
On the Impact of Flash SSDs on Spatial Indexing

Tobias Emrich, Franz Graf, Hans-Peter Kriegel, Matthias Schubert, Marisa Thoma
Institute for Informatics, Ludwig-Maximilians-Universität München

Oettingenstr. 67, 80538 Munich, Germany
{emrich, graf, kriegel, schubert, thoma}@dbs.ifi.lmu.de

ABSTRACT
Similarity queries are an important query type in multime-
dia databases. To implement these types of queries, database
systems often use spatial index structures like the R*-Tree.
However, the majority of performance evaluations for spatial
index structures rely on a conventional background storage
layer based on conventional hard drives. Since newer devices
like solid-state-disks (SSD) have a completely different per-
formance characteristic, it is an interesting question how far
existing index structures profit from these modern storage
devices. In this paper, we therefore examine the perfor-
mance behaviour of the R*-Tree on an SSD compared to a
conventional hard drive. Testing various influencing factors
like system load, dimensionality and page size of the index
our evaluation leads to interesting insights into the perfor-
mance of spatial index structures on modern background
storage layers.

1. INTRODUCTION
Similarity search and spatial promixity queries are an im-

portant query type in spatial, temporal and multimedia data-
bases. In general, the task is to find all spatially close neigh-
bors to a query object in a database of d-dimensional feature
vectors. Example applications for this type of query might
be to select all sensors within a 5 mile diameter around some
seismic distortion or find the top-k similar songs in an audio
database. For processing this type of queries the simplest so-
lution is to scan the complete database. However, for large
databases this leads to an enormous overhead in distance
computations as well as in I/O. To avoid this overhead, the
database community proposed spatial index structures [6,
3] organizing the database in order to avoid comparing the
query object to each feature vector in the database. The
most prominent spatial index structure is the R-Tree [9] and
its extension the R*-Tree [2]. Though many further exten-
sion of its principles have been proposed in the last twenty
years, the R-Tree is still the most used method in the area.
Additionally, it is implemented in several standard database

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Sixth International Workshop on Data Management on
New Hardware (DaMoN 2010), June 7, 2010, Indianapolis, Indiana.
Copyright 2010 ACM 978-1-4503-0189-3/10/06 . . . $10.00.

systems like MySQL1, PostgreSQL via GiST[10] or Oracle2.
Despite its wide use, the R-Tree or related data struc-

tures do not solve the problem of efficient similarity search
by guaranteeing a logarithmic processing time for similar-
ity queries. Instead, it only provides an average logarithmic
search time. Factors having a negative impact on the search
time include high dimensionality and an inappropriate data
distribution.

Besides the dimensionality, the hardware underlying the
R-Tree plays an important role when determining the perfor-
mance advantage compared to the sequential scan. A major
difference between both methods exists due to the predomi-
nant type of I/O-operations employed in both methods. The
sequential scan basically reads the complete database, ide-
ally employing a single seek on the disk. Thus, the transfer
rate of the device is very important, whereas the seek time
and latency are rather negligible. Searching on a hierarchical
index like the R-Tree on the other hand is largely determined
by random access I/O to single node pages. Thus, the cost
of a similarity query on an R-tree is strongly dominated by
the number of accessed nodes because accessing the page
usually requires much more time than transferring its con-
tents into main memory. Thus, in [4] the authors state that
the selectivity of a query in a hierarchical index should be
less than 5 % in order to clearly outperform the sequential
scan. In this case, considering only the CPU time of both
methods would still favor the tree because the amount of dis-
tance computations is still several times smaller than for the
scan. However, since the search is I/O bound and sequen-
tially reading the complete dataset is faster than reading
5 % of the data with random access operations, the scan still
yields a performance advantage. Nevertheless, the threshold
of 5 % is subject to various system parameters like latency,
seek time and transfer rate of the underlying storage sys-
tem. Since the performance characteristics of available back-
ground storage devices have significantly changed within the
last ten years, the current threshold should be considerably
different as well.

In this paper, we will therefore examine the real-time per-
formance improvement of the R*-Tree using new hardware,
i.e. flash solid-state-drives (SSDs) under various aspects. As
a first result of our examination, we will show that simulat-
ing the system workload is mandatory in order to observe
the influence of different background storages due to cache
utilization. We argue that the use of SSDs for storing spa-
tial indexes is quite a realistic architecture because the size

1http://dev.mysql.com, R-Tree indexing for 2 dimensions
2http://www.oracle.com, Oracle Spatial: 2 to 4 dimensions

of the available SSDs is now sufficiently large even for very
large index structures. Furthermore, datasets in large spa-
tial or multimedia search systems are usually rather static,
i.e. change operations do occur considerably less often than
queries. Thus, using SSDs is feasible in spite of the limited
writing capacity of flash based storage modules. Another
important factor is the affordable price of flash SSDs, mak-
ing the use of dedicated storage devices for indexing rather
inexpensive. Finally, the most important reason for using
an SSD for spatial indexing is its enormous improvement
in access time compared to conventional hard drives. While
the transfer rate of a modern hard disk drive (HDD) is quite
comparable to an SSD, the access time of the SSD is up to
two orders of magnitude faster. Thus, hierarchical index
structures should significantly benefit more from this new
storage device than scan-based methods. The contributions
of this paper are:

• An examination of the query-time behaviour of the R*-
Tree depending on the server workload for background
storages using an HDD and an SSD.

• A discussion of the implications of the SSD’s charac-
teristics on tuning the page size of the R*-Tree.

• A comparison of the effects of increasing dimensional-
ity to the same index run on both storage systems.

The rest of the paper is organized as follows. In Section 2
we briefly discuss related work on using SSDs in databases.
Section 3 dicusses the changes in the access path over the
last two decades. In Section 4, we formalize our testing en-
vironment for the experiments displayed in Section 5. They
demonstrate the effect of the hardware advances to the per-
formance of the R*-Tree w.r.t. system workload, page size
and dimensionality. Our paper concludes with a summary
and ideas for future work.

2. RELATED WORK
Publications on SSDs usually focus on their main weak-

ness: a limited number of write operations which are rela-
tively slow compared to reads. Lee et.al. [11] compared the
transaction performance of standard SQL I/O operations on
HDDs and SSDs and have found SSDs to be faster. How-
ever, the runtime advantage of SSDs decreases with an in-
creasing number of users due to imperfect handling of write
operations. As write operations are crucial for the creation
and updates of index structures, there has already been re-
search on how to design write structures for indexing on
SSDs. In [17, 18] Wu et.al. proposed a method to speed
up the construction and maintenance of B-Trees or R-Trees
directly using the flash translation layer (FTL). In [12] Li
et.al. introduced the FD-Tree, a B+-Tree derivate of three
index layers specialized to the use in flash discs.

In addition, various types of queries on SSDs have been
analyzed. For join operations, the writing problem prohibits
an effect of the full advantage of fast reads. Thus, [14, 15,
5] have developed methods for fast join processing on flash
devices.

Write-independent queries profit stronger from exchang-
ing HDDs by SSDs. In [7] Goetz Graefe tested query run-
times of the B-Tree on SSDs as opposed to HDDs and con-
cluded that SSDs are not only faster but they also induce
a lower optimum page size. In [13] Nath and Kansal use a

cost model for the automatic adaption of flash-specialized
B+-Tree types and their parametrization (e.g. page sizes)
to the varying access costs of different flash devices. It de-
pends on the tree’s height, the read and write access cost of
the disk and the node’s utility [8], the logarithm of records
within a node.

3. CHANGES IN THE ACCESS PATH
In this section, we want to review the advances in com-

puter architecture having the strongest influence on the per-
formance of spatial index structures. For most types of simi-
larity queries (apart from special applications like similarity
joins), it still holds that the performance bottleneck derives
from the I/O-operations. Thus, we will focus on changes
w.r.t. the access path of the indexed data.

3.1 Caching
Commonly used cost models for estimating the I/O-costs

of index structures usually only regard caching strategies
implemented directly into the proposed method (like LRU-
page buffers). But besides these explicit caching strategies,
all methods are implicitly using caching strategies provided
by the underlying operating system (OS) (unless explicitly
coded differently) in order to avoid time consuming I/O op-
erations.

A typical disc read request proceeds according to the fol-
lowing pattern: The process requests a certain part of a file
to be read from disc. This request is directed to the file sys-
tem driver which first checks the cache manager and virtual
memory for the page. If the page is found (cache hit), the
data is returned immediately from the cache without need-
ing to start a time consuming I/O operation. On the other
hand, if the data could not be found in the cache (cache
miss), the disc driver requests the data to be read directly
from the device and thus from the next cache layer, the disc
cache which is implemented directly on the according device
having a size of 8-128 MB (depending on type and manufac-
turer). If this request also results in a cache miss, the data
must finally be read from disc, causing the expected I/O cost
of seek- and transfer time of the requested blocks of data.

Another issue is that OS and disc cache managers analyze
file access patterns to a certain amount and start reading
ahead data into the caches in order to improve access speed
for future reads.

3.2 New Storage Media
Thus, the most important part of the access path remains

the used storage medium of the data to be indexed. With the
rise of SSDs as a new possibility to store and access data, we
want to examine the performance characteristics of common
HDDs and SSDs in the context of spatial index structures.
Traditionally, three parameters are of crucial importance in
this scenario:

• Seek Time: The time to find the requested blocks on
the medium.

• Latency: The time until the storage medium can access
the requested blocks.

• Transfer Rate: The time to transfer the requested
blocks to the processor.

25

30

35

40

45

50

4 KB

8 KB

16 KB

32 KB

64 KB

nd
ex
 c
an

 a
cc
es
s
w
hi
le

re
ad

s
w
ho

le
 d
at
a

0

5

10

15

20

HDD(20 years ago) HDD (10 years ago) HDD (used) SSD (used)

storage device

pe
rc
en

ta
ge

 o
f d

at
a
in

se
qu

en
ti
al
 s
ca
n
r

Figure 1: Fraction of data a spatial indexstructure
can read before the sequential scan becomes faster

3.2.1 Hard-Disk-Drives
Commonly used HDDs store data on rapidly rotating plat-

ters with magnetic surfaces. The data is accessed by posi-
tioning the head of the right platter and then transfering
the data. The seek time is the time required to position the
head on the target platter and the correct track, whereas
latency is the time passing until the platter is rotated to the
position of the sector containing the requested data block.
Just like the transfer rate, the average latency is therefore
dependent on the rotational speed of the drive. In the last
two decades, especially the transfer rate of HDDs increased
(∼ factor 40), whereas the seek time and latency only im-
proved little (∼ factor 3).

3.2.2 SSD
In contrast to HDDs, flash SSDs do not have any mechan-

ically moving parts but use NAND flash memory chips to
store the data. Each flash chip is divided into several flash
blocks consisting of several flash pages. Operations on the
drive are performed on page level. Due to these charac-
teristics the only latency for a read operation derives from
the mapping between logical block adresses and flash pages.
This results in access times which are typically two orders of
magnitude faster than the ones from HDDs. However, the
structural characteristics only remove the seek process and
boost the latency time of a disk, thus flash SSDs are not
able to outperform HDDs w.r.t. the transfer rate until now.

3.2.3 Theoretical Implications
When accessing a large amount of (defragmented) data

sequentially, the main parameter of interest is the transfer
rate, since seek time and latency only occur once. Thus this
parameter has the highest influence on scan-based methods
like the sequential scan or the VA-File [16]. On the other
hand a hierachical index structure has to acceess the data
independently and in a random access manner. In this case,
the seek time and the latency are more important for the
performance of the index structure. This suggests that hi-
erarchical spatial indexes benefit by far more from the use
of a flash SSD than the sequential scan does. To confirm
this assumption, in a first step we examine the performance
of the sequential scan and spatial index structures from a
theoretical point of view. We use the cost model from [4] to
calculate the percentage of data which can be accessed by
an index structure (via random access) while the sequential
scan reads the whole dataset. Like the authors of [4] we

HDD SSD
Avg. seek time 8.9 ms none
Avg. latency 4.2 ms 0.09 ms
Transfer rate 93.5 MB/s 94.7 MB/s

Table 1: Performance characteristics of used devices

assume a storage utilisation of the index of 50 %. Besides
the two storage devices used in the experiemental section
(summarized in Table 1), we include two HDDs into our
calculation. One as it was used 20 years ago (latency + seek
time = 20 ms; transfer rate = 5 MB/s) and one as it was
used 10 years ago (latency + seek time = 15.3 ms; transfer
rate = 32 MB/s). Figure 1 illustrates the fraction of the data
a spatial index can maximally access before the sequential
scan becomes faster. For each storage device, we compare
several page sizes as this has an impact on the break-even
point. Let us note that the optimal page size for an index
is mainly dependent on the characteristics of the indexed
dataset. The figure shows that the advances in the HDD
technology of the last decades make it harder for an index
structure to perform faster than the sequential scan. This
fraction is nowadays far below the commonly assumed 5 %
rate (cf. [4]). With the new technology of SSDs this trend
is reversed. Following the above considerations, on an SSD
a spatial index theoretically still performs better than the
scan even if the accessed amount of data is far above 20%
for a common page size (≥ 8 KB). Thus, on SSDs a spatial
index should outperform the sequential scan even if a large
amount of the data has to be visited as it is the case for
data which is hard to index (e.g. high dimensional). How-
ever, the real-time performance of a spatial query usually
depends on several other system characteristics like cache
utilization. We will therefore empirically examine the per-
formance advantage of a SSD compared to a modern HDD
in the next section.

4. TEST BED

4.1 Used Datasets
For the majority of our experiments, we created a random

test database. Since tree-based spatial index structures are
most challenged by poorely clustering datasets, we chose
uniformly distributed datasets. We did not simulate any
clustered datasets in order to avoid overfitting of the distri-
butions to the used index. All experiments involve 1 million
10-dimensional feature vectors unless explicitly stated oth-
erwise, i.e. N = 106, d = 10.

4.2 Hardware
To support our assumptions, we tested several settings on

two storage devices, one of each class. Our HDD is a West-
ern Digital Caviar Blue (WD2500AAJS) SATA Drive with
8 MB cache, 250 GB memory and 7200 rpm. The SSD is a
Corsair P128 (CMFSSD-128GBG2D) SATA II drive with
128 MB cache and 128 GB memory. For further specifica-
tions see Table 1. All experiments were run on a machine
with two Intel Xeon 5160 3.00 GHz Dual-Core processors
and 4 GB of main memory.

4.3 Software
We stored the data in a persistent R*-Tree of the ELKI

framework [1]. Each accessed node in the tree results in one
access to the underlying storage system. Correspondingly,
the experiments showing the results of the sequential scan
were programmed to access the storage device only once.
An important aspect of the following results is that the im-
plemented search system is running on top of an operating
system allowing concurrent processes. In our case, we em-
ployed openSUSE 10.3 (X86-64). We additionally ran most
experiments on Windows XP to test whether a different op-
erating system causes significantly different results. How-
ever, the results between both operating systems were quite
comparable and thus, we present the results measured on
the LINUX system. As mentioned in the previous section,
there are multiple caching systems for background storages.
Thus, the experiments include the caching mechanism pro-
vided by the underlying hardware and operating system.
Though using a disk cache is a realistic assumption, having
an otherwise idle system is not. If we think of an index as
a component of a database server, it is a very unrealistic
assumption that the only process currently running is the
search itself. A single process experiment on an otherwise
idle system leads to an unrealistically large amount of avail-
able main memory which the operating system will use for
caching parts of the index or the dataset. Furthermore, if the
system is only occupied with the test program, it is also quite
likely that its caches will be exclusively used for parts of the
index. However, assuming the search process as part of a
larger server system, the system will require the resources
for other processes as well. Considering the sequential scan,
it is possible to scan a large data file in a consecutive way
if there are no important concurrent processes accessing the
disk as well. However, on a real database server, it is rather
unlikely that there is no other equally important process or
thread requesting to access the disk as well. Thus, in order
to provide fair answering times, most systems will interrupt
large scans causing multiple disk accesses for the sequential
scan as well. Thus, cache utilization, available main mem-
ory and concurrent reads will be limited by the system load
caused by other database server functions and other pro-
cesses. A further aspect limiting the resources for a single
query is the concurrent processing of several user requests
at a time.

To conclude, in order to make sure that the tests are per-
formed under realistic conditions, we have to limit the avail-
able resources for answering a query and to simulate a server
workload consisting of multiple concurrent threads or pro-
cesses. To achieve this result, we allocated and locked the
available main memory to make sure that the test system
only had access to 1 GB of main memory. Furthermore,
to simulate concurrent queries being answered at the same
time, we multithreaded our test program for answering mul-
tiple queries at the same time. The effect of the number of
parallel queries at a time will be discussed in the following
section. We measured the query performance based on the
average answering times of k-nearest neighbor queries where
the number of retrieved neighbors k is set to 10.

5. EXPERIMENTAL RESULTS
In this section, we present the results of our experiments

testing similarity queries based on a flash SSD and HDD
background storage. We start with measuring the utiliza-
tion of the background storage when scaling the system load.
Afterwards, we examine the impact of the changed perfor-

900

1000

HDD

700

800

s)

SSD

500

600

qu
er
y
(m

s

300

400

500

ti
m
e
pe

r
q

200

300t

0

100

1 10 20 30 40 50 60 70 80 90 100 110 120

Number of concurrent threads

Figure 2: Querytime for an increasing number of
parallel queries and databases (k = 10, d = 10, N =
106, uniformly distributed data)

mance characteristics on tuning the page size of the R*-Tree.
In a final set of experiments, we measure the influence un-
der a changed size of k and different dimensionalities of the
dataset.

5.1 System Load and Storage Device Utiliza-
tion

As mentioned in the previous section, we expect the work-
load of the database server to have an important influence
on the effect of the background storage and thus the query
times. If the system load is rather low, we can expect the
database server to spend more resources like caches and
main memory to answering the query. Thus, the perfor-
mance of the background storage should have a smaller im-
pact. To simulate different levels of work load, we posed
5 000 queries to an R*-Tree comparing both devices while
changing the number of concurrent threads processing the
queries. Each R*-Tree stores one million 10-dimensional fea-
ture vectors. Let us note that we assume that each thread
has its own instance of the R*-Tree simulating queries on
different index structures. The results can be seen in Fig-
ure 2.

While the performance advantage of the SSD-based tree is
rather small for a single query thread, the gap between both
devices rapidly increases with the number of simultaneous
threads. The rather small difference for a limited number of
threads can be explained due to the good cache utilization
for a small level of concurrency. However, with an increasing
number of concurrent threads, the amount of cache misses
for a dedicated thread will raise. Thus, the effect of the cache
is strongly decreasing and for a number of 100 threads the
impact of the storage device can be clearly observed. For
more than 100 concurrent threads, the average answering
time of a query is about one order of magnitude faster on
the SSD than on the HDD. For the tests w.r.t. data dimen-
sionality and the number of retreived nearest neighbours k
we therefore used 100 concurrent thread.

5.2 Impact on the Page Size
In this section, we discuss the impact of the changed per-

formance characteristics of the background storage on the
parametrization of the R*-Tree. Selecting a suitable page
size can have a large impact on the query performance of
a spatial index structure. The impact of the page size can
be explained as follows. A large page size reduces the over-

3003000

HDD

200

250

2000

2500
SSD

D
 (m

s)

D
 (m

s)

150

200

1500

2000

y
fo
r
H
D
D

ry
 fo

r
SS
D

100

150

1000

1500

pe
r
qu

er
y

e
pe

r
qu

er

50

100

500

1000

ti
m
e

ti
m
e

0

50

0

500

00

2 KB 4 KB 8 KB 16 KB 32 KB 64 KB 128 KB 256 KB
page size

Figure 3: Querytime for different page sizes on HDD
and SSD (k = 10, d = 10, N = 106, uniformly dis-
tributed)

1000

1500

2000

qu
er
y
(m

s)

HDD

SSD

0

500

1000

1 10 20 30 40 50

ti
m
e
pe

r
q

k

Figure 4: Querytime on for increasing k on HDD
and SSD (d = 10, N = 106, uniformly distributed)

head of accessing a page on the background storage com-
pared to the transfer time of the page content. In the ex-
treme case the page size is large enough to keep the complete
dataset and thus, the R*-Tree degenerates into the sequen-
tial scan on the root page. From a CPU-time point of view,
small pages are usually more beneficial because their spa-
tial approximations usually have a smaller spatial extension.
Therefore, it is less likely that they intersect with the query
region. In combination with the smaller amount of stored
data objects this leads to a decreased number of distance
computations.

In the following, we want to examine the optimal page
size for the R*-tree based on the flash SSD compared to the
HDD. We generated R*-trees for page sizes varying from
2 kB to 256 kB. Each tree contains the same dataset of one
million 10-dimensional, uniformly distributed feature vec-
tors. To test the query performance, 480 10-nearest-neighbor
queries were simultaneousely performed by 30 concurrent
threads for both storage devices. The measured average
processing time per query can be seen in Figure 3.

On the HDD the results indicate that the pages should be
chosen considerably larger than the 4 kB disk pages of the
underlying file system. We achieved the best results with
a page size of 64 kB closely followed by 128 kB pages. Due
to the significantly shorter access times of the flash SSD,
its optimal page size should be smaller than for the hard
drive. We measured the best results when using a page size
of 32 kB on the flash SSD. Due to the comparatively large

1500

2000

2500

3000

qu
er
y
(m

s)

HDD Tree

HDD Scan

SSD Tree

SSD Scan

0

500

1000

1500

2 4 6 8 10 12 14 16 18 20

ti
m
e
pe

r
q

dimensions

Figure 5: Performance of R*-Tree and sequential
scan with increasing dimensionality on HDD and
SSD (k = 10, N = 106, uniformly distributed)

dimension of our test data, this amounts to a considerably
smaller discrepancy between HDD and SSD than an earlier
study on B-Trees (256 vs. 2 kB for only 1 dimension) [7].
However, in general the performance of the SSD indicates
no strong decrease in performance for 8 to 128 kB. This is
quite remarkable because the performance of the R*-Tree
seems to be a lot less dependent on a suitable page size on
the SSD than on the hard drive. For example, the query
time of ∼ 2 700 ms on the hard drive based system with a
page size of 4 kB is more than five times higher compared to
the tree having a page size of 64 kB (∼ 500 ms). In contrast,
the runtimes of the observed optimal page size of 32 kB and
the worst page size of 2 kB on the SSD only differ by the
factor two. Thus, due to the fast access times of the SSD,
its performance is more robust towards bad selection of the
page size. A further interesting observation is that the page
size for the SSD is still indicating a rather different behaviour
than for a purely memory-based tree. Although the access
time of the SSD is significantly lower than for the hard drive,
it is still considerably higher than accessing data in the main
memory.

5.3 Query Size
In the next experiment, we tested the impact of different

query sizes on the runtime of the spatial index on the two
different devices. Therefore we measured the runtime for
different parameters k. Figure 4 shows the results. Clearly,
the total difference in runtime increases for a higher value
of k. Interestingly, the query time of the index on the SSD
is always an order of magnitude faster than the one on the
HDD.

5.4 Dimensionality
One of the most interesting questions for spatial index

structures is: How many dimensions can be indexed by the
structure before the sequential scan is faster? Generally,
with increasing dimensionality of a dataset, the pages of an
R*-Tree overlap more and more which leads to a higher per-
centage of pages which have to be visited at query time.
Section 3.2.3 already gave an indication, that R*-Trees can
still perform better than the sequential scan on SSDs, even
for a large ratio of read pages. To test this hypothesis we
performed queries on uniformly distributed datasets with
increasing dimensionality and measured the query time for
the sequential scan and the R*-Tree on HDD and SSD. Fig-

ure 5 shows the results. As expected, the query time using
a sequential scan increases roughly linearly (due to increas-
ing data volume), with faster runtimes on the SSD. Since
the transfer rate of both media is comparable, this effect is
probably caused by interruptions of the sequential scan, re-
sulting in new seeks, which can be performed much faster
on the SSD. Comparing the performance of the R*-Tree on
the two devices shows that on the SSD the index is around
one order of magnitude faster than on the HDD, regard-
less of the dimensionality. This is caused by the lower seek
and latency times of SSDs which play a central role in the
performance of spatial index structures. We conclude our
observations with a comparison of the query times of the
R*-Tree and the sequential scan on each device. On the
HDD, the scan outperforms the index at a dimensionality of
about 11. On the SSD, this break-even point occurs later at
approximately 17 dimensions. This result confirms the the-
oretical assumptions from the previous sections and shows
that spatial index structures can greatly benefit from the
use of SSDs.

6. CONCLUSIONS
In this paper, we examined the impact of flash SSDs on

spatial index structures. Due to the fast page accesses, SSDs
should largely improve the query times for similarity queries.
Therefore, we examine the impact of SSDs of the perfor-
mance of an R*-Trees. An important aspect we observed is
that the impact of the storage device is rather small if the ex-
periments are run on an idle system. However, simulating a
server workload, we do observe a strong influence of the stor-
age device. Our screenings for optimal page sizes indicated
a lower sensitivity of the SSD to improperly-chosen page
sizes. Furthermore, in our experiments we observe that the
trade-off w.r.t. the dimensionality between index and scan
is about 6 dimensions higher for the SSD. For future work,
we plan to examine the use of various different page sizes
in one spatial index structure in order to better utilize the
characteristics of SSDs.

Acknowledgements
This research has been supported in part by the THESEUS
program in the MEDICO and CTC projects. They are
funded by the German Federal Ministry of Economics and
Technology under the grant number 01MQ07020. The re-
sponsibility for this publication lies with the authors.

7. REFERENCES
[1] E. Achtert, T. Bernecker, H.-P. Kriegel, E. Schubert,

and A. Zimek. ELKI in time: ELKI 0.2 for the
performance evaluation of distance measures for time
series. In Proc. SSTD, 2009.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-Tree: An efficient and robust access
method for points and rectangles. In Proc. SIGMOD,
pages 322–331, 1990.

[3] C. Böhm, S. Berchtold, and D. A. Keim. Searching in
high-dimensional spaces: Index structures for
improving the performance of multimedia databases.
ACM CSUR, 33(3), 2001.

[4] C. Böhm and H.-P. Kriegel. Dynamically optimizing
high-dimensional index structures. In Proc. EDBT,
2000.

[5] J. Do and J. M. Patel. Join processing for flash SSDs:
remembering past lessons. In Proc. DaMoN, pages
1–8, 2009.

[6] V. Gaede and O. Günther. Multidimensional access
methods. ACM CSUR, 30(2):170–231, 1998.

[7] G. Graefe. The five-minute rule twenty years later,
and how flash memory changes the rules. In Proc.
DaMoN, pages 1–9, 2007.

[8] J. Gray and G. Graefe. The five-minute rule ten years
later, and other computer storage rules of thumb.
SIGMOD Rec., 26(4):63–68, 1997.

[9] A. Guttman. R-Trees: A dynamic index structure for
spatial searching. In Proc. SIGMOD, pages 47–57,
1984.

[10] M. Kornacker. High-performance extensible indexing.
In Proc. VLDB, 1999.

[11] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W.
Kim. A case for flash memory SSD in enterprise
database applications. In Proc. SIGMOD, pages
1075–1086, New York, NY, USA, 2008. ACM.

[12] Y. Li, B. He, Q. Luo, and K. Yi. Tree indexing on
flash disks. In Proc. ICDE, pages 1303–1306, 2009.

[13] S. Nath and A. Kansal. FlashDB: dynamic self-tuning
database for NAND flash. In Proc. IPSN, pages
410–419, 2007.

[14] M. A. Shah, S. Harizopoulos, J. L. Wiener, and
G. Graefe. Fast scans and joins using flash drives. In
Proc. DaMoN, pages 17–24, 2008.

[15] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L.
Wiener, and G. Graefe. Query processing techniques
for solid state drives. In Proc. SIGMOD, pages 59–72,
2009.

[16] R. Weber, H. J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In Proc. VLDB,
pages 194–205, 1998.

[17] C.-H. Wu, L.-P. Chang, and T.-W. Kuo. An efficient
B-Tree layer for flash-memory storage systems. In
Proc. RTCSA, pages 17–24, 2003.

[18] C.-H. Wu, L.-P. Chang, and T.-W. Kuo. An efficient
R-Tree implementation over flash-memory storage
systems. In Proc. ACM GIS, pages 17–24, 2003.

