BeyOND — Unleashing BOND

Thomas Bernecker, Franz Graf, Hans-Peter Kriegel, Christian Ménnig, Arthur Zimek
Institut fir Informatik, Ludwig-Maximilians-Universitat Minchen
Oettingenstrasse 67
80538 Miinchen, Germany

{bernecker,graf kriegel,zimek}@dbs.ifi.Imu.de
moennig@cip.ifi.Imu.de

ABSTRACT

While the abundance of data storage and retrieval systems
is based upon horizontally decomposed data, occasionally
studied vertical decompositions exhibit intriguing advan-
tages but also bear serious disadvantages themselves. Here,
we elaborate on the vertical decomposition technique em-
ployed in BOND [10], facilitating similarity search in high-
dimensional data under certain restrictions. We report on

our advances in overcoming some of the restrictions of BOND.

1. INTRODUCTION

It is common opinion, that similarity search in high-di-
mensional data is inherently difficult. The reasons for this
finding, however, are not that widely agreed upon. For ex-
ample, it has been stated that high-dimensional similarity
search facilitated by partitioning or clustering based data
structures cannot beat the sequential scan [22]. This has
been backed but also relativized by some mainly theoretical
studies [9, 4, 14, 2]. The essence of these studies for research
on data structures is: it depends on the characteristics of the
data distributions whether an index-based method is more
suitable than a sequential scan-based method or vice versa.
This may not seem impressively enlightening. Alas, surpris-
ingly enough, this key message has been neglected in many
research contributions over the last decade, examples being
[1, 17, 5, 16, 11, 3]. Thus, it still appears to be well worth
noting that nearest neighbor search is meaningful if and only
if the nearest neighbor of the arbitrary query object is suffi-
ciently different from its farthest neighbor. This is in general
the case whenever a data set exhibits a natural structure in
clusters or groupings of subsets of data, e.g., when the data
are generated by several different distributions. It is, how-
ever, not well studied which impact the relation of relevant
versus irrelevant attributes in a data space has. How do
data structures behave, if the grouping of data is evident
only in subspaces (built by the “relevant” attributes) of the
original data space whereas “irrelevant” attributes do not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at:

Fifth International Workshop on Ranking in Databases (DBRank 2011).
Copyright 2011.

contribute to discerning the different data groups from each
other. Furthermore, if there exist several clusters within a
data set, some attributes can be relevant for some clusters
(i-e., useful for separation of these clusters) and at the same
time irrelevant for other clusters. These important differen-
tiations have been elaborated recently in 15, 8].

Established index structures [21] are designed and opti-
mized for the complete data space where all attributes con-
tribute to partitioning, clustering etc. For these data struc-
tures, the space of queries facilitated by the index struc-
ture must be fixed prior to the construction of the index
structure. Approaches addressing the problem of subspace
similarity search ezplicitly are [20, 18]. There, the authors
propose an adaptation of the VA-file [22] to the problem
of subspace similarity search. The basic idea of these ap-
proaches is to split the original VA-file into d partial VA-
files, where d is the data dimensionality, i.e. we get one file
for each dimension containing the approximation of the orig-
inal full-dimensional VA-file in that dimension. Based on the
information of the partial VA-files, upper and lower bounds
of the true distance between data objects and the query are
derived. Subspace similarity queries are processed by scan-
ning only the relevant files in the order of relevance, i.e. the
files are ranked by the selectivity of the query in the cor-
respouding dimension. As long as there are still candidates
that cannot be pruned or reported using the upper and lower
distance bounds, the next ranked file is read to improve the
distance approximations or (if all partial VA-files have been
scanned) the exact information of the candidates accessed to
refine the exact distance. Another approach to the problem
is proposed in [19], although only e-similarity range queries
are supported. The idea of this method is based on multi-
ple pivot-points to derive lower and upper bounds for dis-
tances. The bounds are computed in a preprocessing step
for a couple of pivot points. Essentially, this approach allows
to sequentially scan the database reading only the informa-
tion on lower and upper bounds and to refine the retrieved
candidates in a postprocessing step. A bottom-up combina-
tion of one-dimensional indices and a top-down search in a
full-dimensional index structure, restricted according to the
query, are discussed in [7, 6].

As opposed to all these approaches, BOND [10] is essen-
tially also a search strategy for the full-dimensional space
enhancing the sequential scan. It is, however, quite natu-
rally possible to restrict a query to a given subspace, since
the basic idea of BOND is to use a column store (as it might
be known from NoSQL database systems). BOND ranks the
columns according to their potential impact on distances

and prunes later columns if their impact becomes too small
to change the query result. By the design of this method,
subspace queries can be implicitly facilitated with the same
architecture. However, BOND is motivated by the applica-
tion of metrics for image retrieval and, thus, requires certain
properties of a data set which restricts the application con-
siderably:

1. The first metric proposed in BOND is only applicable
to normalized histogram data.

2. Using Euclidean distance, still the length of each vec-
tor is required for pruning columns with low impact.

3. Stricter bounds for the Euclidean distance metric fur-

ther improve the pruning, but require Zipfian distributed

data (like color or gray scale histograms) and a certain
resolve order of the columns in the database.

In this paper, we are specifically interested in extending
BOND by loosening the restrictions of its use for data sets
and by improving the pruning power. In the following, we
will detail BOND and its deficiencies w.r.t. these aspects
(Section 2), before we describe our extensions (Section 3).
We will then demonstrate the improved performance (Sec-
tion 4) and conclude in Section 5.

2. BOND REVISITED

Processing multi-step queries using a filter-refinement frame-

work, traditional index approaches resolve the data of fea-
ture vectors row-wise (horizontally) in order to obtain their
exact representation. The main advantage of BOND is that
feature vectors are resolved column-wise (vertically) so that
the values of a feature vector v are obtained successively.
Thus, the resolved part of the feature vector is known ex-
actly whereas the unresolved part has to be approximated.
This approach is inherently different from traditional tree-
indexing approaches where a feature vector is either com-
pletely approximated or completely available. In order to
avoid possibly unnecessary IO-operations, traditional tree-
indexing techniques aim at avoiding to resolve as many fea-
ture vectors as possible which are not part of the result set.
On the contrary, BOND starts with resolving all feature vec-
tors column by column and tries to approximate the remain-
ing part of the feature vector. As soon as the approximation
yields a sufficiently high pruning power, false candidate fea-
ture vectors can be pruned from the candidate set, so that
the remaining dimensions of these feature vectors need not
be resolved. BOND supports regular k-NN queries on the
full data set as well as on weighted subspaces. Nevertheless,
the pruning bounds deteriorate in case of subspace queries.

The main goal of the pruning statistics used in BOND is to
tighten the approximations of the yet unresolved parts of the
feature vector in order to be able to prune false candidates
from the candidate set as soon as possible before resolving
additional columns for this vector.

In the rest of the paper, we follow the notation of [10],
where ¢ € R? denotes a d-dimensional query vector and
v € R? denotes an arbitrary d-dimensional feature vector
of the database. Furthermore, any database vector v can
be split into a resolved part v~ € R™ and an unresolved
part v € R¥™™, so that v = v~ Uov". The variable m €
[1, d] denotes the amount of columns that have been resolved
so far. The distance S(g,v) between ¢ and v can thus be

approximated by a composition of the exact distance plus
the approximation:

Sappm:v(qy U) = Sl(q_ﬂ’_) + S2(Q+: U+) (1)

Assuming a k-nearest neighbor (k-NN) query, the resulting
distance bounds are then used to refine the candidate set in
a traditional way, where all candidates are pruned if their
lower distance bound is greater than the kth smallest upper
bound. The distance S(q~,v”) between the known parts
of ¢ and v can be computed precisely. Concerning the un-
known part (v"), an approximation for the lower and upper
distance bounds to the query vector ¢ needs to be created.
The computation of S(¢",v") of course depends on whether
the upper or lower bound has to be computed.

The basic approach of BOND uses the application scenario
of histogram data, where the length of each data vector can
safely be assumed to be 1. Relaxing this condition, an exten-
sion of the basic approach assumes the unit hypercube [0, 1]d
as the data space. This extension is based on the Euclidean
distance between the query vector ¢ and the database vec-
tor v and does not rely on any distribution or assumption
of the data set, as it only depends on ¢. Thus, the exact
distance S1 and the upper approximation S between ¢ and
v are derived as follows:

Si(g,v) =) (g —vi)’ (2)
Sa(g,v) =) max{gi, 1 - g}’ > Si(gv) (3)

Using the approximated distance of Eq. 1, the obtained
bounds are:

Supper(@:0) = S1(q”,07) + S2(q",07) > Si(g,v) (4)
SloweT(qv U) = Sl(q_7v_) +0< Sl(q7 ’U) (5)

The advantage of the independence from the data distri-
bution and resolve order is paid with the loss of pruning
power. The weakness of these bounds is obvious, especially
for the lower bound which assumes the distance 0 for the
remaining, unresolved subspace and the upper bound only
takes the query vector into account and does not make any
assumptions on the database vector. A second extension
relies on the precomputed length of each feature vector v,
which is stored in the database additionally to the values of
v, and a skewed Zipfian distribution of the data set. This
method is used as a reference as it provided the best re-
sults in the original paper. In this case, a large number
of distance computations and IO-operations can be saved
compared to the sequential scan. However, the upper and
lower distance bounds computed by this method quickly lose
their pruning power if the data distribution changes. Also
this method strictly requires a certain resolve order of the
columns in the database, which is not optimal in the case
of other distributions or in case of correlated dimensions.
Changing the resolve order however is not an option, be-
cause this would invalidate the proof for the correctness of
the pruning bounds.

3. BEYOND BOND

One of the main limitations of BOND is the dependence
on the data distribution. The distance approximations pro-
posed in [10] work well as long as the data follows a skewed
Zipfian distribution like in the case of color histograms and
if the database columns are resolved in decreasing order of

the query feature values. If either of the conditions is not
fulfilled, BOND quickly degenerates, i.e. the complete data
set needs to be resolved to answer the query. Thus, BeyOND
extends the original idea of BOND in order to supply a query
system that allows an efficient execution of k-NN queries on
data sets that follow an arbitrary or unknown distribution,
so that the following restrictions are removed:

1. BeyOND does not depend on the data distribution,
so any distance metric can be employed that provides
valid upper and lower distance approximations.

2. The values v; of the feature vectors are no more re-
stricted to v; € [0, 1] in each dimension.

3. BeyOND does not rely on a specific resolve order of the
query vector, so more sophisticated resolve techniques
can be applied to further increase the pruning power.

Removing the first and third restriction also disables the
possibility to use the improved distance approximations of
the original work. Thus, we have to start by improving the
weak approximations shown in Equations 4 and 5.

In the following, we describe how BeyOND combines the
concepts of BOND and the VA-file [22] by introducing Sub
Cubes (Section 3.1), supported by minimum bounding rect-
angles (MBRs) for certain sub cubes (Section 3.2), based
on a BOND-style column-store architecture. This way, it is
still possible to resolve the data set in a column wise man-
ner. A restriction that remains in BeyOND, however, is the
embedding into a non-unit equilateral hyper cube, so that
the minimum and maximum values of each dimension need
to be known.

3.1 Sub Cubes

The first extension we propose is to pick up the idea of the
VA-file [22] by splitting the cube once in each dimension. We
thus partition the hyper cube describing the feature space
into 27 pairwise disjunct sub cubes. Each sub cube can
be identified by the according Z-Order ID (Z-ID), which
is stored as a memory-efficient bit-representation. This Z-
ID is stored additionally to the values of each feature vec-
tor. The locations of the split positions in each dimension
are stored in separate arrays, so that quantile splits are also
supported. Assuming that the feature vectors are composed
of 8 byte double values, the memory consumption of a fea-
ture vector increases by a value of [W bytes with s denoting
the amount of split levels. It would also be possible to in-
crease the split level of the cubes even further. Nevertheless,
each additional split also directly increases the size of the Z-
IDs. This leads to a trade-off between additional memory
consumption from larger Z-IDs and tighter approximations
for the upper and lower bounds of the distance computation
due to smaller sub cubes. An evaluation about the impact
of additional split levels is shown in the evaluation (Sec. 4).
Given a Z-ID of a feature vector and the coordinate arrays
containing the split positions, it is a computationally cheap
task to recreate the coordinates of the according sub cube,
so that the MBRs of potentially 2¢ sub cubes need not be
kept in memory but can be quickly recomputed on demand.

The sub cubes provide the advantage that the upper and
lower distance approximations need not be computed w.r.t.
the complete hyper cube that encloses the feature space but
only between the cubes containing the query vector and the

L]
Vi

®
vl V1 S o\ o

(a) No split. (b) One split. (c) Split with MBR.

Figure 1: Improvement of the upper/lower distance
approximation.

feature vectors of the database. Thereby, we need to con-
sider the following two cases: Let Z, and Z, be the Z-IDs of
the query vector g and a vector v of the database.

Z4 = Z, indicates that both ¢ and v share the same sub
cube, so the upper bound of the distance approximation can
be lowered to the borders of this sub cube (Eq. (9)). The
lower distance remains 0 for all unresolved dimensions.

Zq # Z, implies that ¢ and v are located in different
cubes, so the lower distance approximation can be raised
to the minimum distance of ¢ to the sub cube containing v
(Eq. (8)). The upper distance approximation is again com-
puted w.r.t. the bounds of the hyper cube containing v us-
ing Equation (9). Compared to approximating the upper
distance w.r.t. the complete hyper cube, this decreases the
upper bound when both sub cubes share a common plane,
which is the case in d — 2 out of d — 1 cases (cf. Fig. 1(a)
and 1(b)).

=3 max {jai — o= g - el (6)

. 0, if g; € [k, currer]
S5 (q,v) = ¢ 7
2 (q U) Z {mln {|q1 — Cv(;wer| |q _ cuppeT|}2 ()
o)+ S5 (¢ v) = Si(g) (8)
“0T)+ Sa(gt0t) < Si(g,v) (9)

Stower(@,v) = Si(g
Sopper(0:0) = S1(q

where ¢, """ (c 12°") denotes the upper (lower) bound of the
sub cube ¢ containing the feature vector v in dimension i.

3.2 MBR Caching

In high-dimensional data sets that do not cluster strongly,
the majority of the 2¢ sub cubes is occupied by at most one
feature vector. In the few cases that a sub cube is occupied
by more feature vectors, we propose to tighten the approxi-
mation of the sub cubes using MBRs (cf. Fig. 1(c)). There-
fore, we iterate through all sub cubes which are occupied
by more than one feature vector, compute the MBR for the
according set of feature vectors and store this MBR in a pri-
ority queue (PQ) which is sorted in descending order w.r.t.
the ranking function

‘/sub cube * C(M‘d(MBR)
VMmBR

Ff(MBR) = (10)
where card(MBR) denotes the number of feature vectors
contained in the according MBR and V denotes the volume
of the sub cube or MBR.

As the resulting MBRs cannot be derived from any fixed
values similar to the case of the split positions, at least 2

Table 1: Data sets used in the evaluation.

| Name [Cols. [Rows [Distribution
ALOI 27 | 110250 | Zipfian
CLUSTERED 20 | 500000 | 50 clusters
PHOG 110 | 10715 | gradient histograms

d-dimensional coordinates are required to define each MBR,
so that each MBR requires d-16 bytes (again assuming 8 byte
double coordinates). Even though this seems to be a quite
large overhead, an MBR can be shared among all feature
vectors of the respective set. Thus, the memory increase is
reduced to % per feature vector comprised by the
MBR. As the MBR is associated with the respective Z-ID,
not even an additional memory pointer is required for the
feature vector.

In order to define an upper limit for this additional mem-
ory consumption, we limit the size of the MBR queue PQ to
1% of the amount of total feature vectors in the database.
Combined with the ranking function Eq. (10), we ensure
that we hold only a limited amount of MBRs which contain
a large amount of feature vectors on the one hand and also
a significantly smaller volume compared to the surrounding
sub cube on the other hand. This threshold has to be chosen
as a trade-off between pruning power and additional mem-
ory consumption. Alternatively, the threshold can also be
chosen in absolute values if the maximum amount of mem-
ory should be limited. In any case, the threshold should be
chosen low enough so that either all MBRs can be kept in
memory or it should be ensured that only those MBRs are
read from disk that approximate a fairly large amount of
feature vectors, so that the time needed to load the MBRs
is still smaller than resolving the respective feature vectors.

In order to use the tighter approximation provided by the
MBRs, the variables ¢;>“*" and ¢;”**" in Egs. (6) and (7)
need to be filled with the coordinates of the MBR instead
with those of the sub cube, so that this second extension
integrates seamlessly into the computation of the distance
approximations.

4. EXPERIMENTS
4.1 Data Sets

In our experiments, we evaluated the proposed techniques
on three data sets (summarized in Table 1):

First, we used 27-dimensional color histograms extracted
from the ALOI data set [13] comprising 110,250 feature vec-
tors (ALOI). This data set poses the hardest challenge as
BOND is expected to perform best on this data set as the
color histograms follow a Zipfian distribution. Second, we
used a 20-dimensional synthetic clustered data set, compris-
ing 500,000 feature vectors organized in 50 clusters, each
following a 20-dimensional Gaussian distribution (CLUS-
TERED). Finally, we used a data set from the area of med-
ical imaging, containing 10,715 feature vectors with 110 di-
mensions (PHOG). The features were provided from the
work of [12] and represent gradient histograms which were
extracted from medical computer tomography images. The
features were already reduced in dimensionality by apply-
ing a principal component analysis and the dimensions are
ordered by decreasing value of the eigenvalues.

120 000

1 PR APV VY PPV eI O L3 38 0
100 000 ke L-a—T
4eny’ ST S SIF I VN) |
r
o 80000 f
o
g 1
2 60000 !
I
g
2 1
=5
40 000 !
raa"
[
20000 /
_l"
° -2 aa
1 3 5 7 9 11 13 15 17 19 21 23 25 27
Resolved Dimensions
—+—BOND —+—BOND Euclidean —e—-BOND+2level VA+median

~#-BOND+VA+median +-A:-BOND+VA+median+MBR

Figure 2: Pruning power on ALOI.

4.2 Evaluation

In order to measure the impact of the VA-file approach
and the MBR caching, we evaluated the following tests: We
evaluated both distance approximations of the original im-
plementation of BOND using the improved distance approx-
imation (BOND) and the simple approximation (BOND Eu-
clidean). Then we evaluated the contribution of the VA-File-
approach by measuring the pruning power of a 1- and a 2-
level VA-file (BOND+VA +median, BOND-2level VA +median).
Finally, we tested the additional impact by adding the MBR
caching (BOND+VA+{median+MBR).

In our experiments we submitted 50 k-NN (k = 10) queries
to the database and measured the amount of feature vectors
that were pruned after a data column was resolved and the
distance approximations were recomputed. The measure-
ments shown in the Figures 2, 3 and 4 represent the aver-
aged cumulative amount of feature vectors that were pruned
after a column was resolved. The area under the curves can
thus be regarded as the amount of data that does not need
to be resolved from disk, whereas the area above the curve
indicates the amount of data that needs to be taken into ac-
count for further refinement from disk and for computation
of the distance approximations. Thus, better approxima-
tions of the upper and lower distance bounds yield better
pruning power, so that more feature vectors can be pruned
at an early stage of the computation.

In the ideal case, only a few columns have to be resolved
until the k final nearest neighbors remain in the data set.
Also, the final aim of the algorithm is to prune as many
feature vectors as possible at a very early stage of the algo-
rithm so that further data columns of this feature vector do
not have to be resolved.

Comparing the ALOI data set with the other data sets, it
can be seen that the original BOND performs as expected
on histogram-like data sets. Nevertheless, BOND resolves
about half of the data on the CLUSTERED data set and
almost all columns on the PHOG data set. This shows the
strong dependence on the data distribution, which is ad-
dressed in this paper.

In the first step, we proposed to refine the simple Eu-
clidean distance approximation by using the sub cubes that
were derived from the Z-ID which was saved additionally
to the feature vector. While the improvement in the ALOI
data set is clearly visible, the impact on the CLUSTERED

300 000 seiheaclll

250000

» 200000
S
g
>

2 150000
o
c
2

2 100000

50 000

0 -a-% o <
0 2 a4 6 8 10 12 14 16 18 20
Resolved Dimensions
—+—BOND —+—BOND Euclidean —eo—-BOND+2level VA+median

~#-BOND+VA+median +-A:-BOND+VA+median+MBR

Figure 3: Pruning power on CLUSTERED.

10000
8000
2
£
g 6000
-]
o
c
2
S 4000 -
2000
0
0 10 20 30 40 50 60 70 80 90 100 110
Resolved Dimensions
~+—-BOND —+—BOND Euclidean ~o—-BOND+2level VA+median

~m-BOND+VA+median --A'-BOND+VA+median+MBR

Figure 4: Pruning power on PHOG.

Table 2: Table showing the pruning power of the sub
cubes. The columns show the data set, the amount
of splits per dimension and the amount of resolved
columns (in percent), where more than 25%, 50%
and more than 90% of the candidates were pruned.

[Data set [Splits | 25% | 50% | 90% |
ALOI 1 16 (59%) [19 (70%) [23 (85%)
CLUSTER | 1 7(35%) | 8 (40%) | 10 (50%)
PHOG 1 45 (41%) | 58 (53%) | 80 (73%)
ALOI 2 7 (26%) [9 (33%) | 21 (75%)
CLUSTER | 2 1 6% [1 06% [1 (%)
PHOG 2 45 (41%) | 55 (50%) | 79 (72%)

and PHOG data sets is much higher (cf. Table 2, rows 1-3).
Here, the amount of resolved dimensions is lower using the
CLUSTERED and PHOG data sets compared to the ALOI
data set.

The intuitive approach to add more splits per dimen-
sion and thus decrease the size of the sub cubes performs
well with ALOI and CLUSTERED. Nevertheless, the im-
provement with PHOG (cf. Table 2, rows 3-6) is negligible,
while obviously CLUSTERED takes most advantage from
the quadratic growth of additional sub cubes (2¢ — 49),
which poses a very good approximation of the clusters.

Table 3: Table showing the pruning power of Sub
Cubes + MBRs. The columns show the data set,
and the amount of resolved columns (in percent),
where more than 25%, 50% and more than 90% of
the candidates were pruned.

[Data set [25% pruned | 50% pruned | 90% pruned |
ALOI 1 (%) 1 %) | 10 37%)
CLUSTER 1 (5%) 1T (5%) T 5%)
PHOG 37 (34%) | 50 (45%) | 77 (70%)

Table 4: Total amount of data viewed. The columns
show the data set and the amount of data resolved
in case of 1 and 2 splits per dimensions and the
combination of 1 split and cached MBRs.

[Data set [1 split | 2 splits | 1 split + MBR |
ALOI 66.9% 38.3% 7.7%
CLUSTER | 34.1% 1.6% 1.4%
PHOG 52.6% 52.3% 45.4%

The second improvement pre-computes the MBRs in the
case a sub cube contains more than a single feature vector,
the MBR would be small enough and the maximum amount
of MBRs is not reached yet. More sophisticated methods
to determine the maximum amount of MBRs could regard
the vector distribution within the cube, a minimum volume
decrease, etc. In this case, we used 1% of the amount of
feature vectors as a limit for the number of created MBRs
for the sub cubes with the largest volume decrease. Also,
each dimension was just split once. The result can be seen in
the Figures 2, 3 and 4, indicated by the dotted line, and in
Table 3. Using the ALOI data set, the initial pruning power
in dimension 1 is even comparable to the original BOND
method. The CLUSTERED data set performs best as be-
fore, as 98% of the data could be pruned at once. PHOG
again poses the hardest challenge. Yet, there is still an im-
provement compared to the basic sub cube approach (with
1 or 2 splits per dimension).

Table 4 shows the total amount of data that was resolved
from the data set. It can be seen that in case of ALOI
and PHOG, it is more profitable to extend the original idea
of BOND with a 1-level VA-file (1 split per dimension) us-
ing the technique of MBR caching instead of simply adding
more layers (2 or more splits per dimension) which generates
more sub cubes. Using the CLUSTERED data set, there is
almost no difference between the approaches of more splits
and MBR caching. Nevertheless, the solution of a single
split combined with MBRs offers more flexibility regarding
the choice of MBRs and the control of additional memory
consumption than simply adding more splits.

5. CONCLUSION

In this paper, we presented the current state of our work
of extending a technique for vertically decomposed data,
known as BOND [10]. The proposed extensions supply the
vertical decomposition and fast indexing of high-dimensional
feature vectors now even if the data does not follow a cer-
tain distribution. We evaluated our extensions on real-world
data and showed the superior performance compared to the
prior work. For future work, we plan to further evaluate
the trade-off between split level and pruning power as well

as a modified resolve order depending on the query vector.
We plan to develop more sophisticated techniques for the
creation of the MBRs and the limitation of the amount of
pre-computed MBRs. We also aim at finding solutions to
abandon the restriction that the minimum and maximum
values of the feature vectors need to be known in advance.

Acknowledgements
This research has been supported in part by the THESEUS

program in the MEDICO and CTC projects.

They are

funded by the German Federal Ministry of Economics and
Technology under the grant number 01MQ07020. The re-
sponsibility for this publication lies with the authors.

6.
[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES

C. C. Aggarwal. Re-designing distance functions and
distance-based applications for high dimensional data.
ACM SIGMOD Record, 30(1):13-18, 2001.

C. C. Aggarwal, A. Hinneburg, and D. Keim. On the
surprising behavior of distance metrics in high
dimensional space. In Proceedings of the 8th
International Conference on Database Theory
(ICDT), London, UK, 2001.

C. C. Aggarwal and P. S. Yu. On high dimensional
indexing of uncertain data. In Proceedings of the 24th
International Conference on Data Engineering
(ICDE), Cancun, Mezico, 2008.

K. P. Bennett, U. Fayyad, and D. Geiger.
Density-based indexing for approximate
nearest-neighbor queries. In Proceedings of the 5th
ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), San Diego,
CA, 1999.

S. Berchtold, C. Béhm, H. V. Jagadish, H.-P. Kriegel,
and J. Sander. Independent Quantization: An index
compression technique for high-dimensional data
spaces. In Proceedings of the 16th International
Conference on Data Engineering (ICDE), San Diego,
CA, 2000.

T. Bernecker, T. Emrich, F. Graf, H.-P. Kriegel,

P. Kroger, M. Renz, E. Schubert, and A. Zimek.
Subspace similarity search: Efficient k-nn queries in
arbitrary subspaces. In Proceedings of the 22nd
International Conference on Scientific and Statistical
Database Management (SSDBM), Heidelberg,
Germany, 2010.

T. Bernecker, T. Emrich, F. Graf, H.-P. Kriegel,

P. Kroger, M. Renz, E. Schubert, and A. Zimek.
Subspace similarity search using the ideas of ranking
and top-k retrieval. In Proceedings of the 26th
International Conference on Data Engineering
(ICDE) Workshop on Ranking in Databases
(DBRank), Long Beach, CA, 2010.

T. Bernecker, M. E. Houle, H.-P. Kriegel, P. Kroger,
M. Renz, E. Schubert, and A. Zimek. Quality of
similarity rankings in time series. In Proceedings of the
12th International Symposium on Spatial and
Temporal Databases (SSTD), Minneapolis, MN, 2011.
K. Beyer, J. Goldstein, R. Ramakrishnan, and

U. Shaft. When is “nearest neighbor” meaningful? In
Proceedings of the 7th International Conference on
Database Theory (ICDT), Jerusalem, Israel, 1999.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

A. P. de Vries, N. Mamoulis, N. Nes, and M. Kersten.
Efficient k-NN search on vertically decomposed data.
In Proceedings of the ACM International Conference
on Management of Data (SIGMOD), Madison, WI,
2002.

J. Dittrich, L. Blunschi, and M. A. V. Salles. Dwarfs
in the rearview mirror: How big are they really? In
Proceedings of the 34nd International Conference on
Very Large Data Bases (VLDB), Auckland, New
Zealand, 2008.

T. Emrich, F. Graf, H.-P. Kriegel, M. Schubert,

M. Thoma, and A. Cavallaro. CT slice localization via
instance-based regression. In Proceedings of the SPIE
Medical Imaging 2010: Image Processing (SPIE), San
Diego, CA, volume 7623, page 762320, 2010.

J. M. Geusebroek, G. J. Burghouts, and A. Smeulders.
The Amsterdam Library of Object Images.
International Journal of Computer Vision,
61(1):103-112, 2005.

A. Hinneburg, C. C. Aggarwal, and D. A. Keim. What
is the nearest neighbor in high dimensional spaces? In
Proceedings of the 26th International Conference on
Very Large Data Bases (VLDB), Cairo, Egypt, 2000.
M. E. Houle, H.-P. Kriegel, P. Kroger, E. Schubert,
and A. Zimek. Can shared-neighbor distances defeat
the curse of dimensionality? In Proceedings of the
22nd International Conference on Scientific and
Statistical Database Management (SSDBM),
Heidelberg, Germany, 2010.

H. Jin, B. C. Ooi, H. T. Shen, C. Yu, and A. Y. Zhou.
An adaptive and efficient dimensionality reduction
algorithm for high-dimensional indexing. In
Proceedings of the 19th International Conference on
Data Engineering (ICDE), Bangalore, India, 2003.

N. Katayama and S. Satoh. Distinctiveness-sensitive
nearest-neighbor search for efficient similarity retrieval
of multimedia information. In Proceedings of the 17th
International Conference on Data Engineering
(ICDE), Heidelberg, Germany, 2001.

H.-P. Kriegel, P. Kroger, M. Schubert, and Z. Zhu.
Efficient query processing in arbitrary subspaces using
vector approximations. In Proceedings of the 18th
International Conference on Scientific and Statistical
Database Management (SSDBM), Vienna, Austria,
2006.

X. Lian and L. Chen. Similarity search in arbitrary
subspaces under Lp-norm. In Proceedings of the 24th
International Conference on Data Engineering
(ICDE), Cancun, Mezico, 2008.

W. Miiller and A. Henrich. Faster exact histogram
intersection on large data collections using inverted
VA-files. In Proceedings of the 3rd International
Conference on Image and Video Retrieval (CIVR),
Dublin, Ireland, 2004.

H. Samet. Foundations of Multidimensional and
Metric Data Structures. Morgan Kaufmann, San
Francisco, 2006.

R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In Proceedings of
the 24th International Conference on Very Large Data
Bases (VLDB), New York City, NY, 1998.

