
 Towards Effective and Efficient Distributed Clustering

Eshref Januzaj Hans-Peter Kriegel Martin Pfeifle

Institute for Computer Science
University of Munich

Oettingenstr. 67, 80538 Munich, Germany
{januzaj, kriegel, pfeifle} @dbs.informatik.uni-muenchen.de

Abstract

Clustering has become an increasingly important task
in modern application domains such as marketing and pur-
chasing assistance, multimedia, molecular biology as well
as many others. In many of these areas, the data are origi-
nally collected at different sites. In order to extract informa-
tion out of these data, they are brought together and then
clustered. In this paper, we propose a different approach.
We cluster the data locally and extract suitable representa-
tives out of these clusters. These representatives are sent to
a global server site where we restore the complete clustering
based on the local representatives. This approach is very ef-
ficient, because the local clustering can be carried out
quickly and independently from each other. Furthermore, we
have low transmission cost, as the number of transmitted
representatives is much smaller than the cardinality of the
complete data set. Based on this small number of represen-
tatives, the global clustering can be done very efficiently.
For both the local and the global clustering, we use a density
based clustering algorithm. The combination of both the lo-
cal and the global clustering forms our new DBDC (Density
Based Distributed Clustering) algorithm. In our experimen-
tal evaluation, we will show that we do not have to sacrifice
the clustering quality in order to gain an efficiency advan-
tage if we use distributed clustering.

1. Introduction

Knowledge Discovery in Databases (KDD) tries to iden-
tifying valid, novel, potentially useful, and ultimately under-
standable patterns in data. Traditional KDD applications re-
quire full access to the data which is going to be analyzed. All
data has to be located at that site where it is scrutinized. Now-
adays, large amount of heterogeneous, complex data reside
on different, independently working computers which are
connected to each other via local or wide area networks
(LANs or WANs). Examples comprise distributed mobile
networks, sensor networks or supermarket chains where
check-out scanners, located at different stores, gather data
unremittingly. Furthermore, big companies such as Daimler-
Chrysler have some data which is located in Europe and
some data in the US. Those companies have various reasons

why the data cannot be transmitted to a central site, e.g. lim-
ited bandwidth or security aspects.

The transmission of huge amount of data from one site to
another central site is in some application areas almost im-
possible. In astronomy, for instance, there exist several high
sophisticated space telescopes spread all over the world.
These telescopes gather data unceasingly. Each of them is
able to collect 1GB of data per hour [Han 00] which can only
difficultly be transmitted to a central site and be analyzed
centrally there. On the other hand, it is possible to analyze the
data locally where it has been generated and stored. Aggre-
gated information of this locally analyzed data can then be
sent to a central site where the information of different local
sites are combined and analyzed. The result of the central
analysis may be returned to the local sites, so that the local
sites are able to put their data into a global context.

The requirement to extract knowledge out of distributed
data, without a prior unification of the data, created the rather
new research area of Distributed Knowledge Discovery in
Databases (DKDD). In this paper, we will present an ap-
proach where we first cluster the data locally. Then we ex-
tract aggregated information about the locally created clus-
ters and sent this information to a central site. We use the
following terms interchangeably for this locally created in-
formation: local model, local representatives, or aggregated
information of the local site. The transmission cost are mini-
mal as the representatives are only a fraction of the original
data. On the central site we “reconstruct” a global clustering
based on the representatives and sent the result back to the
local sites. The local sites update their clustering based on the
global model, e.g. merge two local clusters to one or assign
local noise to global clusters.

The paper is organized as follows, in Section 2, we
shortly review the related work in the area of clustering. In
Section 3, we present a general overview of our distributed
clustering algorithm, before we go into more detail in the fol-
lowing sections. In Section 4, we describe our local density
based clustering algorithm. In Section 5, we discuss how we
can represent a local clustering by relatively little informa-
tion. In Section 6, we describe how we can restore a global
clustering based on the information transmitted from the lo-
cal sites. Section 7 covers the problem how the local sites

Workshop on Clustering Large Data Sets (ICDM2003), Melbourne, FL, 2003

update their clustering based on the global clustering infor-
mation. In Section 8, we present the experimental evaluation
of our new efficient DBDC (Density Based Distributed Clus-
tering) approach and show that its use does not go along with
a deterioration of quality. We conclude the paper in Section 9
with a short summary and a few remarks on future work.

2. Related Work

In this section, we first review and classify the most common
clustering algorithms. In Section 2.2, we shortly look at par-
allel clustering which has some affinity to distributed cluster-
ing.

2.1. Clustering

Given a set of objects with a distance function on them
(i.e. a feature database), an interesting data mining question
is, whether these objects naturally form groups (called clus-
ters) and what these groups look like. Data mining algo-
rithms that try to answer this question are called clustering
algorithms. In this section, we classify well-known cluster-
ing algorithms according to different categorization
schemes.

Clustering algorithms can be classified along different,
independent dimensions. One well-known dimension cate-
gorizes clustering methods according to the result they pro-
duce. Here, we can distinguish between hierarchical and
partitioning clustering algorithms [JMF 99] [JD 88]. Parti-
tioning algorithms construct a flat (single level) partition of a
database D of n objects into a set of k clusters such that the
objects in a cluster are more similar to each other than to
objects in different clusters. Hierarchical algorithms decom-
pose the database into several levels of nested partitionings
(clusterings), represented for example by a dendrogram, i.e.
a tree that iteratively splits D into smaller subsets until each
subset consists of only one object. In such a hierarchy, each
node of the tree represents a cluster of D.

Another dimension according to which we can classify
clustering algorithms is from an algorithmic view. Here we
can distinguish between optimization or distance based algo-
rithms and density based algorithms. Distance based meth-
ods use the distances between the objects directly in order to
optimize a global criterion function. In contrast, density
based algorithms apply a local cluster criterion. Clusters are
regarded as regions in the data space in which the objects are
dense, and which are separated by regions of low object den-
sity (noise).

An overview of this classification scheme together with
a number of important clustering algorithms is given in
Figure 1. As we do not have the space to cover them here, we
refer the interested reader to [JMF 99] were an excellent
overview and further references can be found.

2.2. Parallel Clustering

Distributed Data Mining (DDM) is a dynamically growing
area within the broader field of KDD. Generally, many algo-
rithms for distributed data mining are based on algorithms
which were originally developed for parallel data mining. In
[KC 00] some state-of-the-art research results related to
DDM are resumed.
Whereas there already exist algorithms for distributed and
parallel classification and association rules [AS 96]
[HKK 97] [KHS 97] [KPHJ 00] [SAM 96] [SHKS 98]
[ZHA 98] [ZPOL 97], there do not exist many algorithms for
parallel and distributed clustering.

In [XJK 99] a parallel version of DBSCAN [EKSX 96]
and in [DM 99] a parallel version of k-means [Har 75] were
introduced. Both algorithms start with the complete data set
residing on one central sever and then distribute the data
among the different clients. For instance, in the case of paral-
lel DBSCAN, the data are organized at the server site within
an R*-tree [BKSS 90]. This preprocessed data is then distrib-
uted among the clients which communicate with each other
via message passing.

In this paper, we propose another approach based on dis-
tributed clustering which inherently can not carry out a pre-
processing step on the server site as the data is not centrally
available. Furthermore, we abstain from an additional com-
munication between the various client sites as we assume
that they are independent from each other.

3 Distributed Clustering
Distributed Clustering assumes that the objects to be

clustered reside on different sites. Instead of transmitting all
objects to a central site (also denoted as server) where we can
apply standard clustering algorithms to analyze the data, the
data are clustered independently on the different local sites
(also denoted as clients). In a subsequent step, the central site
tries to establish a global clustering based on the local mod-
els, i.e. the representatives. This is a very difficult step as

partitioning hierarchical

density based

optimization/

distance based

k-means
k-modes
k-medoid
PAM
CLARA
CLARANS

single link
CURE
BIRCH

WaveCluster
DenClue
Clique
DBSCAN

Grid Clustering
Bang Clustering
OPTICS
Chameleon

classification according to the result

classification
according
to the
algorithm

Figure 1: Classification scheme for clustering algorithms

there might exist dependencies between objects located on
different sites which are not taken into consideration by the
creation of the local models. In contrast to a central clustering
of the complete dataset, the central clustering of the local
models can be carried out much faster.

Distributed Clustering is carried out on two different
levels, i.e. the local level and the global level (cf. Figure 2).
On the local level, all sites carry out a clustering indepen-
dently from each other. After having completed the cluster-
ing, a local model is determined which should reflect an op-
timum trade-off between complexity and accuracy. Our
proposed local models consist of a set of representatives for
each locally found cluster. Each representative is a concrete
object from the objects stored on the local site. Furthermore,
we augment each representative with a suitable ε−range val-
ue. Thus, a representative is a good approximation for all ob-
jects residing on the corresponding local site which are con-
tained in the ε−range around this representative.

Next the local model is transferred to a central site,
where the local models are merged in order to form a global
model. The global model is created by analyzing the local
representatives. This analysis is similar to a new clustering of
the representatives with suitable global clustering parame-
ters. To each local representative a global cluster-identifier is
assigned. This resulting global clustering is sent to all local
sites.

If a local object belongs to the ε-neighborhood of a glo-
bal representative, the cluster-identifier from this representa-
tive is assigned to the local object. Thus, we can achieve that
each site has the same information as if their data were clus-
tered on a global site, together with the data of all the other
sites.

To sum up, distributed clustering consists of four differ-
ent steps (cf. Figure 2):

 • Local clustering

 • Determination of a local model

 • Determination of a global model, which is based on all lo-
cal models

 • Updating of all local models

In Figure 3, the different steps of our DBDS algorithm
are depicted for an example consisting of 8700 points distrib-
uted over 4 different sites (cf. Figure 3a). In Figure 3b, the
extracted local representatives are depicted. This number is
much smaller than the number of all objects. In Figure 3c the
union of all local representatives from all 4 sites is shown.
Based on these united representatives, the DBDC algorithm
determines a global clustering which is visually equivalent to
the result produced by a DBSCAN algorithm applied to all
8700 points at once (cf. Figure 3d).

4. Local Clustering

As the data are created and located at local sites we clus-
ter them there. The remaining question is “which clustering
algorithm should we apply”. K-means [Har 75] is one of the
most commonly used clustering algorithms, but it does not
perform well on data with outliers or with clusters of differ-
ent sizes or non-globular shapes [ESK 03]. The single link
agglomerative clustering method is suitable for capturing
clusters with non-globular shapes, but this approach is very
sensitive to noise and cannot handle clusters of varying den-
sity [ESK 03]. We used the density-based clustering algo-
rithm DBSCAN [EKSX 96], because it yields the following
advantages:

 • DBSCAN is a very efficient and effective clustering al-
gorithm.

 • There exist an efficient incremental version, which would
allow incremental clusterings on the local sites. Thus,
only if the local clustering changes “considerably”, we
have to transmit a new local model to the central site
[EKS+ 98].

 • DBSCAN is rather robust concerning outliers.

 • DBSCAN can be used for all kind of metric data spaces
and is not confined to vector spaces.

 • DBSCAN can easily be implemented.

We slightly enhanced DBSCAN so that we can easily
determine the local model after we have finished the local
clustering. All information which is comprised within the lo-
cal model, i.e. the representatives and their corresponding ε−
ranges, is computed on-the-fly during the DBSCAN run.

In the following we describe DBSCAN in a level of de-
tail which is indispensable for understanding the process of
extracting suitable representatives (cf. Section 5).

Figure 2: Distributed Clustering

4.1. The Density-Based Partitioning Clustering-Al-
gorithm DBSCAN

The key idea of density-based clustering is that for each
object of a cluster the neighborhood of a given radius (Eps)
has to contain at least a minimum number of objects
(MinPts), i.e. the cardinality of the neighborhood has to ex-
ceed some threshold. Density-based clusters can also be sig-
nificantly generalized to density-connected sets. Density-
connected sets are defined along the same lines as density-
based clusters.

We will first give a short introduction to DBSCAN. For
a detailed presentation of DBSCAN see [EKSX 96].

Definition 1 (directly density-reachable)
An object p is directly density-reachable from an object q
wrt. Eps and MinPts in the set of objects D if

 • p ∈ NEps(q) (NEps(q) is the subset of D contained in the
Eps-neighborhood of q.)

 • Card(NEps(q)) ≥ MinPts.

Definition 2 (density-reachable)
An object p is density-reachable from an object q wrt. Eps
and MinPts in the set of objects D, denoted as p >D q, if there
is a chain of objects p1, ..., pn, p1 = q, pn = p such that pi ∈ D
and pi+1 is directly density-reachable from pi wrt. Eps and
MinPts.

Figure 3: Screenshots from DBDC algorithm
a) 4 local sites b) representatives of the local sites c) representatives of all local sites

d) left: result from a reference clustering with DBSCAN where MinPts = 4 and Eps = 15
right: result yielded by DBDC where MinPts = 4 and Epslocal = 15

a)

c)

b)

d)

Density-reachability is a canonical extension of direct
density-reachability. This relation is transitive, but it is not
symmetric. Although not symmetric in general, it is obvious
that density-reachability is symmetric for objects o with
Card(NEps(o)) ≥ MinPts. Two “border objects” of a cluster
are possibly not density-reachable from each other because
there are not enough objects in their Eps-neighborhoods.
However, there must be a third object in the cluster from
which both “border objects” are density-reachable. There-
fore, we introduce the notion of density-connectivity.

Definition 3 (density-connected)
An object p is density-connected to an object q wrt. Eps and
MinPts in the set of objects D if there is an object o ∈ D such
that both, p and q are density-reachable from o wrt. Eps and
MinPts in D.

Density-connectivity is a symmetric relation. Figure 4
illustrates the definitions on a sample database of objects
from a 2-dimensional vector space. Note however, that the
above definitions only require a distance measure and will
also apply to data from a metric space.

A cluster is defined as a set of density-connected objects
which is maximal wrt. density-reachability and the noise is
the set of objects not contained in any cluster.

Definition 4 (cluster)
Let D be a set of objects. A cluster C wrt. Eps and MinPts in
D is a non-empty subset of D satisfying the following condi-
tions:

 • Maximality: ∀ p,q ∈ D: if p ∈ C and q >D p wrt. Eps and
MinPts, then also q ∈ C.

 • Connectivity: ∀ p,q ∈ C: p is density-connected to q wrt.
Eps and MinPts in D.

Definition 5 (noise)
Let C1,..., Ck be the clusters wrt. Eps and MinPts in D. Then,
we define the noise as the set of objects in the database D not
belonging to any cluster Ci, i.e. noise = {p ∈ D | ∀ i: p ∉ Ci}.

We omit the term “wrt. Eps and MinPts” in the follow-
ing whenever it is clear from the context. There are different
kinds of objects in a clustering: core objects (satisfying con-
dition 2 of definition 1) or non-core objects otherwise. In the

following, we will refer to this characteristic of an object as
the core object property of the object. The non-core objects
in turn are either border objects (no core object but density-
reachable from another core object) or noise objects (no core
object and not density-reachable from other objects).

The algorithm DBSCAN was designed to efficiently dis-
cover the clusters and the noise in a database according to the
above definitions. The procedure for finding a cluster is
based on the fact that a cluster as defined is uniquely deter-
mined by any of its core objects: first, given an arbitrary ob-
ject p for which the core object condition holds the set {o |
o >D p} of all objects o density-reachable from p in D forms
a complete cluster C and p ∈ C. Second, given a cluster C and
an arbitrary core object p ∈ C, C in turn equals the set {o |
o >D p} (c.f. lemma 1 and 2 in [EKSX 96]).

To find a cluster, DBSCAN starts with an arbitrary core
object p which is not yet clustered and retrieves all objects
density-reachable from p. The retrieval of density-reachable
objects is performed by successive region queries which are
supported efficiently by spatial access methods such as R*-
trees [BKSS 90] for data from a vector space or M-trees
[CPZ 97] for data from a metric space.

5. Determination of a Local Model

After having clustered the data locally, we need a small
number of representatives which describe the local clustering
result accurately. We have to find an optimum trade-off be-
tween the following two opposite requirements:

 • We would like to have a small number of representatives.

 • We would like to have an accurate description of a local
cluster.

As the core points computed during the DBSCAN run
contain in its Eps-neighborhood at least MinPts other ob-
jects, they might serve as good representatives. Unfortunate-
ly, their number can become very high, especially in very
dense areas of clusters. In the following, we will introduce
two different approaches for determining suitable represen-
tatives which are both based on the concept of specific core-
points.

Definition 6 (specific core points)
Let C ⊆ D be a cluster wrt. Eps and MinPts. Furthermore, let
CorC ⊆ C be the set of core-points belonging to this cluster.
Then ScorC ⊆ C is called a complete set of specific core
points of C iff the following conditions are true.

 • ScorC ⊆ CorC
 • ∀ si,sj ∈ ScorC: si ∉ NEps(sj)
 • ∀ c ∈ CorC ∃ s ∈ ScorC: c ∈ NEps(s)

There might exist several different sets ScorC which ful-
fill Definition 6. Each of these sets ScorC usually consists of
several specific core points which can be used to describe the
cluster C.

p

qo

p

q

Figure 4: Density-reachability and density-connectivity

p density-reachable from q

q not density-reachable from p

p and q density-connected

to each other by o

The small example in Figure 5 shows that if A is an ele-
ment of the set of specific core-points Scor, point B can not
be included in Scor as it is located within the Eps-neighbor-
hood of A. C might be contained in Scor as it is not in the Eps-
neighborhood of A. On the other hand, if B is within Scor, A
and C are not contained in Scor as they are both in the Eps-
neighborhood of B. The actual processing order of the ob-
jects during the DBSCAN run determines a concrete set of
specific core points. For instance, if the core-point B is visit-
ed first during the DBSCAN run, the core-points A and C are
not included in Scor.

In the following, we introduce two local models called,
REPScor (cf. Section 5.1) and REPk-Means (cf. Section 5.2)
which both create a local model based on the complete set of
specific core points.

5.1. Local Model: REPScor

In this model, we represent each local cluster Ci by a
complete set of specific core points ScorCi

. If we assume that
we have found n clusters Ci,..,Cn on a local site k, the local
model LocalModelk is formed by the union of the different
sets .

In the case of density-based clustering, very often sever-
al core points are in the Eps-neighborhood of another core
point. This is especially true, if we have dense clusters and a
large Eps-value. In Figure 5, for instance, the two core points
A and B are within the Eps-range of each other as dist(A, B) is
smaller than Eps.

Assuming core point A is a specific core point, i.e. A ∈
Scor, than B ∉ Scor because of condition 2 in Definition 6. In
this case, point A should not only represent the objects in its
own neighborhood, but also the objects in the neighborhood
of B, i.e. A should represent all point NEps(A) ∪ NEps(B). In
order for A to be a representative for the points NEps(A) ∪
NEps(B), we have to assign a new specific εΑ−range to A with
εΑ = Eps + dist(A,B) (cf. Figure 5). Of course we have to
assign such a specific ε−range to all specific core points,
which motivates the following definition:

Definition 7 (specific ε−ranges)
Let C ⊆ D be a cluster wrt. Eps and MinPts. Furthermore, let
Scor ⊆ C be a complete set of specific core-points. Then we
assign to each s ∈ Scor an εs−range indicating the represent-
ed area of s:

εs:= Eps + max{dist(s,si)|si∈ Cor ∧ si ∈ NEps(s)} .

This specific ε−range value is part of the local model and
is evaluated on the server site to develop an accurate global
model. Furthermore, it is very important for the updating
process of the local objects (cf. Section 7). The specific ε−
range value is integrated into the local model of site k as fol-
lows:

LocalModelk:= .

5.2. Local Model: REPk-Means

This approach is also based on the complete set of spe-
cific core-points. In contrast to the foregoing approach, the
specific core points are not directly used to describe a cluster.
Instead, we use the number |ScorC| and the elements of ScorC
as input parameters for a further “clustering step” with an
adapted version of k-means. For each cluster C, found by
DBSCAN, k-means yields |ScorC| centroids within C. These
centroids are used as representatives.

K-means is a partitioning based clustering method
which needs as input parameters the number m of clusters
which should be detected within a point set M. Furthermore,
we have to provide m starting points for this algorithm, if we
want to find m clusters. We use k-means as follows:

 • Each local cluster C which was found throughout the
original DBSCAN run on the local site forms a point set
M which is again clustered with k-means.

 • We ask k-means to find |ScorC| (sub)clusters within C, as
all specific core points together yield a suitable number
of representatives. Each of the centroids found by k-
means within cluster C is then used as a new representa-
tive. Thus the number of representatives for each cluster
is the same as in the foregoing approach.

 • As initial starting points for the clustering of C with k-
means, we use the set of complete specific core points
ScorC.

Again, let us assume that there are n clusters C1,..,Cn on
a local site k. Furthermore, let ci,1..ci,|ScorCi

| be the |ScorCi
| cen-

troids found by the clustering of Ci with k-means. Let Oi,j ⊆
Ci be the set of objects which are assigned to the centroid ci,j.
Then we assign to each centroid ci,j an εci,j

−range, indicating
the represented area by ci,j, as follows:

εci,j
 := max{dist(o,ci,j)|o ∈ Oi,j }.

Finally, the local model, describing the n clusters on site
k, can be formed analogously to the foregoing section as fol-
lows:

LocalModelk:= .

ScorCi

Figure 5: Specific core points and specific ε−range

εΑ

s εs(,) s S∈ corCi
{ }

i 1..n∈
∪

ci j, εci j,
,()

j 1.. ScorCi
∈

∪
i 1..n∈

∪

6 Determination of a Global Model
Each local model LocalModelk consists of a set of mk

pairs, consisting of a representative r and a ε−range value εr.
The number m of pairs transmitted from each site k is deter-
mined by the number n of clusters Ci found on site k and the
number |ScorCi

| of specific core-points for each cluster Ci as
follows:

.

Each of these pairs (r, εr) represent several objects which
are all located in Nεr

(r), i.e. the εr-neighborhood of r. We re-
gard all objects contained in Nεr

(r) as a own cluster. To put it
another way, each specific local representative forms a cluster
on its own. Obviously, we have to check whether it is possible

to merge two or more of these clusters together. These merged
local representatives together with the unmerged local repre-
sentatives form the global model. Thus, the global model con-
sist of clusters consisting of one or of several local representa-
tives.

To find such a global model, we use the density based
clustering algorithm DBSCAN again. We would like to cre-
ate a clustering similar to the one produced by DBSCAN if
applied to the complete dataset with the local parameter set-
tings. As we have only access to the set of all local represen-
tatives, the global parameter setting has to be adapted to this
aggregated local information. Thus, the question at issue is:
“What are suitable MinPtsglobal- and Epsglobal-parameters for
a global DBSCAN run on the server site?”.

m ScorCi
i 1..n=

∑=

Figure 6: Determination of a global model
a) local clusters b) local representatives c) determination of a global model with Epsglobal =2Epslocal

a)

b)

c)

As we assume that all local representatives form a clus-
ter on their own it is enough to use a MinPtsglobal-parameter
of 2. If 2 representatives, stemming from the same or differ-
ent local sites, are density connected to each other wrt.
MinPtsglobal and Epsglobal, then they belong to the same global
cluster.

The question for a suitable Epsglobal value, is much more
difficult. Obviously, Epsglobal should be greater than the Eps-
parameter Epslocal used for the clustering on the local sites.
For high Epsglobal values, we run the risk of merging clusters
together which do not belong together. On the other hand, if
we us small Epsglobal values, we might not be able to detect
clusters belonging together. We think that the Epsglobal pa-
rameter should be tunable by the user dependent on the εR
values of all local representatives R. If these εR values are
generally high it is advisable to use a high Epsglobal value. On
the other hand, if the εR values are low, a small Epsglobal value
is better. The default value which we propose is equal to the
maximum value of all εR values of all local representatives R.
This default Epsglobal value is generally close to 2Epslocal.

In Figure 6, an example for Epsglobal=2Epslocal is depict-
ed. In Figure 6a the independently detected clusters on site
1,2 and 3 are depicted. The cluster on site 1 is represented by
two representatives R1 and R2, whereas the clusters on site 2
and site 3 are only represented by one representative as
shown in Figure 6b. Figure 6c (VII) illustrates that all 4 clus-
ters from the different sites belong to one large cluster. Figure
6c (VIII) makes clear that an Epsglobal equal to Epslocal is in-
sufficient to detect this global cluster. On the other hand, if
we use an Epsglobal parameter equal to 2Epslocal the 4 repre-
sentatives are merged together to one large cluster (cf. Figure
6c (IX)).

Instead of a user defined Epsglobal parameter, we could
also use a hierarchical density based clustering algorithm,
e.g. OPTICS [ABKS 99], for the creation of the global mod-
el. This approach would enable the user to visually analyze
the hierarchical clustering structure for several Epsglobal-pa-
rameters without running the clustering algorithm again and
again. We refrain from this approach because of several rea-
sons. First, the relabeling process discussed in the next sec-
tion would become very tedious. Second, a quantitative eval-
uation (cf. Section 8) of our DBDC algorithm is almost
impossible. Third, the incremental version of DBSCAN al-
lows us to start with the construction of the server model after
the first representatives of any local model come in. So we do
not have to wait for all clients to have transmitted their com-
plete local models.

7 Updating of the Local Clustering based on

the Global Model
After having created a global clustering, we sent the

complete global model to all client sites. The client sites rel-
able all objects located on their site independently from each

other. On the client site, two former independent clusters
may be merged together due to this new relabeling. Further-
more, points which were formerly assigned to local noise are
now part of a global cluster. If a local point o is in the εr−
range of a representative r, o is assigned to the same global
cluster than r.

Figure 7 depicts an example for this relabeling process.
The points R1 and R2 are the local representatives. Each of
them forms a cluster on its own. Point A and B have been
classified as noise. Representative R3 is a representative
stemming from another site. As R1, R2 and R3 belong to the
same global cluster all Objects from the local clusters
Cluster 1 and Cluster 2 are assigned to this global cluster.
Furthermore, the objects A and B are assigned to this global
cluster as they are within the εR3−neighborhood of R3, i.e. A,
B ∈ NεR3

(R3). On the other hand, object C still belongs to
noise as C∉ NεR3

(R3).
These updated local client clusterings help the clients to

answer server questions efficiently, e.g. questions as “give
me all objects on your site which belong to the global cluster
4711”.

8. Experimental Evaluation

We evaluated our DBDC-approach based on different
artificial 2-dimensional point sets. The point sets were gener-
ated on each local site independently. For the central refer-
ence clustering we used the union of the local point sets. As
we suppose that this central clustering is optimal, we mea-
sure the quality of our DBDC-approach w.r.t. the central clus-
tering. We varied both the number of points and the number
of client sites. We compared DBDC to a single run of DB-
SCAN on all data points.

In order to evaluate our DBDC-algorithm, we carried
out the local clusterings sequentially. We collected all repre-
sentatives of all local runs, and then applied a global cluster-
ing on these representatives. For all these steps we always
used the same computer. The overall runtime was formed by
adding the time needed for the global clustering to the maxi-
mum time needed for the local clusterings. All experiments
were performed on a Pentium III/700 machine.

Figure 7: : Relabeling of the local clustering

As there exist no general quality measure which helps to
evaluate the quality of a distributed clustering, we defined
one on our own. Let us assume that we have n points, distrib-
uted over k sites. Our DBDC-algorithm, assigned each of
these n points, either to a cluster or to noise. We compare the
result of our DBDC-algorithm to a central clustering of the n
points with DBSCAN. Then we decide for each point x
whether it was assigned correctly. We have to distinguish the
following 5 cases where Ci and Cj denote different clusters:

Let nright ≤ n be the number of points which were as-
signed correctly. Then, the quality q of our DBDC-algorithm
is computed as q = nright / n.

In Figure 8 the overall runtime of our DBDC-algorithm
is compared to the runtime of a central clustering of all points
with DBSCAN. It is shown that our DBDC-approach outper-
forms a central clustering by far. Figure 8a shows that espe-
cially for large data sets our new approach performs much
better. For instance for a point set consisting of 100,000
points, the DBDC outperforms the global DBSCAN algo-
rithm for more than one order of magnitude. Figure 8b shows
that an increasing number of sites goes hand in hand with an
enhanced efficiency. From an efficiency point of view, our
DBDC approach performs much better than a single cluster-
ing algorithm applied to the complete dataset.

Figure 9 shows that we do not have to sacrifice quality
for this much better runtime behavior. We can see that the
quality is above 98% for varying numbers of client sites and
for both local models. Furthermore, the quality q does not
considerably worsen with an increasing number of sites.

9. Conclusions and Future Work

In this paper, we first motivated the need of distributed
clustering algorithms. As, to the best of our knowledge, there
exist no algorithms which tackle this complex problem, we
have developed an algorithm on our own which is based on
the density-based clustering algorithm DBSCAN. We clus-
tered the data locally and independently from each other and
transmitted only aggregated information about the local data
to a central server. This aggregated information consists of a
set of pairs, comprising a representative r and a ε−range val-
ue εr, indicating the validity area of the representative. Based
on these local models, we reconstruct a global clustering.
This global clustering was carried out by means of standard
DBSCAN where the two input-parameters Epsglobal and
MinPtsglobal were chosen such that the information contained
in the local models are processed in the best possible way.
The created global model is sent to all clients, which use this
information to relable their own objects.

In an experimental evaluation we showed that our new
distributed clustering approach yields almost the same clus-
tering as a central clustering on all data. On the other hand,
we showed that we have an enormous efficiency advantage
compared to a classical clustering carried out on all data. Fur-

Clustering Case
distributed central

quality

1 x ∈ Ci x ∈ Ci right

2 x ∈ Noise x ∈ Noise right

3 x ∈ Ci x ∈ Cj wrong

4 x ∈ Ci x ∈ Noise wrong

5 x ∈ Noise x ∈ Ci wrong

0

2500

5000

7500

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#client sites

ru
n

ti
m

e
 [

se
c]

distributed clustering
(203000 data points)

0

2500

5000

7500

10000

0 50000 100000 150000 200000

#data points

ru
n

ti
m

e
[s

ec
]

central clustering

distributed clustering
(4 sites)

Figure 8: Overall runtime for central and distributed clustering
a) dependent on the data size b) dependent on the number of client sites

a) b)

90
91
92
93
94
95
96
97
98
99

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#client sites

q
u

al
it

y
q

 [
%

]

 REPScor
 REPK-Means

Figure 9: Quality of distributed clustering
(203000 data points)

thermore, due to technical, economical or security reasons, it
is often not possible to transmit all data from different local
sites to one central server site and then cluster this data there.
Therefore, we have to apply a distributed clustering algo-
rithm, which can be very efficient and effective as shown in
this paper.

Nevertheless, there are a lot of open problems which
yield an enormous potential for further research activities:
 • Can we produce precise error-estimations?
 • How should we handle “local noise”? Let us assume that

there exist more than MinPts-objects which are within an
ε-distance to each other and distributed over different
sites. If no site contains more than MinPts of these ob-
jects, a distributed algorithm might not detect a cluster.

 • Do there exist better local models? Can we describe a lo-
cal clustering with less points but more accurate? Such a
local model should not be complex, because we want to
form a global model out of these local models efficiently.
As there are a lot of application ranges which would ben-

efit from an efficient and effective distributed clustering al-
gorithm, we think the open problems related to distributed
clustering are worth to be carefully investigated.

Acknowledgments
We would like to thank Konstantin Kirsch for imple-

menting parts of the code. For more details, we refer the in-
terested reader to [Kir 03].

References
[ABKS 99] Ankerst M., Breunig M. M., Kriegel H.-P., Sander J.:

"OPTICS: Ordering Points To Identify the Clustering
Structure", Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data (SIGMOD’99), Philadelphia, PA,
1999, pp. 49-60.

[AS 96] Agrawal R., Shafer J. C.: "Parallel mining of associa-
tion rules: Design, implementation, and experience"
IEEE Trans. Knowledge and Data Eng. 8 (1996) 962-
969

[BKSS 90] Beckmann N., Kriegel H.-P., Schneider R., Seeger B.:
"The R*-tree: An Efficient and Robust Access
Method for Points and Rectangles", Proc. ACM SIG-
MOD Int. Conf. on Management of Data (SIG-
MOD’90), Atlantic City, NJ, ACM Press, New York,
1990, pp. 322?331.

[CPZ 97] Ciaccia P., Patella M., Zezula P.: "M-tree: An Efficient
Access Method for Similarity Search in Metric
Spaces", Proc. 23rd Int. Conf. on Very Large Data
Bases, Athens, Greece, 1997, pp. 426-435.

[DM 99] Dhillon I. S., Modh Dh. S.: "A Data-Clustering Algo-
rithm On Distributed Memory Multiprocessors", Int.
Conf. on Knowledge Discovery and Data Mining
(SIGKDD 99)

[EKS+ 98] Ester M., Kriegel H.-P., Sander J., Wimmer M., Xu X.:
"Incremental Clustering for Mining in a Data Ware-
housing Environment", VLDB 98

[EKSX 96] Ester M., Kriegel H.-P., Sander J., Xu X.: "A Density-
Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise", Proc. 2nd Int. Conf. on
Knowledge Discovery and Data Mining (KDD’96),
Portland, OR, AAAI Press, 1996, pp.226-231.

[ESK 03] Ertöz L., Steinbach M., Kumar V.: "Finding Clusters
of Different Sizes, Shapes, and Densities in Noisy,
High Dimensional Data", SIAM International Confer-
ence on Data Mining (2003)

[Han 00] Hanisch R. J.: "Distributed Data Systems and Services
for Astronomy and the Space Sciences", in ASP Conf.
Ser., Vol. 216, Astronomical Data Analysis Software
and Systems IX, eds. N. Manset, C. Veillet, D. Crab-
tree (San Francisco: ASP) 2000

[Har 75] Hartigan J. A.: "Clustering Algorithms", Wiley, 1975

[HKK 97] Han E. H., Karypis G., Kumar V.: "Scalable parallel
data mining for association rules" In: SIGMOD
Record: Proceedings of the 1997 ACM-SIGMOD
Conference on Management of Data, Tucson, AZ,
USA. (1997) 277-288

[JD 88] Jain A. K., Dubes R.C.: "Algorithms for Clustering
Data", Prentice-Hall Inc., 1988.

[JMF 99] Jain A. K., Murty M. N., Flynn P. J.:"Data Clustering:
A Review", ACM Computing Surveys, Vol. 31, No. 3,
Sep. 1999, pp. 265-323.

[Kir 03] Konstantin Kirsch: “Dichte-basiertes Clustering
verteilter Daten”. Diploma Thesis, 2003.

[KC 00] Kargupta H., Chan P. (editors) : "Advances in Distrib-
uted and Parallel Knowledge Discovery", AAAI/MIT
Press, 2000

[KHS 97] Kargupta H., Hamzaoglu I., Stafford B.: "Scalable,
Distributed Data Mining Using An Agent Based
Architecture" Proceedings of Knowledge Discovery
And Data Mining (1997). Eds: D. Heckerman, H.
Mannila, D. Pregibon and R. Uthurusamy. AAAI
Press. 211-214.

[KPHJ 00] Kargupta H., Park B., Hershberger D., Johnson E.:
"Collective Data Mining: A New Perspective Toward
Distributed Data Mining" Advances in Distributed
and Parallel Knowledge Discovery (2000). Eds: Hillol
Kargupta and Philip Chan. MIT/AAAI Press

[SAM 96] Shafer J., Agrawal R., Mehta M.: "A scalable parallel
classifier for data mining" In: Proc. 22nd International
Conference on VLDB, Mumbai, India. (1996)

[SHKS 98] Srivastava A., Han E. H., Kumar V., Singh V.: "Paral-
lel formulations of decision-tree classification algo-
rithms" In: Proc. 1998 International Conference on
Parallel Processing. (1998)

[XJK 99] Xu X., Jäger J., H.-P. Kriegel.: "A Fast Parallel Clus-
tering Algorithm for Large Spatial Databases", Data
Mining and Knowledge Discovery, 3, 263-290
(1999), Kluwer Academic Publisher

[ZHA 98] Zaki M. J., Ho C.T., Agrawal R.: "Parallel classifica-
tion for data mining on shared-memory multiproces-
sors" Technical report, IBM Almaden Research
Center (1998)

[ZPOL 97] Zaki M. J., Parthasarathy S., Ogihara M., Li W.: "New
parallel algorithms for fast discovery of association
rule" Data Mining and Knowledge Discovery, 1, 343-
373 (1997)

