
Effective Decompositioning of Complex Spatial Objects into Intervals
Hans-Peter Kriegel, Peter Kunath, Martin Pfeifle, Matthias Renz

University of Munich, Germany, {kriegel, kunath, pfeifle, renz}@dbs.informatik.uni-muenchen.de

ABSTRACT
In order to guarantee efficient query processing together
with industrial strength, spatial index structures have to be
integrated into fully-fledged object-relational database
management systems (ORDBMSs). A promising way to
cope with spatial data can be found somewhere in between
replicating and non-replicating spatial index structures. In
this paper, we use the concept of gray intervals which helps
to range between these two extremes. Based on the gray in-
tervals, we introduce a cost-based decomposition method
for accelerating the Relational Interval Tree (RI-tree). Our
approach uses compression algorithms for the effective
storage of the decomposed spatial objects. The experimen-
tal evaluation on real-world test data points out that our
new concept outperforms the RI-tree by up to two orders of
magnitude with respect to overall query response time and
secondary storage space.

KEY WORDS
Relational Indexing, Spatial Objects, Decompositioning.

1. Introduction
The efficient management of spatially extended objects has
become an enabling technology for many novel database
applications. As a common and successful approach, spa-
tial objects can conservatively be approximated by a set of
voxels, i.e. cells of a grid covering the complete data space.
By means of space filling curves, each voxel can be encod-
ed by a single integer and, thus, an extended object is repre-
sented by a set of enumerated voxels. These voxels can fur-
ther be grouped together to intervals, which can be
organized by spatial index structures.

By expressing spatial region queries as intersections of
these spatial primitives, vital operations for two-dimen-
sional GIS and environmental information systems [11] can
be supported. Efficient and scalable database solutions are
also required for three-dimensional CAD applications to
cope with rapidly growing amounts of dynamic data. Such
applications include the digital mock-up of vehicles and
airplanes, virtual reality applications, e.g. haptic simula-
tions in virtual product environments. For these applica-
tions suitable index structures, which guarantee efficient
spatial query processing, are indispensable.

For commercial use, a seamless and capable integra-
tion of temporal and spatial indexing into industrial-
strength databases is essential. Fortunately, a lot of tradi-
tional database servers have evolved into Object-Relational
Database Management Systems (ORDBMS). This means
that in addition to the efficient and secure management of

data ordered under the relational model, these systems now
also provide support for data organized under the object
model. Object types and other features, such as binary large
objects (BLOBs), external procedures, extensible indexing,
user-defined aggregate functions and query optimization,
can be used to build powerful, reusable server-based com-
ponents.

An important new requirement for large spatial objects
is a high approximation quality which is primarily influ-
enced by the resolution of the grid covering the data space.
A promising way to cope with high resolution spatial data
may be found somewhere in between replicating and non-
replicating spatial index structures. In the case of replicat-
ing access methods, e.g. the Relational Interval Tree [9], the
number of the simple spatial primitives used to approxi-
mate the objects can become very high, resulting in a stor-
age and query processing overhead. On the other hand,
many of the non-replicating access methods, e.g. R-trees
[5], use simple spatial primitives such as rectilinear hyper-
rectangles for one-value approximations of extended ob-
jects. Although providing the minimal storage complexity,
one-value approximations of spatially extended objects of-
ten are far too coarse. In many GIS applications, objects
feature a very complex and fine-grained geometry. A non-
replicating storage of such data causes region queries to
produce too many false hits that have to be eliminated by
subsequent filter steps. For such applications, the accuracy
can be improved by decomposing the objects.

1.1 Related Work
In this section, we will shortly discuss different aspects re-
lated to an effective decompositioning of complex spatial
objects for efficient relational indexing.

Complex Spatial Objects. Gaede pointed out that the
number of voxels representing a spatially extended object
exponentially depends on the granularity of the grid ap-
proximation [3]. Furthermore, the extensive analysis given
in [10] and [2] shows that the asymptotic redundancy of an
interval- and tile-based decomposition is proportional to
the surface of the approximated object. Thus, in the case of
large high-resolution parts, e.g. wings of an airplane, the
number of tiles or intervals can become unreasonably high.

Relational Spatial Indexing. A wide variety of access
methods for spatially extended objects has been published
so far. For a general overview on spatial index structures,
we refer the reader to the surveys of Manolopoulos, The-
odoridis and Tsotras [12] or Gaede and Günther [4]. We use
the Relational Interval Tree (RI-tree) in this paper because
it outperforms competing index structures by factors of up

IASTED Int. Conf. on Databases and Applications (DBA'04)

to 4.6 (Relational Quadtree) and 58.3 (Relational R-tree)
according to [9].

In [7], a high resolution indexing approach was pre-
sented which considerably accelerates the RI-tree for high
resolutions. Nevertheless, the authors were only talking
about high resolution spatial data and even in this case they
did not show how to decompose a spatial object. Further-
more, their presented approach for storing the spatial ob-
jects was rather poor, because they used an inefficient com-
pression method.

Decomposition Algorithm. In [14], Kriegel and Schi-
wietz presented an empirically derived root-criterion which
suggests to decompose a polygon consisting of n vertices in

 many index entries. As this root-criterion was de-
signed for 2D polygons and was not based on any analyti-
cal reasoning, it cannot be adapted to complex 3D objects.
In this paper, in contrast, we will present an analytical de-
composition approach which can be used for 2D and 3D
objects.

The remainder of this paper is organized as follows. In
Section 2, we suggest a pragmatic and effective cost-based
decomposition method for gray interval objects, which can
be stored within a spatial index. In Section 3, we present the
empirical results, which are based on two real-world test
data sets of our industrial partners, a German car manufac-
turer and an American plane producer, dealing with high
resolution voxelized CAD data. We resume our work in
Section 4 and close with a few final remarks on future
work.

2. Gray Intervals
Interval sequences, representing high resolution spa-

tially extended objects, often consist of very short intervals
connected by short gaps. Following [6], adjacent intervals
can be grouped together to longer gray intervals (cf.
Figure 1b) in order to improve storage behavior and query
response time.

Definition 1 (gray object interval sequence)
Let id be an object identifier and W = {(l, u) ∈ IN2, l ≤ u} be
the domain of intervals which we call black intervals
throughout this paper. A black interval (l, u) contains all
integers x such that l ≤ x ≤ u. Furthermore, let b1 = (l1, u1),
…, bn = (ln, un) ∈ W be a sequence of intervals with ui + 1 <
li+1 for all i ∈ {1, …, n – 1}. Moreover, let m ≤ n and let i0,
i1, i2, …, im ∈ IN such that 0 = i0 < i1 < i2 < …< im = n holds.
Then, we call Ogray = (id, 〈 , , …,

〉) a gray object interval sequence of cardi-
nality m. If m equals n, we denote Ogray also as a black ob-
ject interval sequence Oblack . We call each of the j = 1, …,
m groups of Ogray a gray interval Igray . If ij-1
+1 equals ij, we denote Igray also as a black interval Iblack .

Intuitively, a gray interval is a covering of one or more
disjoint and nonadjacent black intervals where there is at
least a gap of one integer between adjacent intervals, i.e. it
bridges the gap between black intervals. In the next defini-

tion, we introduce a few useful operators on gray intervals.
In order to clarify these definitions, Figure 1c demonstrates
the values of these operators for a sample set of gray inter-
vals.

Definition 2 (operators on gray intervals)
For any gray interval Igray = 〈(lr ,ur),…, (ls ,us)〉 we define
the following operators:
Length: L (Igray) = us – lr + 1.
Cardinality: C (Igray) = s – r + 1.
Number of Black Cells: Nb (Igray) = .
Number of White Cells: Nw (Igray) = L(Igray) − Nb (Igray).
Density: D (Igray) = Nb (Igray) / L (Igray).
Hull: H (Igray) = (lr ,us).
Gap: G (Igray) ={ .

O n()

bi0 1+ ,...,bi1
〈 〉 bi1 1+ ,...,bi2

〈 〉
bim 1– 1+ ,...,bim
〈 〉

bij 1– 1+ ,...,bij
〈 〉

Figure 1: Gray Intervals
a) voxelized spatial object b) black and gray intervals

c) operators on gray intervals d) storage of gray intervals

ii) Voxel seti) Spatial object

z-curve

object voxel

iii) Voxel linearization

a)

576 584 592 600 608

black intervals

gray intervals

I1 I2 I3

gray interval operators I1 I2 I3

hull: H(Ix) [578,579] [586,593] [600,605]

density: D(Ix) 1 5/8 3/6

maximum gap: G(Ix) 0 2 3

byte sequence: B(Ix) ’30’ ’33 40’ ’C4’

black intervals
id cnt data
...
1 1 [578, 579]
1 2 [586, 587]
1 3 [590, 591]
1 4 [593, 593]
1 5 [600, 601]
1 6 [605, 605]
..

gray intervals

id cnt
data

H(Ix) D(Ix) B(Ix)

...
1 1 [578, 579] 1 ’30’
1 2 [586, 593] 5/8 ’3340’
1 3 [600, 605] 3/6 ’C4’
1

(obtained from encoding voxels

column organized by a spatial index, e.g. RI-tree

(obtained from grouping black intervals

decomposition into gray intervals Ix

together including error voxels)

via a space filling curve)

traditional approach

new approach
to store the data

to store the data

b)

c)

d)

ui li– 1+()
i r…s=
∑

0 r s=
max li ui 1–– 1– i r 1 … s, ,+=,{ } else

Byte Sequence: B (Igray) = 〈s0, .., sn〉,

where si ∈ IN and 0 ≤ si < 28, ,

Furthermore, we use B (Igray) as an abbreviation for a byte
sequence containing the complete information of the black
intervals which have been grouped together to Igray.

The gray interval sequence Igray = (id, 〈I1, ..., Im〉) is
stored in a set of m tuples in an object-relational table Gray-
Intervals (id, cnt, data). The primary key is formed by the
object identifier id and a unique number cnt for each gray
interval. The black intervals of each gray interval Igray=
〈(lr ,ur),…, (ls ,us)〉 are mapped to the complex attribute data
which consists of aggregated information, i.e. the hull
H (Igray) and the density D (Igray), and a BLOB containing
the complete information of the black intervals. In order to
guarantee efficient query processing, we apply spatial in-
dex structures on H (Igray) and store B (Igray) in a com-
pressed way within a BLOB.

There are two different problems related to the storage
of gray interval sequences: the compression problem and
the grouping problem.

2.1 Compression
The detailed black interval sequence br , …, bs of a gray
interval Igray = 〈br , …, bs〉 can be materialized and stored in
a BLOB in many different ways. A good materialization for
Igray = 〈br , …, bs〉 should consider two aspects

A good query response behavior is based on the fulfill-
ment of both aspects. The first rule guarantees that the I/O
cost are relatively small whereas the second rule is
responsible for low CPU cost . The overall time

 for the evaluation of a BLOB is com-
posed of both parts. Unfortunately, these two requirements
are not necessarily in accordance with each other. If we
compress B (Igray), we can reduce the demand of secondary
storage and consequently . The CPU cost might
rise because we first have to decompress the data before we
can evaluate it. On the other hand, if we store B (Igray) with-
out compressing it, might become very high whereas

 might be low.
As we will show in our experiments, it is very impor-

tant for a good query response behavior to find a well-bal-
anced way between these two compression rules.

In this paper, we use the general purpose data compres-
sor ZLIB [1] for compressing the BLOBs, which is used by
many popular programs such as WinZIP.

2.2 Grouping into Gray Intervals
High resolution spatial objects may consist of several hun-
dreds of thousands of black intervals (cf. Figure 1a). For
each object, there exist a lot of different possibilities to de-
compose it into approximations by grouping numerous
black intervals together. The question at issue is, which
grouping is most suitable for efficient query processing. A
good grouping should take the following requirements into
consideration.

The first rule guarantees that the number of index en-
tries is small, as the hulls of the gray intervals are stored in
appropriate index structures, e.g. the RI-tree (cf. Figure 1d).
The second rule guarantees that many unnecessary candi-
date tests can be omitted, as the number and size of gaps
included in the gray intervals is small. Finally, the third rule
guarantees that a candidate test can be carried out efficient-
ly. A good query response behavior results from an opti-
mum trade-off between these grouping rules.

Our grouping algorithm takes the expected access cost
of the gray intervals into account. The expected cost
cost(Igray) related to a gray interval Igray depend on the aver-
age access probability of Igray and on the cost related to the
evaluation of the exact byte sequence B (Igray).

2.2.1 Access Probability

The access probability P(Igray) related to a gray interval ob-
jects Igray denotes the probability that an arbitrary query ob-
ject has an intersection with the hull H (Igray). It can be eas-
ily computed by transforming the data space D into a two-
dimensional normalized data space D*. We start with nor-
malizing the coordinates of our gray interval objects to en-
sure that all data lies within the interval [0, 1]. Using a point
transformation, the intervals are then mapped into the upper
triangle D*:= {(x, y) ∈ [0, 1]2 | x ≤ y} of the two-dimension-
al cuboid. An interval [x, y] therefore corresponds to the
point (x, y) with x ≤ y. An example is visualized in Figure 2.
Let I0 = [a0, b0] be an interval. All intervals that intersect I0
are visualized by the shaded area in Figure 2a. The area
displays all intervals whose lower bounds are smaller or
equal to b and whose upper bounds are larger or equal to a.
These intervals are exactly the ones that have a non empty
intersection with I0. However, in all considered application
areas including GIS, CAD, medical imaging, molecular bi-
ology or haptic rendering, the common query objects only
comprise a very small portion of the data space D. There-
fore, we introduce the parameter 0 ≤ k ≤ 1, which restricts
the extension of the possible query objects. For the compu-
tation of the access probability we only consider query ob-
jects whose extensions do not exceed k ⋅ D. The area in-
cluding all restricted intervals which have a non empty

Compression Rules

• As little as possible secondary storage should be
occupied.

• As little as possible time should be needed for the
(de)compression of the BLOB.

si
2

7 k–

0
k 0=

7

∑ if lt ,ut()∃ :lt lr 8⁄ 8⋅ 8 i k ut r t s≤ ≤,≤+ +≤
otherwise

=

n u 8⁄ l 8⁄–=

tBLOB
I/O

tBLOB
CPU

tBLOB tBLOB
I/O tBLOB

CPU+=

tBLOB
I/O tBLOB

CPU

tBLOB
I/O

tBLOB
CPU

 • The number of gray intervals should be small.
 • The dead area of all gray intervals should be small.
 • The gray intervals should allow an efficient evalua-

tion of the contained black intervals.

intersection with the interval I0 is shown in Figure 2b. The
area of the considered normalized data space Dk

* is of size
A(Dk

*) = k - (k2 / 2), the shaded area spans
A(a0, b0) = (2⋅(b0 - a0) + k) ⋅ (k / 2). Presuming an equal
distribution of the data, the probability that interval
I0 = [a0, b0] is intersected by an arbitrary query interval is:
P(I) = A(a0, b0) / A(Dk

*).

2.2.2 Evaluation Cost

Furthermore, the expected query cost depends on the cost
related to the evaluation of the byte sequence stored in the
BLOB of an intersected gray interval Igray. These evaluation
cost heavily depends on how we have organized B (Igray)
within our BLOB, i.e. on the used compression algorithm.
For each compression algorithm we provide statistics, i.e. a
packer specific look-up table LUT, by means of which we
can estimate the I/O cost and CPU cost related to a possible
evaluation of the BLOB. Roughly speaking, the evaluation
cost depends on the length of our gray interval L (Igray) and
on the used packer. To sum up, the access cost related to a
gray interval Igray can be computed as follows

cost(Igray) = P(Igray) ⋅ costeval(Igray, LUT).

2.2.3 Grouping Algorithm

Orenstein [13] introduced the size- and error bound decom-
position approach. Our first grouping rule “the number of
gray intervals should be small” can be met by applying the
size-bound approach, while applying the error-bound ap-
proach results in the second rule ”the dead area of all gray
intervals should be small”. For fulfilling both rules, we in-
troduce the following top-down grouping algorithm for
gray intervals, called GroupInt (cf. Figure 3). GroupInt is a
recursive algorithm which starts with an approximation
Ogray = (id, 〈 Igray 〉), i.e. we approximate the object by one
gray interval. In each step of our algorithm, we look for the
maximum gap g within the actual gray interval. We carry
out the split along this gap, if the average query cost caused
by the decomposed intervals is smaller than the cost caused
by our input interval Igray. The expected cost related to a
gray interval Igray can be computed as described in Section
2.2.2. A gray interval which is reported by the GroupInt

algorithm is stored in the database and no longer taken into
account in the next recursion step. Data compressors which
have a shallow LUT curve result in an early stop of the
GroupInt algorithm generating a small number of gray in-
tervals.

Our experimental evaluations suggest that this group-
ing algorithm yields results which are very close to the op-
timal ones for many combinations of data compression
techniques and data space resolutions.

3. Experimental Evaluation
In this section, we evaluate the performance of our de-

composition method, with a special emphasis on data com-
pression techniques. We evaluated different grouping algo-
rithms GRP in combination with various data compression
techniques DC. We used the following data compressors
DC:
NOOPT: The BLOB is unpacked.
OPTRLE: The BLOB is packed according to the approach

in [7].
ZLIB: The BLOB is packed according to the ZLIB ap-

proach.
Furthermore, we grouped voxels into gray intervals us-

ing two grouping algorithms GRP:
MaxGap: This grouping algorithm tries to minimize the
number of gray intervals while not allowing that a maxi-
mum gap G (Igray) of any gray interval Igray exceeds the
MAXGAP parameter. By varying this MAXGAP parameter,
we can find the optimum trade-off between the two oppos-
ing grouping rules of Section 2.2, namely a small number of
gray intervals and a small number of white cells included in
each of these intervals.
GroupInt: We grouped the intervals according to the
grouping algorithm GroupInt (cf. Section 2.2.3), where we
chose k = 1/100,000 and used a look-up table for each pack-
er.

Figure 2: Point transformation of the gray intervals
a) intersection area for the gray interval I0=[a0,b0]

b) restricted intersection area for the gray interval I0
c) restricted intersection area for the decompositions I1, I2

c)b)a)

I2

b2b1 a2

I1

I0

a0 b0

k

I0

a0 b0

D*

a0

b0

0 1 a1

Dk
*Dk

*

Figure 3: Grouping algorithm for gray intervals

LUT: look-up table with packer specific cost
D: size of the complete data space
k: constant parameter reflecting the

maximum size of the gray query intervals
GroupInt (Igray, LUT, D, k)

{ interval_list := split_at_maximum_gap(Igray);

costgray := P(Igray.)•costeval(Igray,LUT);

costdec := 0;

for each i in interval_list do
costdec := costdec + P(i)•costeval(i,LUT);

end for;
if costgray > costdec then

for each i in interval_list do
GroupInt (i,LUT,D,k);

end for;
else

report (Igray);

end if;
}

Setup. The experiments were performed on the basic
RI-tree [8] which supports ranking intersection queries.
Furthermore, we used the very specific version of the RI-
tree [9] which supports the efficient evaluation of boolean
intersection queries, but fails to determine the exact inter-
section volume, i.e. it does not support ranking queries. We
implemented the RI-tree [8, 9] on top of the Oracle9i Server
using PL/SQL for most of the computational main memory
based programming. A blobintersection routine written in
C was used to perform the exact intersection test by evalu-
ating the BLOBs of the gray intervals. All experiments
were performed on a Pentium III/700 machine with IDE
hard drives. The database block cache was set to 500 disk
blocks with a block size of 8 KB and was used exclusively
by one active session.

Test Data Sets. The tests are based on two test data sets
CAR and PLANE. These test data sets were provided by our
industrial partners, a German car manufacturer and an
American plane producer, in form of high resolution voxel-
ized three-dimensional CAD parts. The CAR dataset con-
sists of approximately 14 millions voxels and 200 parts,
whereas the PLANE dataset consists of about 18 million
voxels and 10,000 parts. The CAR data space is of size 233

and the PLANE data space is of size 242. In both cases, the
Z-curve was used as a space filling curve to enumerate the
voxels.

Storage Requirements. First we look at the storage
requirements of the RI-tree on the PLANE dataset.
Figure 4a shows that the storage requirements for the index,
i.e. the two B+-trees underlying the RI-tree, as well as for
the complete GrayIntervals table decreases rapidly with in-
creasing MAXGAP parameter. This phenomenon can be
explained by the fact that we have to store much less gray
intervals with increasing MAXGAP parameters. Figure 4b
shows the different storage requirements for the BLOB
w.r.t. the different data compression techniques. For high
MAXGAP parameters, the MaxGap(ZLIB) approach leads
to a much better storage utilization than the Max-
Gap(NOOPT) and the MaxGap(OPTRLE) approach.

Update Operations. In this paragraph, we will inves-
tigate the time needed for updating complex spatial objects
in the database. For most of the investigated application
ranges, it is enough to confine ourselves to insert and delete

operations, as updates are usually carried out by deleting
the object from the database and inserting the altered object
again. Figure 5a shows that inserting all objects into the
database takes very long if we store the numerous black
intervals in the RI-tree (i) or if we store one value approxi-
mations of the unpacked object in the RI-tree (ii). On the
other hand, using our GroupInt(ZLIB) approach (iii) accel-
erates the insert operations by more than one order of mag-
nitude. The time spent for grouping and packing pays off, if
we take into consideration that we save a lot of time for
storing grouped and packed objects in the database.

Obviously, the delete operations are also carried out
much faster for our GroupInt(ZLIB) approach as we have to
delete much less disk blocks (cf. Figure 5b).

Query Processing. In this section, we want to turn our
attention to the query processing by examining different
kinds of collision queries. The figures presented in this
paragraph depict the average result obtained from collision
queries where we have taken either every part from the CAR
data set or the 100 largest parts from the PLANE data set as
query objects.

In Figure 6 it is shown in which way the overall re-
sponse time for boolean intersection queries based on the
RI-tree depends on the MAXGAP parameter. If we use
small MAXGAP parameters, we need a lot of time for the
filter step whereas the blobintersection test is relatively
cheap. Therefore, the different MaxGap(DC) approaches
do not differ very much for small MAXGAP values. For me-

1

10

100

1,000

10,000

10 100,000
MAXGAP

su
m

 o
f

B
L

O
B

-s
iz

es
[M

eg
a

b
yt

es
]

NOOPT
OPTRLE
ZLIB

0

10

20

30

40

50

10 100,000
MAXGAP

n
u

m
b

er
 o

f
b

lo
ck

s
[x

10
00

]
index
table

Figure 4: Storage requirements for the RI-tree (PLANE)
a) Index & BLOB for MaxGap (ZLIB)

b) BLOB for MaxGap(DC)

b)a)

1
10000

(i) (ii) (iii)

CPU group CPU pack I/O cost

0

1

10

100

1000

(i) (ii) (iii)d
el

et
e

ti
m

e
[s

ec
.]

1

10

100

1000

10000

(i) (ii) (iii)in
se

rt
 t

im
e

[s
ec

.]

b)a)

Figure 5: Update operations for the RI-tree (CAR)
(i) numerous black intervals (ii) one gray interval

(iii) gray intervals grouped by GroupInt(ZLIB)
a) insert-operation b) delete-operation

0

1

10

100

10 1,000 100,000 10,000,000
MAXGAP

re
sp

o
n

se
 t

im
e

[s
ec

.]

NOOPT
OPTRLE
ZLIB

Figure 6: MaxGap(DC) evaluated for boolean intersection
queries on the RI-tree (PLANE)

optimum MAXGAP
parameter depends
on used compres-
sion algorithm

dium and high MAXGAP values we can see that the Max-
Gap(ZLIB) approach performs best with respect to the
overall runtime. For extremely high MAXGAP values the
runtime is increasing for all three approaches. The optimum
MAXGAP value, i.e. the MAXGAP value leading to the
minimum runtime, increases for packed data (cf. Figure 6).

Figure 7 shows for boolean intersection queries that
the query response times resulting from the GroupInt algo-
rithm are almost identical to the ones resulting from a
grouping based on an optimum MAXGAP parameter
(cf. Figure 6). For ranking intersection queries, the RI-tree
is not applicable due to the enormous amount of generated
join partners. On the other hand, the GroupInt(ZLIB) ap-
proach yields interactive response times even for such que-
ries.

To sum up, the GroupInt algorithm adapts to the opti-
mum MAXGAP parameter for varying compression tech-
niques, by allowing greater gaps for packed data, i.e the
number of generated interval objects is smaller in the case
of packed data.

In Figure 8a it is shown in what way the different data
space resolutions influence the query response time. Gener-
ally, the higher the resolution, the slower is the query pro-
cessing. Our MaxGap(ZLIB) is especially suitable for high
resolutions, but accelerates also medium or low resolution
spatial data. Figure 8a also shows that with increasing reso-
lutions the optimum MAXGAP parameter increases. In
Figure 8b it is shown that the query response times result-
ing from the GroupInt algorithm for varying resolutions,
are almost identical to the ones resulting from a grouping
based on an optimum MAXGAP parameter (cf.Figure 8a).

To sum up, the GroupInt algorithm produces object de-
compositions which yield almost optimum query response
times for varying data space resolutions.

4. Conclusion
In this paper, we introduced an effective decomposition al-
gorithm for accelerating the RI-tree, which helps to range
between the two extremes of replicating and non-replicat-
ing spatial access methods. We showed how we can effi-
ciently store gray intervals by means of data compression
techniques within ORDBMSs. Furthermore, we presented
a pragmatic and effective cost-based grouping algorithm,
called GroupInt, for decomposing spatial objects which is
applicable to different data space resolutions and compres-
sion algorithms. We showed in a broad experimental evalu-
ation that our new decomposition algorithm accelerates the
Relation Interval Tree by up to two orders of magnitude.

In our future work, we plan to apply our new approach
to real-time haptic applications and to location based ser-
vices.

5. References
[1] Deutsch P.: RFC1951, DEFLATE Compressed Data Format
Specification. http://rfc.net/rfc1951.html, 1996.
[2] Faloutsos C., Jagadish H. V., Manolopoulos Y.: Analysis of
the n-Dimensional Quadtree Decomposition for Arbitrary Hyper-
rectangles. IEEE TKDE 9(3): 373-383, 1997.
[3] Gaede V.: Optimal Redundancy in Spatial Database Sys-
tems. Proc. 4th Int. Symp. on Large Spatial Databases (SSD),
LNCS 951: 96-116, 1995.
[4] Gaede V., Günther O.: Multidimensional Access Methods.
ACM Computing Surveys 30(2): 170-231, 1998.
[5] Guttman A.: R-trees: A Dynamic Index Structure for Spatial
Searching. Proc. ACM SIGMOD Int. Conf. on Management of
Data, 47-57, 1984.
[6] Kriegel H.-P., Kunath P., Pfeifle M., Renz M.: Acceleration
of Relational Index Structures Based on Statistics. Proc. 15th Int.
Conf. on Scientific and Statistical Database Management
(SSDBM), 2003
[7] Kriegel H.-P., Pfeifle M., Pötke M., Seidl T.: Spatial Query
Processing for High Resolutions. Database Systems for Advanced
Applications (DASFAA), 2003.
[8] Kriegel H.-P., Pötke M., Seidl T.: Managing Intervals Effi-
ciently in Object-Relational Databases. Proc. 26th Int. Conf. on
Very Large Databases (VLDB), 407-418, 2000.
[9] Kriegel H.-P., Pötke M., Seidl T.: Interval Sequences: An
Object-Relational Approach to Manage Spatial and Temporal
Data. Proc. 7th Int. Symposium on Spatial and Temporal Databases
(SSTD), LNCS 2121: 481-501, 2001.
[10] Moon B., Jagadish H. V., Faloutsos C., Saltz J. H.: Analysis
of the Clustering Properties of Hilbert Space-filling Curve. Tech.
Rep. CS-TR-3611, University of Maryland, 1996.
[11] Medeiros C. B., Pires F.: Databases for GIS. ACM SIGMOD
Record, 23(1): 107-115, 1994.
[12] Manolopoulos Y., Theodoridis Y., Tsotras V. J.: Advanced
Database Indexing. Boston, MA: Kluwer, 2000.
[13] Orenstein J. A.: Redundancy in Spatial Databases. Proc.
ACM SIGMOD Int. Conf. on Management of Data, 294-305,
1989.
[14] Schiwietz M., Kriegel H.-P.: Query Processing of Spatial
Objects:Complexity versus Redundancy, Proc. 3rd Int. Sympo-
sium on Large Spatial Databases (SSD'93), Singapore, 1993, in:
Lecture Notes in Computer Science, Vol. 692, Springer, 1993, pp.
377-396.

NOOPT ZLIB RI-tree [8, 9]

number of intervals 24,453 16,007 9,289,569

Overall Runtime* [s] 1.35 0.69 135.01

Overall Runtime** [s] 2.42 1.12 (not applicable)∞

Figure 7: GroupInt (DC) evaluated for boolean* and
ranking** intersection queries for the RI-tree (PLANE)

0

1

10

re
sp

o
n

se
 t

im
e

[s
ec

.]

Figure 8: GRP(ZLIB) evaluated for boolean intersection
queries for the RI-tree using different resolutions (CAR)

a) MAXGAP b) GroupInt

0

1

10

100

10 10,000
MAXGAPre

sp
o

n
se

 t
im

e
[s

ec
.]

33 bit
30 bit
27 bit
24 bit

a) b)

24 27 30 33
bit resolution

optimum MAXGAP
value depends on used

resolution

