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Abstract— There are abundant scenarios for applications of
similarity search in databases where the similarity of objects
is defined for a subset of attributes, i.e., in a subspace, only.
While much research has been done in efficient support of single
column similarity queries or of similarity queries in the full space,
scarcely any support of similarity search in subspaces has been
provided so far. The three existing approaches are variations
of the sequential scan. Here, we propose the first index-based
solution to subspace similarity search in arbitrary subspaces
which is based on the concepts of nearest neighbor ranking and
top-k retrieval.

I. INTRODUCTION

While much effort has been spent on studying possibilities
to facilitate efficient similarity search in high dimensional data,
scarcely ever the question arose how to support similarity
search when the similarity of objects is based on a subset
of attributes only. Aside from fundamentally studying the
behavior of data structures in such settings, this is a prac-
tically highly relevant question. It could be interesting for
any user to search, e.g., in a database of images represented
by color-, shape-, and texture-descriptions, for objects similar
to a certain image where the similarity is related to the
shape of the motifs only but not to their color or even
the color of the background. An online-store could like to
propose similar objects to a customer where similarity can
be based on different subsets of features. While in such
scenarios, meaningful subspaces can be suggested beforehand
[12], [10], in other scenarios, possibly any subspace could
be interesting. For example, for different queries, different
regions of interest in a picture may be relevant. Since there
are 2D possible subspaces of a D-dimensional data set, it
is practically impossible to provide data structures for each
of these possible subspaces in order to facilitate efficient
similarity search. Another application where efficient support
of subspace similarity queries is required are many subspace
clustering algorithms [14] that rely on searching for clusters
in a potentially large number of subspaces (starting with
all one-dimensional subspaces, many combinations of one-
dimensional subspaces to two-dimensional subspaces and so
on). If efficient support of subspace range queries or subspace
nearest neighbor queries were available, virtually all subspace
cluster approaches could be accelerated considerably. Note that

this problem is essentially different from the feature selection
problem [8], [14].

In this paper, we formally define the problem of subspace
similarity search in Section II. We discuss related work and
the algorithmic sources of inspiration to our new solution
in Section III. We propose an index-based solution using
the ideas of ranking and top-k retrieval in Section IV. An
experimental evaluation of this new method is presented in
Section V. Section VI concludes the paper.

II. SUBSPACE SIMILARITY SEARCH

A common restriction for the small number of approaches
tackling subspace similarity search (see Section III) is that
Lp-norms are assumed as distance measures. Hence we will
also rely on this restriction in the problem definition. In the
following, we assume that DB is a database of N objects in
a D-dimensional space RD and the distance between points
in DB is measured by a distance function dist : RD×RD →
R

+
0 which is one of the Lp-norms (p ∈ [1,∞)). In order

to perform subspace similarity search, a d-dimensional query
subspace will be represented by a D-dimensional bit vector S
of weights, where d weights are 1 and the remaining D − d
weights are 0. Formally:

Definition 1: Subspace
A subspace S of the D-dimensional data space is repre-

sented by a vector S = (S1, . . . , SD) ∈ {0, 1}D, where
Si = 1, if the ith attribute is an element of the subspace,
and Si = 0, otherwise. The number d of 1 entries in S, i.e.,
d =

∑D
i=1 Si is called the dimensionality of S.

For example, in a 3D data space, the subspace representing
the projection on the first and third axis is represented by
S = (1, 0, 1). The dimensionality of this subspace is 2.

A distance measure for a subspace S can then be figured
as weighted Lp-norm where the weights can either be 1 (if
this particular attribute is relevant to the query) or 0 (if this
particular attribute is irrelevant to the query), formally:

Definition 2: Subspace Distance
The distance in a subspace S between two points x, y ∈ DB

is given by:

distS(x, y) = p

√√√√ d∑
i=1

Si |xi − yi|p,



where xi, yi, and Si denote the values of the ith component
of the vectors x, y, and S, respectively.

Accordingly, a subspace ε-range query can be formalized
as:

Definition 3: Subspace ε-Range Query
Given a query object q and a d-dimensional (d ≤ D) query

subspace represented by a corresponding vector S of weights,
a subspace ε-range query retrieves the set RQ(ε, S, q) that
contains all objects from DB for which the following condition
holds:

∀o ∈ RQ(ε, S, q) : distS(o, q) ≤ ε.

The related problem of subspace k nearest neighbor (k-NN)
queries can be formally defined as follows.

Definition 4: Subspace k-NN Query
Given a query object q and a d-dimensional (d ≤ D) query

subspace represented by a corresponding vector S of weights,
a subspace k-NN query retrieves the set NN (k, S, q) that
contains k objects from DB for which the following condition
holds:

∀o ∈ NN (k, S, q),∀o′ ∈ DB \NN (k, S, q) :
distS(o, q) ≤ distS(o′, q).

Some of the rare existing approaches for subspace similarity
search focus on ε-range queries. This is a considerable lack be-
cause k-NN queries are more user friendly and more flexible.
Choosing the number k of results that should be returned by a
query is usually much more intuitive than selecting some query
radius ε. This is even more evident when searching subspaces
of different dimensionality because in this case, also the value
of ε needs to be adjusted to the subspace dimensionality in
order to produce meaningful results. This is a non-trivial task
even for expert users since recall and precision of an ε-sphere
becomes highly sensitive to even small changes of ε depending
on the dimensionality of the data space.

In addition, many applications like data mining algorithms
that further process the results of subspace similarity queries
require to control the cardinality of such query results [14].

III. RELATED WORK

Established index structures (such as [7], [2], [3], [11]) are
designed and optimized for the complete data space where all
attributes contribute to partitioning, clustering etc. For these
data structures, the space of queries facilitated by the index
structure must be fixed prior to the construction of the index
structure.

While the results of research on such index structures
designed for one single query space are abundant [17], so
far there are only three methods addressing the problem of
subspace similarity search, implicitly or explicitly. All three
are variations of the sequential scan. We review these methods
below in Section III-A

The solution to subspace similarity search we are proposing
in this paper is based on the ad hoc combination of one-
dimensional index structures. The combination technique is
algorithmically inspired by top-k queries on a number of

different rankings of objects according to different criteria.
We review these techniques below in Section III-B.

A. Adaptations of the Sequential Scan for Subspace Similarity
Search

BOND [4] is essentially also a search strategy for the full-
dimensional space enhancing the sequential scan. The basic
idea is to use a column store, sort the columns according to
their potential impact on distances and prune later columns
if their impact becomes too small to change the query result.
By the design of this method, subspace queries can be implic-
itly facilitated with the same architecture. However, BOND
requires certain properties of a data set which restricts the
application considerably. In particular, since one application
scenario of BOND are histogram data, in the basic approach
the length of each data vector is assumed to be normalized to
1. Relaxing this condition, an extension of the basic approach
assumes the unit hypercube [0, 1]D as the data space. In this
extension, still the length of each vector is required for pruning
columns with low impact. This length is precomputed for
the full-dimensional data space and materialized in a separate
table. For any subspace query, the potential impact of columns
not contributing to the subspace can be set to 0 in advance.
However, the pruning power based on the precomputed length
of the vector will deteriorate for subspace queries with lower
subspace dimensionality.

The first approach addressing the problem of subspace
similarity search explicitly is presented in [13]. There, the
authors propose an adaptation of the VA-file [19] to the
problem of subspace similarity search. The basic idea of this
approach is to split the original VA-file, into D partial VA-
files, where D is the data dimensionality, i.e. we get one
file for each dimension containing the approximation of the
original full-dimensional VA-file in that dimension. Based on
the information of the partial VA-files, upper and lower bounds
of the true distance between data objects and the query are
derived. Subspace similarity queries are processed by scanning
only the relevant files in the order of relevance, i.e. the files
are ranked by the selectivity of the query in the corresponding
dimension. As long as there are still candidates that cannot
be pruned or reported using the upper and lower distance
bounds, the next ranked file is read to improve the distance
approximations or (if all partial VA-files have been scanned)
the exact information of the candidates accessed to refine the
exact distance.

Another approach to the problem is proposed in [15], al-
though only ε-similarity range queries are supported. The idea
is to derive lower and upper bounds for distances based on the
average minimal and maximal impact of a possible range of
d dimensions, d ∈ [dmin, dmax]. The bounds are computed in
a preprocessing step for a couple of pivot points. To optimize
the selection of pivot points, also a distribution of possible
values for ε is required. The lower and upper bounds w.r.t. all
pivot points are annotated to each database object. Essentially,
this approach allows to sequentially scan the database reading



only the information on lower and upper bounds and to refine
the retrieved candidates in a postprocessing step.

B. Top-k Queries

The subspace similarity problem addressed in this paper is
closely related to the top-k query problem. Let us assume
that we have a set of objects that are ranked according to
m different score functions (e.g. different rankings for m
different attributes). The objective of a top-k query is to
retrieve the k objects with the highest combined (e.g. average)
score. In our scenario, if we assume the objects are ranked
for each dimension according to the distance to the query
object, respectively, we can apply top-k methods to solve
subspace k-NN queries with the rankings of the given subspace
dimensions.

For the top-k query problem, there basically exist two
modes of access to the data given by the m rankings, the
sequential access (SA) and the random access (RA) [6]. While
the SA mode accesses the data in a sorted way by proceeding
through one of the m rankings sequentially from the top,
the RA mode has random access to the rank of a given
object w.r.t. a given ranking. A naive solution for the given
problem is to sequentially access the data (in SA mode)
according to a specific ranking list, request the scores of the
other attributes in RA mode and compute the combined score,
respectively. Fagin introduced in [5] a more efficient solution
with the assumption that the combined score is built by a
fixed monotone aggregation function. The basic idea is to
access the objects sequentially from different ranking lists in
parallel until at least k objects have been seen in each of
the m ranking lists. A similar access procedure is used in
the threshold algorithm TA proposed in [6] and quite similar
approaches [16], [9]. The common idea of these algorithms is
to determine a threshold from the scores of the last objects seen
in all ranking lists which is used as a stopping criterion for
further data accesses. In addition to the TA algorithm which is
based on both sequential and random access, a variant called
no random access (NRA) is proposed in [6] that applies only
sorted access.

IV. INDEX-BASED SUBSPACE SIMILARITY SEARCH

In the following we propose an index structure for subspace
similarity search adapting the technique of the top-k algorithm
proposed in [6].

A. Data Structures

Our key idea is to vertically decompose the data contained
in DB and organize each dimension separately in an index
Ii (1 ≤ i ≤ D), using the feature value of the dimension as
spatial key and the id of the corresponding object as value. For
this purpose a B+-Tree seems adequate as it is specialized for
indexing one-dimensional data. In this problem, however, it is
even more appropriate to use a (one-dimensional) R*-Tree as
it heuristically tries to minimize the extension of nodes, which
was shown to be important for spatial queries. The used R*-
Tree has the following two modifications:

obj d1 d2 lb ub

data space objectTable

qq2

dim Imin Imax

index bounds

1 0.3 9.0

2 0.0 8.5

L2 0.3 12.4q1

Fig. 1. Initial situation of indexes and objectTable

• Each leaf node has a link to its left and right neighbor.
This relation is well defined since the tree only organizes
a single dimension on which a canonical order is defined.

• Each leaf node stores the values of the facing boundaries
of its two neighbors.

The second data structure needed is a hash table for storing
(possibly incomplete) object information with the object ID
as key. This table is referred to as objectTable. It is used to
store for each object the distance to the query object in each
dimension. If this information is not known, the corresponding
field remains empty. In Figure 1, an example for a two-
dimensional subspace query is shown. In the example, the leaf
nodes (pages) of the two relevant index structures organizing
the objects in the dimensions of the subspace are illustrated
at the borders of the data space. Initially, the objectTable is
empty. Along the fields for distance values for each dimension
in the objectTable, the values for lower and upper bounds
can be computed, using the current information of the index
bounds for the one-dimensional indexes I1 and I2. The
computation of these bounds is detailed in the following.

B. Query Processing

When a subspace query (q, S) arrives, only those indexes
Ii are considered where Si = 1. On these one-dimensional
indexes, we perform incremental nearest neighbor queries
(where qi is the query for Ii). In our setting, a call of getNext()
on the index Ii returns the leaf node closest to the query qi

in dimension i, whose contained objects have not yet been
reported. The challenge is to combine the results of the single
dimensions to a result on the whole subspace. This is done by
the objectTable which is empty at the beginning of the query
process. For each object o which was reported by an index
Ii, an entry in the objectTable is created. If it already exists,
the corresponding entry is updated (i.e., the dimension i of
the object is set to oi). If an object o has not yet been seen
in index Ij , its value in dimension j in the object table is
undefined. The distance between an object o ∈ DB and q in



obj d1 d2 lb ub

0 5 2 94 9 01

data space objectTable

o3 o1 0.5 2.94 9.01

o2 1.0 3.06 9.06

o3 0.4 1.94 8.51

o3

o3 0.4 1.94 8.51

o4 1.0 2.15 8.56

o5 1.5 2.42 8.63
qq2

o1

o

o6
o7

o6 1.0 3.07 9.06

o7 1.9 1.5 2.42 2.42

o2

o8 1.7 2.55 8.67o4
o5

o dim Imin Imax

index bounds
o8

1 2.9 9.0

2 1.9 8.5

q1 L2 3.47 12.4

Fig. 2. Situation after 4 getNext()-calls

the subspace S distS(q, o) can be bounded by:

ubS(q, o) = p

√√√√ d∑
i=1

Si

{
|oi − qi|p ∗
max(|Imin

i − qi|, |Imax
i − qi|)p ∗∗ (1)

where Imin
i and Imax

i are the lower and upper bound of the
data contained in DB in dimension i, which can be obtained
directly from the index Ii as this corresponds to the boundaries
of the root node. It holds that ubS(q, o) ≥ distS(q, o). For the
calculation of ubS(q, o) we distinguish two cases: If object
o has been found in index Ii (*), the exact value in this
dimension can be used. Otherwise (**), the bounds of the data
space have to be used in order to approximate the value in this
dimension. Using Equation 1 and the information contained in
the objectTable, an upper bound for the distance distS(q, o)
can be obtained for each object o ∈ DB. Therefore it is also
possible to calculate an upper bound for the distance of the
kth-nearest neighbor to the query object, which can be used as
pruning distance. The upper bound is recorded in objectTable,
and updated if necessary.

Analogously, a lower bound of the distance to the query for
each object in the objectTable can be obtained:

lbS(q, o) = p

√√√√ d∑
i=1

Si

{
|oi − qi|p ∗
|Inext

i − qi|p ∗∗ (2)

where Inext
i is the position of the query facing boundary of

the page obtained by the next call of getNext() on Ii. Again,
we distinguish the cases where oi has been reported (*) or
where it is undefined at the moment (**). This lower bound is
important for the refinement step of the query algorithm and
it is recorded in objectTable, and updated if necessary.

The pseudo code for a subspace k-nearest-neighbor query
on the dimension merge index is given in Algorithm 1.
Initially, the upper bound of the kth-nearest neighbor distance
(maxKnnDist) is set to infinity. As long as there exists an
object which could have a lower distance than the current
upper bound of the kth-nearest neighbor distance and which
is not in the objectTable, we have to continue the filter step
and thus insert more points in the objectTable. The minimum

Algorithm 1 kNN-Query on Dimension Merge Index
Require: q, S, k, I

1: maxKnnDist := ∞
2: while maxKnnDist ≥ minObjectDistS(q, I) do
3: i = chooseIndex(I)
4: leafNode = Ii.getNextNode(qi)
5: objectTable.insert(leafNode.elements)
6: maxKnnDist = objectTable.getMaxKnnDist(k)
7: end while
8: objectTable.refine()

distance of an object which is not in the objectTable is given
by:

minObjectDistS(q, I) = p

√√√√ d∑
i=1

Simindist(Inext
i , q) (3)

At the point where minObjectDist is bigger than the maxKn-
nDist (as seen in Figure 2 for k = 1), the algorithm enters
the refinement step. Now, no object which is not in the
objectTable, can be part of the result, therefore only objects
contained in the objectTable at this time have to be considered.
In order to keep the number of resolved objects (corresponding
to the number of expensive page accesses) low, we use
the technique for refinement optimal multi step processing,
proposed in [18].

C. Discussion

Algorithm 1 can easily be adapted to ε-range queries. Only
the maxKnnDist has to be set to ε, and need not be updated
(i.e., line 6 is to be omitted). The most important part of
the algorithm considering the performance is the chooseIndex
method. In order for a fast termination of the filter-step it is
necessary to

• find and minimize the upper bound of maxKnnDist and
• increase the minimum distance a page can have

as fast as possible.
We propose three heuristics for choosing the appropriate

index in each step.
The first heuristic (Round-Robin) sequentially chooses the

index in a round robin manner and can be seen as a simple
baseline. The problem with this heuristic is, that it does not
take the data distribution into account. Thus it does not meet
with the two requirements for a fast processing of the filter
step (see above).

The second heuristic, called GlobalMinDist-Heuristic, aims
at the first point: it always chooses the index Ii which has the
closest page to the query qi considering dimension i. As will
be shown in the experimental evaluation, this heuristic yields a
much better performance of the query processing. However the
GlobalMinDist-Heuristic will perform very bad in a subspace
where one dimension has a much larger scale than the other
dimensions. In this setting the GlobalMinDist-Heuristic will
prefer resolving pages from the indexes organizing the dimen-
sions with a small extent, as in these dimensions the mindist



from the query will be very low compared to the dimension
with the high extend. Thus the second requirement is not met,
and a lot of pages get resolved without much information gain.

To overcome this drawback, we propose a third heuristic
which we will refer to as MinScore-Heuristic. For each Index
Ii, we compute the following score

score(Ii) =
|qi − Inext

i |
Imax

i − Imin
i

(4)

and choose the index minimizing score(Ii). This normaliza-
tion prevents the algorithm from preferring dimensions with
small extent.

V. EVALUATION

For our evaluation we used the following two synthetic data
sets and one real world data set:

• UNIFORM: A synthetic data set with 20 dimensions and
100,000 points that are uniformly distributed.

• CLUSTERED: A synthetic data set with 20 dimensions
and 100,000 points that are distributed in 1000 multivari-
ate Gaussian clusters. The means of the Gaussians are
uniformly distributed in the data space.

• FOREST: Forest Cover Type data set, obtained from
the UCI Machine Learning Repository [1]: 581,012 data
points with 10 real-valued attributes, each representing
30 × 30 square meters of a forest region. We used the
first 100,000 points of the data set for our evaluation.

We evaluated the three proposed heuristics Round-Robin
(RR), Global-MinDist (GMD) and MinScore (MS) against the
multi-pivot based structure (MP [15]) for subspace similarity,
which is the latest variant of related approaches and, thus,
can be considered state of the art. As MP is only capable of
answering ε-range queries and it is hard to set a meaningful ε
in an ad-hoc subspace (cf. Section II), we used the k-nearest
neighbor distance obtained by a previous k-NN-query for this
approach. We show results of experiments with varying k and
varying subspace size on the three data sets. We report the
number of page accesses, which is the most objective value
for I/O bound operations.

On the UNIFORM data set (cf. Figure 3), we can observe
the index-based subspace similarity search beating MP. The
different heuristics, however, are not really discriminant. This
is the result to be expected on uniformly distributed data
equally scaled in each attribute, where no heuristic yields
substantial benefits.

The CLUSTERED data set (cf. Figure 4), is easier to
index for both data structures than the UNIFORM data set.
The query performance increases drastically. However the
difference between the three heuristics and MP remains very
similar.

The dimensions of the FOREST data set are very un-
equal scaled. Therefore the mentioned problems of the GMD-
Heuristic become visible (cf. Fig. 5). Here the MS-Heuristic
shows the best performance. An interesting observation can be
seen in Figure 5(c), where the number of page accesses can
even decrease with increasing k. This is due to the fact, that a
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Fig. 3. Page accesses on the UNIFORM data set, varying subspace
dimensionalities.

lower k leads to less refinements in the filter step. Thus, there
is less information in the objectTable (as with a higher value
of k), which can lead to a lower number of refinements in the
refinement step. This effect is very interesting and possibly a
starting point for further studies of new heuristics.

VI. CONCLUSIONS

In this paper, we proposed and studied a new, index-
based solution for supporting k-nearest neighbor queries in
arbitrary subspaces of the original feature space, based on
the concepts of nearest neighbor ranking and top-k retrieval.
In an experimental evaluation on several synthetic and real
data sets, this index-based solution is demonstrated to perform
superior than the most recent competitor. As future work, we
plan to study further heuristics based on our results and to
perform a broad evaluation to study the impact of different
data characteristics on all existing approaches to subspace
similarity search.
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Fig. 4. Page accesses on the CLUSTERED data set, varying subspace
dimensionalities.
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