

BeyOND – Unleashing BOND

Thomas Bernecker, Franz Graf, Hans-Peter Kriegel,

Christian Moennig and Arthur Zimek

Ludwig-Maximilians-Universität München (LMU) Munich, Germany http://www.dbs.ifi.lmu.de {bernecker, graf, kriegel, zimek}@dbs.ifi.lmu.de moennig@cip.ifi.lmu.de

1. Background

- Motivation: k-nearest neighbor search in high-dimensional databases
- BOND revisited

2. Introducing BeyOND

- Filtering objects via distance approximations
- Sub Cubes, MBRs

3. Experimental Evaluation

4. Conclusions

2

• Similarity search in high-dimensional space is

☺ important in cases of images, e-commerce, etc.⊗ slow

- The suitability of index-based solutions depends on the data distribution
- Open question: relevant vs. irrelevant attributes
- Similarity search in subspaces:
 - Fix query attributes beforehand
 - Use multiple pivot points to derive upper and lower bounds
 - Process data vertically to reduce the high-dimensional space

BOND Revisited (1)

- BOND^[1]: k-nearest neighbor search on high-dimensional data
 - Resolves feature vectors (FVs) column-wise
 - Ranking of columns w.r.t. relevance
 - Pruning of columns using a branch-and-bound approach
 - Resolved part is known exactly
 - Unresolved part has to be approximated
 - Resolving stops when approximation is "good enough"
 - Support of subspace queries
 - Distance metrics:
 - Histogram intersection (uncorrelated dimensions)
 - Euclidean distance

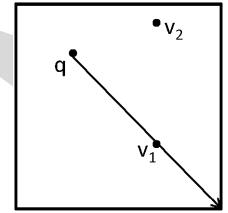
[1] de Vries, Mamoulis, Nes, Kersten: *Efficient k-NN Search On Vertically Decomposed Data* (SIGMOD'02)

- Restrictions of BOND:
 - 1. The approach works only on Zipfian distributed data.
 - 2. The feature values are normalized to [0,1] in each dimension.
 - The proposed bounds are loose. The validity of stricter bounds (Bond advanced) depends on a certain resolve order of the columns.

- Notation:
 - query vector q, database vector v
 - Splitting of v: resolved part v^- , unresolved part $v^+ \Rightarrow v = v^- \cup v^+$
- Approximated distance: $S_{approx}(q,v) = S_1(q^-,v^-) + S_2(q^+,v^+)$
 - Resolved part: $S_1(q^-, v^-) = \sum_{i=1}^{\infty} (q_i^- v_i^-)^2$
 - Unresolved part: $S_2(q^+, v^+) = \sum_{i=1}^{i} \max\{q_i^+, 1 q_i^+\}^2 \ge S_1(q^+, v^+)$
- Distance bounds:

$$S_{upper}(q,v) = S_1(q^-,v^-) + S_2(q^+,v^+) \ge S_1(q,v)$$

$$S_{lower}(q, v) = S_1(q^-, v^-) + 0 \le S_1(q, v)$$



- Benefits of BeyOND:
 - 1. Independence of the data distribution.
 - 2. No restriction to a normalized data space.
 - 3. No specific resolve order of the dimensions is needed. \odot

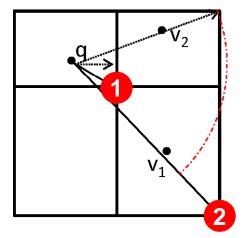
 \Rightarrow Price: Distance approximations are no more suitable! \otimes

- Solution: Combining the idea of BOND with well-known techniques:
 - VA-file (data space partitioning)
 - MBR (Minimum Bounding Rectangle) approximation (data organizing)
- ⇒ Remaining restriction: minimum/maximum values for each dimension need to be known ⊗

Sub Cubes (1)

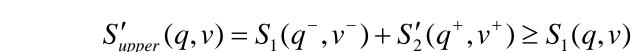
- First extension: VA-file^[2] with one split
 - $\Rightarrow 2^d$ sub cubes
 - \Rightarrow Addressing via Z-IDs

 \Rightarrow Improved bounds based on the close / far sub cube borders $c_{v_i}^{lower}$ 1 and $c_{v_i}^{upper}$ 2



- Memory-efficient representation (8 bytes \rightarrow 1 bit)
 - Sub cube need not be kept in main memory
- Split positions stored in one separate array per dimension
- Dependence on split level:
 - FV: 8 bytes per dimension
 - s splits: s / 8 bytes (s bits) per dimension

[2] Weber, Schek, Blott. A Quantitative Analysis and Performance Study for Similarity Search Methods in High-Dimensional Spaces (VLDB'98)



DATABASE

SYSTEMS GROUP

BeyOND – Unleashing BOND

New distance bounds:

• Old distance bounds:

$$S_{upper}(q, v) = S_1(q^-, v^-) + \sum_i \max\{q_i^+, 1 - q_i^+\}^2 - S_{lower}(q, v) = S_1(q^-, v^-) + 0$$

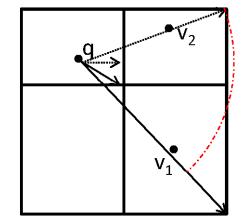
• Approximations of unresolved dimensions:

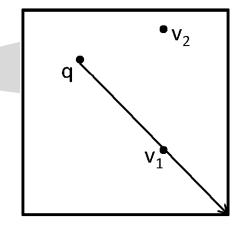
$$S_{2}'(q^{+},v^{+}) = \sum_{i} \max \left\{ q_{i}^{+} - c_{v_{i}^{+}}^{lower} \Big|, \Big| q_{i}^{+} - c_{v_{i}^{+}}^{upper} \Big| \right\}^{2}$$

$$S_{2}''(q^{+},v^{+}) = \sum_{i} \left\{ \begin{array}{c} 0 & \text{if } q_{i}^{+} \\ \min \left\{ q_{i}^{+} - c_{v_{i}^{+}}^{lower} \Big|, \Big| q_{i}^{+} - c_{v_{i}^{+}}^{upper} \Big| \right\}^{2} & else \end{array}$$

 $S'_{lower}(q,v) = S_1(q^-,v^-) + S''_2(q^+,v^+) \le S_1(q,v)$

if $q_i^+ \in \left[c_{v_i^+}^{lower}, c_{v_i^+}^{upper}\right]$





- 8 byte coordinates: memory increase is limited to $\frac{d \cdot 16}{card(MBR)}$ per feature vector (+ pointer to Z-ID)

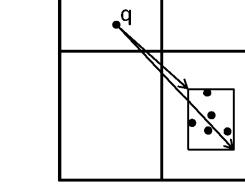
 $f(MBR) = \frac{V_{subcube}}{V_{MBR}} \cdot card(MBR)$

bytes

Dense sub cubes allow a tighter approximation via MBRs

MBR Caching (1)

- Restrict the number of MBRs in order to avoid a memory overhead
- Ranking function for MBRs:



Most sub cubes are (very) sparse, i.e. occupied by at most

•

one FV

MBR Caching (2)

- Limit the number of MBRs to 1% of the database size
- Threshold as a trade-off between pruning power and additional memory consumption
- Requirements:
 - Either all MBRs can be kept in memory,
 - or the time for loading the MBRs is less than the time for resolving the respective FVs.
- Adaption of the equations for lower and upper bounds

- Evaluated approaches:
 - 1. BondAdvanced (stricter bounds, but resolve order dependent)
 - 2. Bond (original bounds)*
 - 3. Sequential*
 - 4. Beyond-1 (1 split)
 - 5. BeyondMBR-1 (1 split + MBRs)
 - 6. Beyond-2
 - 7. BeyondMBR-2
 - 8. Beyond-3*
 - 9. BeyondMBR-3*

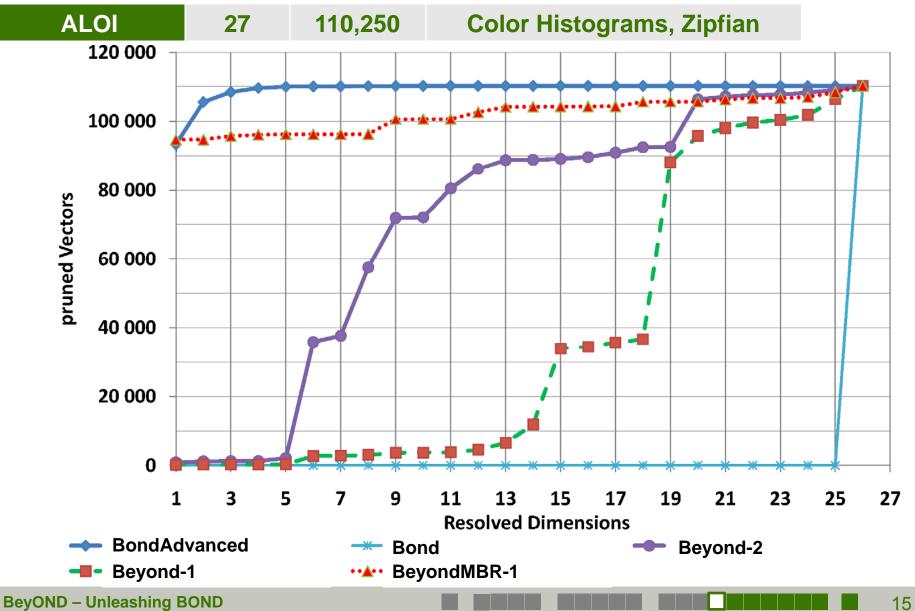
• Data set descriptions:

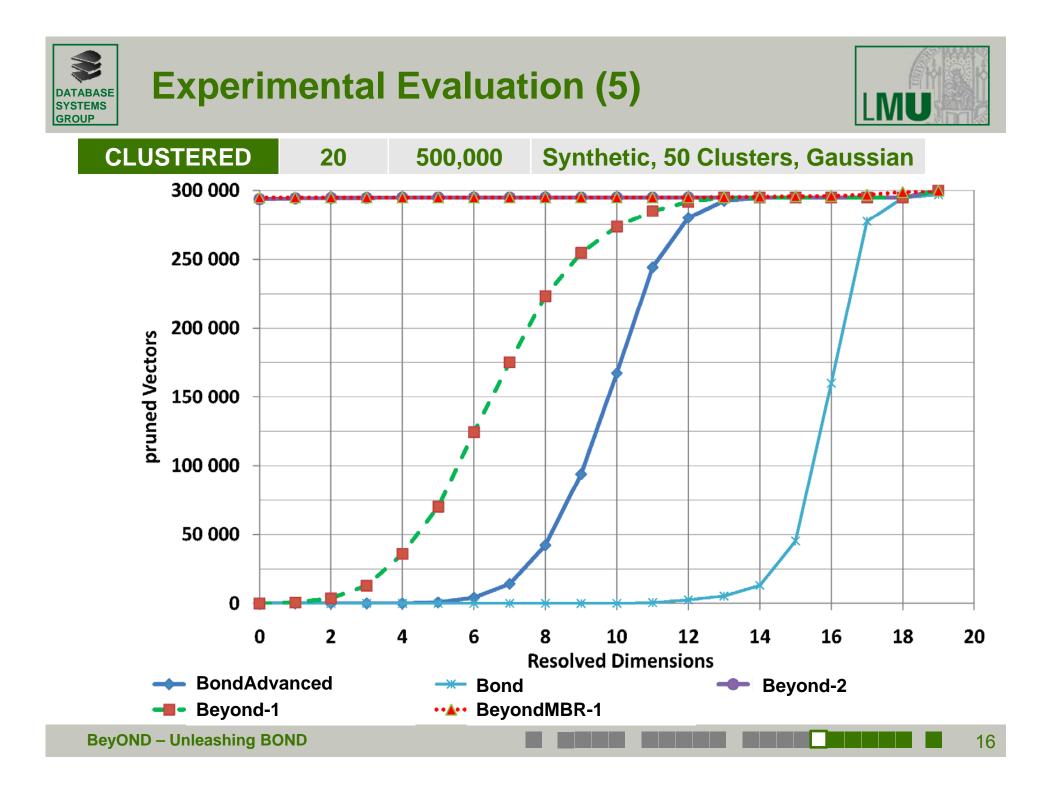
Data Set	Dims	Size	Туре
ALOI	27	110,250	Color Histograms, Zipfian
CLUSTERED	20	500,000	Synthetic, 50 Clusters, Gaussian
PHOG ^[3]	110	10,715	CT Histograms, PCA'ed
SIFT ^[4]	133	335,583	Image Features

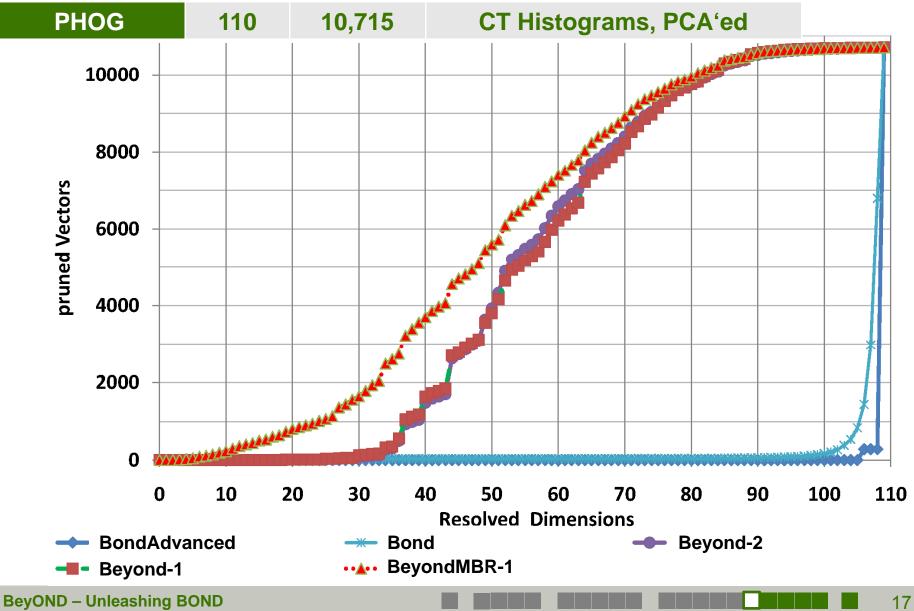
[3] Graf, Kriegel, Schubert, Poelsterl, Cavallaro. 2D Image Registration in CT Images Using Radial Image Descriptors (MICCAI'11)

[4] Lowe. Distinctive Image Features from Scale-Invariant Keypoints (Int. Journal of Computer Vision, 2004)

- Experimental settings:
 - 50 k-nearest neighbor queries
 - k = 10
 - Averaged cumulative number of pruned FVs after resolving a column
 - AUC: data not resolved
 - AOC: data resolved for refinement







Experimental Evaluation (7)

Pruning power (Sub cubes)

Data Set	Splits	25% pruned	50% pruned	90% pruned
ALOI	1	16 (59%)	19 (70%)	23 (85%)
CLUSTERED	1	7 (35%)	8 (40%)	10 (50%)
PHOG	1	45 (41%)	58 (53%)	80 (73%)
ALOI	2	7 (26%)	9 (33%)	21 (75%)
CLUSTERED	2	1 (5%)	1 (5%)	1 (5%)
PHOG	2	45 (41%)	55 (50%)	79 (72%)

Pruning power	Data Set	Splits	25% pruned	50% pruned	90% pruned
(Sub cubes +	ALOI	1	1 (4%)	1 (4%)	10 (37%)
MBRs)	CLUSTERED	1	1 (5%)	1 (5%)	1 (5%)
,	PHOG	1	37 (34%)	50 (45%)	77 (70%)

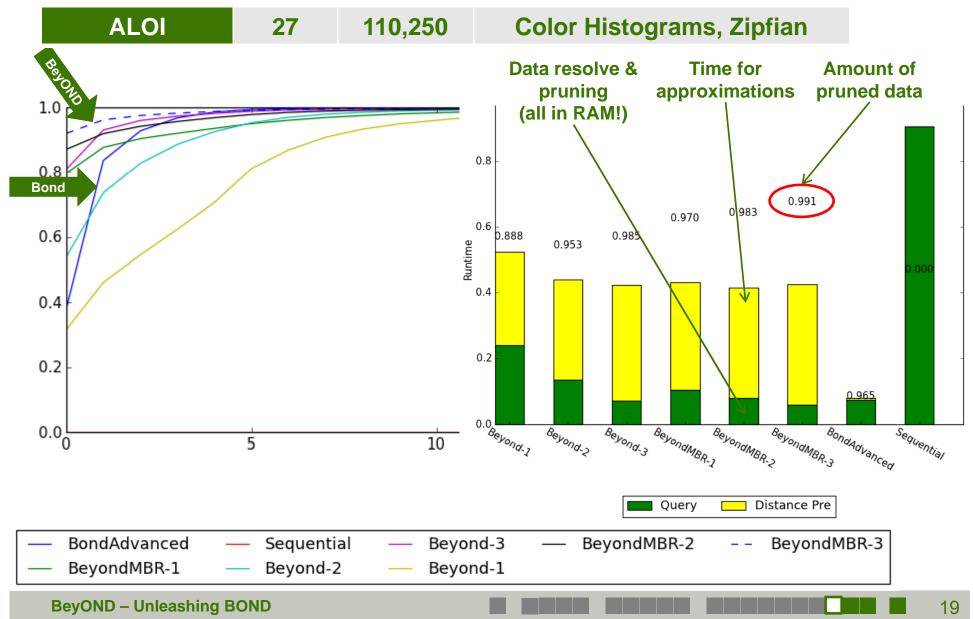
#	# Accessed				
	columns				

essed	Data Set	1 split	2 splits	1 split + MBR
umns	ALOI	66.9%	38.3%	7.7%
	CLUSTERED	34.1%	1.6%	1.4%
	PHOG	52.6%	52.3%	45.4%

Experimental Evaluation (8)

DATABASE

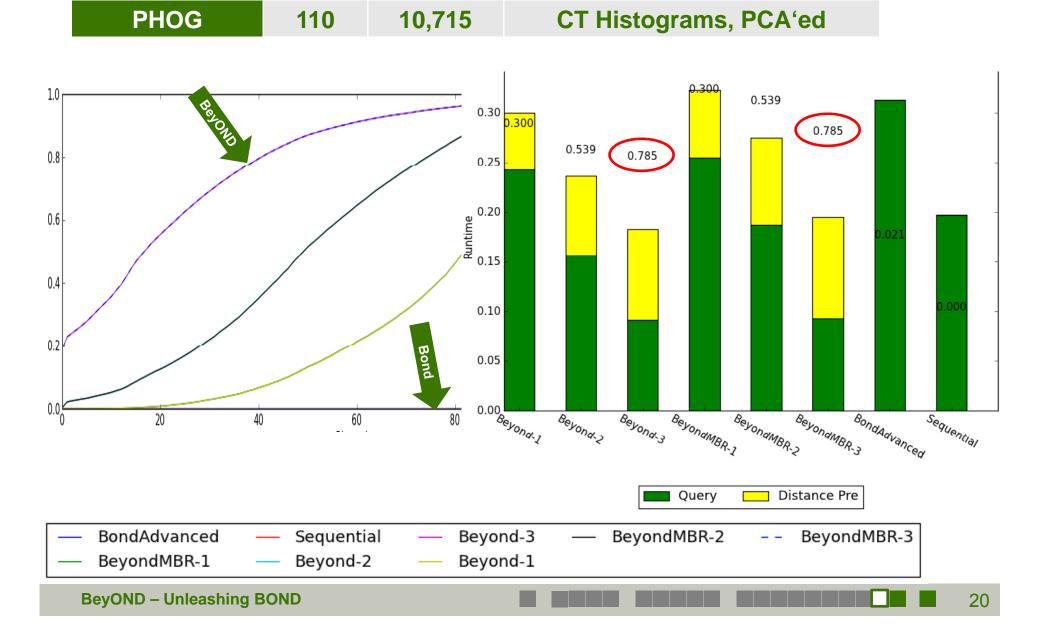
SYSTEMS GROUP

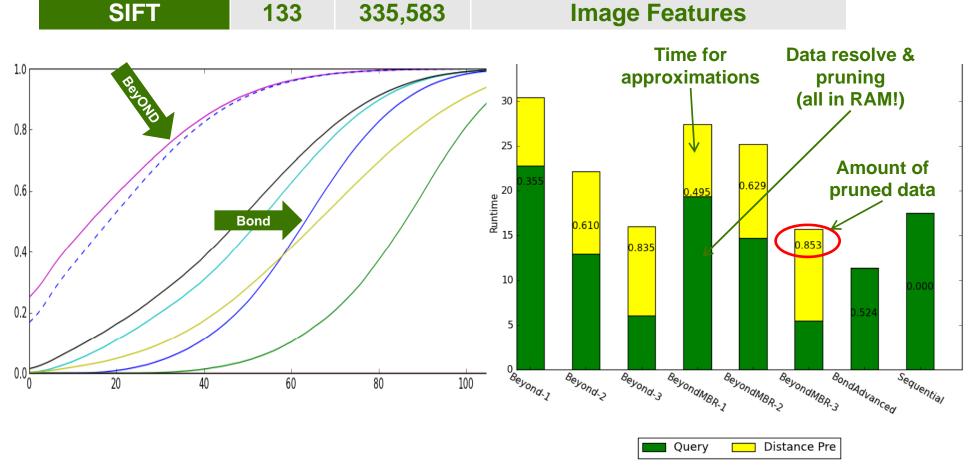


Experimental Evaluation (9) DATABASE

2

SYSTEMS GROUP





BondAdvanced
 BeyondAdvanced
 Beyond-2
 Beyond-3
 BeyondMBR-2
 BeyondMBR-2
 BeyondMBR-2
 BeyondMBR-3

- Removed restrictions...
 - 1. Independence of the data distribution.
 - 2. No restriction to a normalized data space.
 - 3. No specific resolve order of the dimensions is needed.
- Combination of relevant techniques...
 - VA-file-based partitioning of the data space
 - MBR caching
- Still open issues...
 - Trade-off: split level vs. pruning power
 - Trade-off: MBR memory consumption vs. pruning power
 - Sophisticated techniques for the creation of the MBRs
 - Overcome the restriction that the vector lengths have to be known

Thank you for listening!

Any questions?

http://www.dbs.ifi.lmu.de/cms/Publications/BeyOND_-_Unleashing_BOND