is always the convex hull of all points which
have already been processed. At the beginning, it is initialized with the line segment connecting
the min-x-point and the min-y-point.

Lemma 2. If there is more than one page which is not completely contained in the TCH it is not
possible that the page with the highest distance from the TCH is excluded by the convex hull.

Proof. To exclude a page p1 from processing requires an unprocessed point v which has a
higher distance from the TCH than the lower left corner of p1. Let p2 be the page on which
the v is stored. Then, the distance between the TCH and the lower left corner of p2 is at least
as high as the distance between v and the TCH. Such a page cannot exist, because the lower
left corner of p1 has maximum distance from the TCH among all pages. ❏

Lemma 2 can also be visualized with figure 3. Page p1 is the farthest page from the TCH. It is
not possible that any point on p2, p3, p4, or p5 extends the TCH so much that p1 will be completely
contained. We use the result of lemma 2 for our first algorithm (cf. figure 3) which manages an
active page list (APL) for all pages which are not excluded by the TCH. The pages are ordered by
decreasing distance between the lower left corner and the TCH. Data pages which are not excluded
are basically processed as in Preparata’s online algorithm [26] by determining all points which are
outside the TCH. Such points are inserted into the TCH in which case it could be necessary to
discard neighboring points from the TCH to remove inconvexities. The correctness of our algo-
rithm can be guaranteed by showing that at least all points of the convex hull are passed to the
Preparata’s algorithm, which has been shown to be correct elsewhere [27].

Lemma 3. The algorithm distance_priority_ch is correct.

Proof. As the TCH is always the convex hull of a growing subset of the actual set of points,
no point of the TCH can be left from the actual convex hull. Every page is processed unless
it has been pruned or one of its hierarchical predecessors has been pruned. If the page has
been pruned, then it must have been right from the TCH at some stage of processing, and,
therefore, it must be right from the actual convex hull. If one of the predecessors has been
discarded, the predecessor must be right from the actual convex hull. If a predecessor is right
from the convex hull, the page must also be right from it, because the region of the page is
completely contained in the region of the predecessor. Thus, each page which is not com-



pletely contained in the convex hull, is processed. Every point of the convex hull is contained
in a page that is not completely contained in the convex hull. Therefore, every point of the
convex hull plus some additional points from the data set are fed into Preparata’s algorithm.
Therefore, the correctness is guaranteed. ❏

Now we will discuss the performance of our algorithm from a theoretical point of view. Our
first statement is that our algorithm yields an optimum number of page accesses when assuming
that the index is given.

Lemma 4. The distance priority algorithm yields a minimum number of page accesses.

Proof. According to lemma 1, all pages must be processed which are not completely con-
tained in the convex hull. In each step of the algorithm, the page pmin with the highest dis-
tance between the convex hull and the lower left corner of pmin is processed. According to
lemma 2, the convex hull cannot be extended such that pmin is contained in it. The algorithm
accesses exactly the pages which are not completely contained in the convex hull. ❏

Finally, we will show that our distance priority algorithm yields a worst-case complexity of
O(n log n) for the CPU-time. This complexity is also the lower bound for algorithms which are
not based on an index.

Lemma 5. The CPU time complexity of distance_priority_ch is in O(n log n).

Proof. In each step of the algorithm, one page of the index is processed. The number of index
pages is linear in the number of stored points. We assume the APL to be organized in a
priority queue, which requires O(log n) time for each inserted or removed element. The
tentative convex hull is organized in an AVL-tree or 2-3-tree which allows fast access in
O(log n) time to the y-coordinates of the stored points. Therefore, insertions and deletions
can be performed in O(log n) time. The decision whether a new point is left or right from the
tentative convex hull can be made in O(log n) time, because it requires the search of the
points in the TCH with the next higher and the next lower y-candidates. If the point is inserted
to the TCH, some neighboring points may be deleted from the TCH, which requires again
O(log n) time for each deletion. During the run of the complete algorithm, at most n points
can be inserted and deleted from the TCH. Taking together, both the management of the APL
and the management of the TCH require O(n log n) time during the complete runtime of the
algorithm. ❏

ALGORITHM distance_priority_ch (root: page)
apl := {root} ;
minxpoint := search database for minimum x ;
minypoint := search database for minimum y ;
tch := {minxpoint,minypoint};
WHILE NOT is_empty (apl)

b := element of apl with max. distance to tch ;
DEQUEUE b FROM apl ;
LOAD b FROM DISK ;
IF is_data_page (b)

FOR EACH v ELEMENT OF b
IF is_left (v, tch)

tch := tch UNION v ;
WHILE NOT convex (tch)

REMOVE next(v) FROM tch ;
ELSE

s := SET OF CHILD PAGES OF b ;
apl := apl UNION s ;

FOR ALL PAGES p ELEMENT OF apl
IF is_right (p,tch)

apl := apl \ p ;

Fig. 3. The distance priority algorithm for the CH
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2.2 The Depth-First Algorithm
Although the distance priority algorithm can be proven
to be optimal with respect of the number of accessed
pages, it does not affect the worst-case boundaries for
the CPU runtime which are O(n log n) for our algorithm
as well as for known algorithms which are not database-
algorithms. There is a theoretical result that O(n log n)
is also the lower limit for the worst-case complexity of
the convex hull operation.This limit, however, is only
valid for points which are not stored in an index. We
may wonder whether the existence of a multidimen-
sional index enables us to improve the worst-case complexity? This would be no contradiction to
the theoretical result, because constructing an index requires O(n log n) time. Additionally, it is
possible to extract the points in the order of ascending x- or y-coordinates from an index in linear
time. The question is, whether all of the worst-case complexity is subsumed in the operation of
index construction, or if there is a substantial remaining worst-case complexity. It seems intuitive-
ly clear that we cannot do better than O(n), because n is the size of the result set in the worst case.
In this section, we will develop our depth-first algorithm, and we will show that this algorithm
runs in O(n) time in the worst case. The general idea is to process the pages in a sequence order
that corresponds to the sequence order of the points in the convex hull, starting at the min-x-point
and ending at the min-y-point. 

Therefore, the points are inserted into and deleted from the tentative convex hull only at the
end, and no points up to the end point is ever accessed. This saves the O(log n) factor in the man-
agement of the tentative convex hull (TCH). The other O(log n) factor for the management of the
active page list is saved by the depth-first traversal itself. In this context, the most thrilling question
is whether or not a sequence order of pages corresponding to the sequence order of the convex hull
exists at all and whether or not this sequence order is compatible with a depth-first traversal
through the tree. Both questions are not self-evident, because the page regions are objects yielding
a spatial position and extension which makes it difficult to apply any ordering to them. E.g. points
could be uniquely ordered by x- or y-coordinate or by their angle and distance with respect to some
appropriate reference point. Such kinds of ordering have been successfully applied for traditional
convex hull algorithms. For extended spatial objects, however, the x- and y-projections of different
objects overlap, as well as the corresponding angle does. We will develop in the first two lemmata
a new appropriate ordering for page regions and show that it is compatible with the sequence order
of the convex hull. For these two lemmas, we assume overlap-free indexes. Note that some index
structures allow overlap among sibling page regions to improve the adaptation to the data distri-
bution in the presence of heavy update to the database. For unlimited overlap (i.e. arbitrarily bad
indexes), obviously our method cannot guarantee a general O(n) time complexity in the worst
case. Our lemma gives us a statement to exclude some pages from processing even if the TCH in
this area is not yet known. We still restrict our convex hull to the quadrant between the min-x-point
and the min-y-point. For other quadrants, analogous properties hold.
Lemma 6. If a page p2 is completely in the sector above and right from another page p1, this page
cannot contain any point of the convex hull.

Proof. The convex hull cannot be left or below from any point which is stored in the page p1.
Therefore, p1 is either completely contained in the convex hull or it is intersected by it. In our
quadrant, all line segments of the convex hull yield a negative skew. Therefore, the convex
hull cannot intersect p2. ❏

For an illustration of lemma 6, cf. the pages p1 and p2 in figure 4. In any set of non-overlapping
pages, some pages exclude other pages from processing according to lemma 6. We call those pages
which are not excluded the frontpages of the set. We know for each frontpage p1 that no other
frontpage is completely in the sector above and right (such as p2) or completely in the sector below
and left (such as p3) of the page. In the first case, p2 is excluded by p1. In the second case, p3 would
exclude p1 such that p1 cannot be a frontpage.
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Fig. 4. Front pages and excl. pages.



Definition 1 (Frontpage ordering): 
A frontpage p2 is greater than a frontpage p1 (or equal) with respect to frontpage ordering
(p2 ≥fpo p1) if at least one of the following conditions hold:
  • p2 is completely right from p1
  • p2 is completely below from p1
  • p1 and p2 are identical

Lemma 7. The relation “p2 ≥fpo p1” for non-overlapping frontpages p1 and p2 is a total ordering.

We briefly sketch the idea of the proof which is technically complex but not very interesting.
The reflexivity is obvious. The antisymmetry is not given for pages which yield overlap or which
don not fulfill the frontpage property: If, for instance, p1 is both, above and right from p1, we have
p2 ≥fpo p1 and p1 ≥fpo p2 which would violate the antisymmetry. For overlap-free frontpages, in
contrast, it follows that p1 is either above, or right from p2 but not both (in this case, p2 would ex-
clude p1). Similarly, p2 is either below or left from p1 but not both. In all cases, we cannot have
p2 ≥fpo p1 and p1 ≥fpo p2 for two different pages p1 and p2. For the transitivity, a similarly complex
argumentation with many case distinctions is necessary, but viable.

Next, we will prove the most important lemma for our depth-first algorithm which claims that
the frontpage ordering is compatible with the ordering of points in the convex hull. The conse-
quence is that if we process the pages by ascending frontpage ordering, we get the points of the
convex hull in the right order.

Lemma 8. For two points v1=(x1,y1) and v2=(x2,y2) of the convex hull which are stored on differ-
ent pages p1 and p2, the following statements are equivalent:

(1) p2 ≥fpo p1
(2) x2 ≥ x1
(3) y2 ≤ y1

Proof. 
(2) ⇔ (3): The equivalence of statement (2) and (3) is an immediate consequence of the prop-

erties of the convex hull and our restriction to the quadrant between the min-x-point and the min-
y-point. 

(1) ⇒ (2): Case (a): p2 is completely right from p1. In this case, all points stored on p2 have
higher x-coordinates than any point stored in p1, and therefore, x2 ≥ x1. 

Case (b): p2 is completely below p1. In this case, all points stored on p2 have lower y-coordi-
nates than any point stored in p1, and therefore, y2 ≤ y1. Due to the equivalence of statement (2)
and (3), we know that x2 ≥ x1.

(2) ⇒ (1): We know that p2 stores a point with a higher x-coordinate than a point that is stored
in p1. Therefore, p2 cannot be completely left from p1. Due to “(2)⇔(3)” we further know that p2
stores a point with a lower y-coordinate than a point that is stored in p1. So p2 cannot be completely
above p1. In order to be overlap-free, p2 must either be completely right from p1 or completely
below. In both cases it follows that p2 ≥fpo p1. ❏

Last before we are ready to present our depth-first algorithm, we state that the frontpage order-
ing is compatible with the depth-first traversal of the tree:

Lemma 9. If p2 ≥fpo p1 (but not p2 = p1) then also c2,i ≥fpo c1,i for all child pages c1,i of p1 and c2,i
of p2 which are frontpages.

Proof. Follows from definition 1 and as child pages are contained in the region of their
parent. ❏

From our set of lemmata it follows that we can traverse the tree in a depth-first fashion, in each
node calling those child nodes which are front pages, ordered by the frontpage order. If we do so,
we find the points of the convex hull in the right order. This property is exploited in our algorithm
depth_first_ch (cf. figure 6). Here, the part of the algorithm which corresponds to the conventional
hull determination (IF is_data_page...) corresponds to Graham’s scan. The part of the algorithm



for the directory pages first determines those child pages which are frontpages. Then these pages
are ordered according to the frontpage ordering relation and accessed unless they can be pruned. 

This section is concluded by two lemmata stating the correctness and the worst-case runtime
of the algorithm which is proven to be in O(n).
Lemma 10. The algorithm depth_first_ch is correct.
Proof. Analogously to lemma 3, we can show that every point of the convex hull is passed to
the conventional convex hull algorithm. The variant used in our algorithm requires the points
of the convex hull to be passed in the appropriate order, i.e. with ascending x-coordinates and
descending y-coordinates. This is follows from lemmata 8 and 9. ❏

Lemma 11. The algorithm depth_first_ch runs in O(n) time in the worst case, if the data set is
stored in an overlap-free multidimensional index.
Proof. In the worst case, each page of the index is accessed once. The number of pages is
linear in n. For each page, only a constant number of operations is raised. The only exception
is the deletion of the last point of the TCH (in constant time) which is repeated until the
convexity of the TCH is maintained. The total number of deletions during the run of the
algorithm, however, is also restricted by n. ❏

3.  Experimental Evaluation
To demonstrate the practical relevance of our technique and the superiority over competitive
approaches we implemented our distance priority algorithm, two variants of depth-first algo-
rithms, and two related approaches, the scalable variants of Graham’s scan as well as Preparata’s
online algorithm. For efficiency all variants have been coded in C and tested on HP C160 work-
stations under HP-UX 10.12. The data set was stored on a disk with 5 ms seek time, 5 ms rotation-
al delay, and a transfer rate of 4 MByte per second.

All implementations of our new index-based algorithms operate on bottom-up constructed X-
trees [6]. We implemented two variants of depth-first algorithms. The first variant processes the
child nodes of the current node ordered by the front-page ordering as described in section 2.2 (in
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Fig. 5. Convex hulls and their characteristics: circle, gaussian and square

ALGORITHM depth_first_ch (b: page)
LOAD b FROM DISK ;
IF is_data_page (b)

V := set of points stored on b ;
ORDER V BY x-coordinate ASCENDING ;
FOR EACH v ELEMENT OF V

l := linesegment connecting the last 
point of the tch with minypoint ;

IF is_left (v, l)
m := linesegment connecting v with

the point before last point of tch
WHILE is_right (last point of tch, m)

DELETE last point FROM tch ;
APPEND v TO tch ;

Fig. 6. The depth first algorithm for the CH

ELSE (* directory page *)
P := set of child pages of b ;
(* restrict P to the frontpages: *)
FOR EACH p ELEMENT OF P

FOR EACH qELEMENT OF P
IF excludes (p,q)

REMOVE q FROM P ;
ORDER P BY “≥fpo” ASCENDING ;
FOR EACH p ELEMENT OF P

l := linesegment connecting the last 
point of the tch with minypoint ;

IF NOT is_right (p,l)
depth_first_ch (p) ;



the following called depth-first with FPO). In the second variant the child nodes are ordered by
their maximum distance to the TCH (depth-first with priority). In contrast to the distance priority
algorithm, this algorithm traverses the index depth-first, i.e. every branch is completed before the
next branch can be started. Therefore, it is not necessary to manage a priority-queue. To be scalable
to non-memory databases, Graham’s scan [16] was implemented using the mergesort algorithm 

For our experiments we used 3 data sets with 4,000,000 data points with different distribution
characteristics. The first dataset contains points which are uniformly distributed in a unit circle.
The points of the second data set are normally distributed (Gaussian data set). The third set con-
tains uniformly distributed points in the unit square. All data sets and their convex hulls (for 1,000
points) are depicted in figure 5. The characteristics of the convex hull are depicted on the right side
of figure 5. The number of points in the convex hull of the circle data set is fast yet sublinearly
increasing with increasing data set size. In contrast the number of points in the convex hull of the
other data sets is not much influenced by the database size. 

In all subsequent experiments, the number of data points varied between 500,000 and
4,000,000. The block size of the index and data files was consistently set to 2 KBytes. Graham’s
scan is the only algorithm which needs a page cache for processing (for the sorting step). We con-
stantly allowed 800 database pages in cache which is between 5% and 40% of the database.

Figure 7 depicts the results of the experiments on the circle data set. In the left figure, the num-
ber of page accesses of the different algorithms is compared. On the circle data set, the distance
priority algorithm and the two depth-first algorithms required exactly the same number of page
accesses (up to 530). In contrast, Graham’s scan needs 48,000 page accesses for sorting of the data
set. The online algorithm by Preparata is with 16,000 block accesses also clearly outperformed.
The diagram in the middle shows the CPU times. Here the depth-first variant with frontpage or-
dering yields the best performance with 1.1 seconds for 4,000,000 data points. As the circle data
set has many points in the convex hull, the reduced effort for the management of the TCH (which
is a consequence of frontpage ordering because points are only inserted or deleted at the end of the
TCH) results in substantial performance gains. The depth-first variant needed 4.4 seconds of CPU
time or four times as much as depth-first with FPO. Slightly worse (5.1 sec) due to the management
of the priority queue was the distance priority algorithm. The variants without index, however,
needed with 43 (Preparata) and 110 (Graham) seconds, respectively, a factor of 39 (100) times
more CPU power than our best performing algorithm. The right diagram shows the total time sub-
suming CPU time and I/O time. As all algorithms are I/O bound the differences between the index-
based algorithms are alleviated. For 4,000,000 data points, the FPO algorithm needed 6.2 seconds,
the other depth-first algorithm needed 9.6 seconds and the distance priority algorithm needed
10.36 seconds. With 200 seconds, the online algorithm was outperformed with factor 32. The im-
provement factor over Graham’s scan (580 seconds) was even 94.
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The characteristic of the square data set which is depicted in figure 8 is quite different from the
characteristic of the circle data set. The number of points in the convex hull is with 43 very small.
Therefore, the management of the convex hull does not play an important role and the advantage
of frontpage ordering over our other index-based approaches disappears. For this set, the distance
priority algorithm clearly yields the best number (120) of page accesses. With 650 page accesses,
the depth-first algorithm is clearly worse than the distance priority algorithm, but still very good
in comparison with the algorithms without index. Ordering child pages by priority rather than by
FPO which is a kind of compromise between the other two approaches yields a negligible advan-
tage (630 page accesses). As the TCH management does not play an important role and since pro-
cessing of each page needs CPU power, the distance-priority algorithm yields also the best CPU
performance. With respect to the overall time, the distance priority algorithm outperforms the
depth-first variant with priority ordering by a factor 5.1, the depth-first algorithm with FPO by 5.5,
the online algorithm by 130, and Graham’s scan by the factor 420.

These results are also confirmed by the gauss-
ian data set . The corresponding experiment (total
time only) is shown in figure 9. With 1.3 sec. (dis-
tance priority) and 1.2 sec (both depth-first algo-
rithms), respectively, all index based approaches
required about the same time. In contrast, Prepara-
ta’s online algorithm needed 180 seconds, i.e.
more than 150 times slower than our approaches.
With 590 seconds, Graham’s scan is even outper-
formed by factor 510. Like in all our experiments,
the improvement factors of our new techniques
over competitive techniques was increasing with increasing database sizes. For instance, the im-
provement factor over the online algorithm (Gaussian data set) starts with 25 for 500,000 data
points. For 1 million points, the factor increases to 52, then 89 (2 million points), and finally 150.
The analogous sequence for the improvement over Graham’s scan is (80, 170, 291, 510).

4.  Conclusions
In this paper, we have proposed to use multidimensional index structures for the determination of
the convex hull of a point database. Indexes can be either traversed depth-first or the access of the
next node is controlled by the priority of the node which corresponds to the maximum distance
between the node and the currently available part of the convex hull. The analytical evaluation of
our technique shows that the distance priority algorithm is optimal with respect to the number of
disk accesses. The depth-first algorithm, in contrast, has a better (i.e. linear) worst-case complex-
ity with respect to CPU time. Our experimental evaluation demonstrates the superiority over
approaches storing the point set in flat files. The database implementation of the most well-known
convex hull algorithm, Graham’s scan, is outperformed by factors up to 510.

Acknowledgments
We are grateful to Donald Kossmann for fruitful discussions.

0

5

10

15

20

0 2000000 4000000

Number of Points
C

P
U

 T
im

e 
(S

ec
on

ds
)

0

2000

4000

6000

8000

10000

0 2000000 4000000

Number of Points

N
um

be
r 

of
 P

ag
e 

A
cc

.

0

20

40

60

80

100

0 2000000 4000000

Number of Points

T
ot

al
 T

im
e 

(S
ec

on
ds

)

Distan
Depth
Depth
Graha
Prepa

Fig. 8. Experimental results of the square data set
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