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Abstract 
Clustering has become an increasingly important task in
modern application domains. Mostly, the data are originally
collected at different sites. In order to extract information
from these data, they are merged at a central site and then
clustered. Another approach is to cluster the data locally
and extract suitable representatives from these clusters.
Based on these representatives a global server tries to re-
construct the complete clustering. In this paper, we discuss
the complex problem of finding a suitable quality measure
for evaluating the quality of such a distributed clustering.
We introduce a discrete and continuous quality criterion
which we empirically compare to each other. 
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1 Introduction
Knowledge Discovery in Databases (KDD) tries to

identifying valid, novel, potentially useful, and ultimately
understandable patterns in data. Traditional KDD applica-
tions require full access to the data which is going to be
analyzed. All data has to be located at that site where it is
scrutinized. Nowadays, large amounts of heterogeneous,
complex data reside on different, independently working
computers which are connected to each other via local or
wide area networks (LANs or WANs). Examples comprise
distributed mobile networks, sensor networks or supermar-
ket chains where check-out scanners, located at different
stores, gather data unremittingly. Furthermore, internation-
al companies such as DaimlerChrysler have some data
which is located in Europe and some data in the US. Those
companies have various reasons why the data cannot be
transmitted to a central site, e.g. limited bandwidth or secu-
rity aspects. 

The transmission of huge amounts of data from one
site to another central site is in some application areas al-
most impossible. In astronomy, for instance, there exist
several highly sophisticated space telescopes spread all
over the world. These telescopes gather data unceasingly.
Each of them is able to collect 1GB of data per hour [4]
which can only, with great difficulty, be transmitted to a
central site to be analyzed centrally there. On the other

hand, it is possible to analyze the data locally where it has
been generated and stored. Aggregated information of this
locally analyzed data can then be sent to a central site where
the information of different local sites are combined and
analyzed. The result of the central analysis may be returned
to the local sites, so that the local sites are able to put their
data into a global context. 

The requirement to extract knowledge from distributed
data, without a prior unification of the data, created the rath-
er new research area of Distributed Knowledge Discovery
in Databases (DKDD). One important part in DKDD is dis-
tributed clustering. The first step in distributed clustering
consists of a local clustering of the data. Then aggregated
information about the local clusters (also denoted as local
representatives or local model) is sent to a central site. The
transmission cost are minimal as the representatives are
only a fraction of the original data. On the central site the
global clustering is “reconstructed” .

A promising approach for distributed clustering is to
use partitioning density-based clustering for the local and
central clustering [7]. In this paper, we try to answer the
complex question “how can we compare the quality of a
partitioning distributed clustering to the quality of the cor-
responding central clustering?”. 

The paper is organized as follows, in Section 2, we
shortly review related work in the area of clustering. In Sec-
tion 3, we sketch a Density Based Distributed Clustering
(DBDC) algorithm which was used throughout the experi-
ments. In Section 4, we introduce a discrete and continuous
quality criterion allowing us to evaluate our DBDC ap-
proach. In Section 5, we present the experimental evalua-
tion of the two introduced quality measures. We conclude
the paper in Section 6 with a short summary and a few re-
marks on future work.

2 Related Work
In this section, we first review and classify the most

common clustering algorithms. In Section 2.2, we shortly
look at parallel clustering which has some affinity to dis-
tributed clustering. As, to our best knowledge, there exist
no measures for evaluating the quality of distributed clus-
terings, we cannot present any related work regarding this
topic.
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2.1 Clustering

Clustering algorithms can be classified along different,
independent dimensions. One well-known dimension cate-
gorizes clustering methods according to the result they pro-
duce. Here, we can distinguish between hierarchical and
partitioning clustering algorithms [6, 8]. Partitioning algo-
rithms construct a flat (single level) partition of a database
D of n objects into a set of k clusters such that the objects in
a cluster are more similar to each other than to objects in
different clusters. Hierarchical algorithms decompose the
database into several levels of nested partitionings (cluster-
ings), represented for example by a dendrogram, i.e. a tree
that iteratively splits D into smaller subsets until each sub-
set consists of only one object. In such a hierarchy, each
node of the tree represents a cluster of D. 

Another dimension according to which we can classify
clustering algorithms is from an algorithmic point of view.
Here we can distinguish between optimization-based or
distance-based algorithms and density-based algorithms.
Distance based methods use the distances between the ob-
jects directly in order to optimize a global criterion func-
tion. In contrast, density-based algorithms apply a local
cluster criterion. Clusters are regarded as regions in the data
space in which the objects are dense, and which are separat-
ed by regions of low object density (noise).

An overview of this classification scheme together
with a number of important clustering algorithms is given
in Figure 1. As we do not have the space to cover them here,
we refer the interested reader to [8] were an excellent over-
view and further references can be found.

2.2 Parallel Clustering

Distributed Data Mining (DDM) is a dynamically
growing area within the broader field of KDD. Generally,
many algorithms for distributed data mining are based on
algorithms which were originally developed for parallel
data mining. In [9] some state-of-the-art research results re-
lated to DDM are resumed.

Whereas there already exist algorithms for distributed
and parallel classification and association rules, there do
not exist many algorithms for parallel and distributed clus-
tering.

In [10] a parallel version of DBSCAN [3] and in [1] a
parallel version of k-means [5] were introduced. Both algo-
rithms start with the complete data set residing on one cen-
tral sever and then distribute the data among the different
clients. 

On the other hand, distributed clustering assumes that
we cannot carry out a preprocessing step on the server site
as the data is not centrally available. Furthermore, we ab-
stain from an additional communication between the vari-
ous client sites as we assume that they are independent from
each other. This distributed approach does usually not pro-
duce the same result as the central approach. In order to
assess the quality of the distributedly produced result, we
need a suitable quality criterion (cf. Section 4).

3 Distributed Clustering
In this section, we generally introduce distributed clus-

tering and sketch our DBDC algorithm [7]. As this paper is
about quality measures for distributed clusterings, and not
about our DBDC algorithm, we refer the interested reader
to [7] for more details. 

Distributed Clustering assumes that the objects to be
clustered reside on different sites. Instead of transmitting all
objects to a central site (also denoted as server) where we
can apply standard clustering algorithms to analyze the da-
ta, the data are clustered independently on the different lo-
cal sites (also denoted as clients). In a subsequent step, the
central site tries to establish a global clustering based on the
local models, i.e. the local representatives. This is a very
difficult step as there might exist dependencies between ob-
jects located on different sites which are not taken into con-
sideration by the creation of the local models. In contrast to
a central clustering of the complete dataset, the clustering
of the local models can be carried out much faster as the
number of elements to be considered is much smaller.

Distributed Clustering is carried out on two different
levels, i.e. the local level and the global level (cf. Figure 2).
On the local level, all sites perform a clustering indepen-
dently from each other. After having completed the cluster-
ing, a local model is determined which should reflect an
optimum trade-off between complexity and accuracy. Our
DBDC algorithm uses a local model which consists of a set
of representatives for each locally found cluster. Each rep-
resentative is a concrete object from the objects stored on
the local site. Furthermore, we augment each representative
with a suitable ε−range value. Thus, a representative is a
good approximation for all objects residing on the corre-
sponding local site which are contained in the ε−range
around this representative.

Next, the local model is transferred to a central site,
where the local models are merged in order to form a global
model. The global model is created by analyzing the local
representatives. This analysis is similar to a new clustering

Figure 1: Classification scheme for clustering algorithms
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of the representatives with suitable global clustering pa-
rameters. To each local representative a global cluster-iden-
tifier is assigned. This resulting global clustering is sent to
all local sites. If a local object belongs to the ε-neighbor-
hood of a global representative, the cluster identifier from
this representative is assigned to the local object. 

For our DBDC algorithm, we used the partitioning
density-based clustering algorithm DBSCAN [3], for both
the local clustering and the merging of the local models,
because of the following reasons:

  • DBSCAN is a very efficient and effective clustering al-
gorithm. 

  • There exists an efficient incremental version, which
would allow incremental clusterings on the local sites.
Thus, only if the local clustering changes “consider-
ably”, we have to transmit a new local model to the cen-
tral site [2].

  • DBSCAN is rather robust concerning outliers.

  • DBSCAN can be used for all kinds of metric data spaces
and is not confined to vector spaces. 

  • DBSCAN can easily be implemented.

4 Quality of Partitioning Distributed Clustering

To the best of our knowledge, there exists no general
quality measure which helps to evaluate the quality of a
distributed clustering. If we want to evaluate new partition-
ing distributed clustering approaches, we first have to tack-
le the problem of finding a suitable quality criterion. Such a
suitable quality criterion should yield a high quality value if
we compare a “good” distributed clustering to a central
clustering, i.e. reference clustering. On the other hand, it
should yield a low value if we compare a “bad” distributed
clustering to a central clustering. Needless to say, if we
compare a reference clustering to itself, the quality should
be 100%. Let us first formally introduce the notion of a par-
titioning clustering. 

Definition 1 (partitioning clustering ) 
Let  be a database consisting of n ob-
jects. Then, we call any set  a partitioning clustering of
D w.r.t. MinPts , if it fulfills the following properties: 

  • . 

  •

  •

In the following, we denote by  a partitioning
clustering resulting from our distributed approach and by

 our central reference clustering. We will define
two different quality criteria which measure the similarity
between  and . We compare the two intro-
duced quality criteria to each other by discussing a small
example. 

Let us assume that we have n objects, distributed over
k sites. Partitioning distributed clustering algorithms assign
each object x, either to a cluster or to noise. We compare the
result of these algorithms to a central clustering of the n
objects. Then we assign to each object x a numerical value
P (x) indicating the quality for this specific object. The
overall quality of the distributed clustering is the mean of
the qualities assigned to each object. 

Definition 2 (distributed clustering quality QDBDC) 
Let  be a database consisting of n objects.
Let P be an object quality function . Then the
quality QDBDC of our partitioning distributed clustering
w.r.t. P is computed as follows:

The crucial question is “what is a suitable object quali-
ty function?”. In the following two subsections, we will dis-
cuss two different object functions P.

4.1 Discrete Object Quality Function PI

Obviously, P(x) should yield a rather high value, if an
object x together with many other objects is contained in a
distributed cluster Cd and a central cluster Cc. In the case of
density-based partitioning clustering, a cluster might con-
sist of only MinPts elements. Therefore, the number of ob-
jects contained in two identical clusters might be not higher
than MinPts. On the other hand, each cluster consists of at
least MinPts elements. Therefore, asking for less than
MinPts elements in both clusters would weakening the
quality criterion unnecessarily. 

If x is included in a distributed cluster Cd but is as-
signed to noise by the central clustering, the value of P(x)
should be 0. If x is not contained in any distributed cluster,
i.e. it is assigned to noise, a high object quality value re-
quires that it is also not contained in a central cluster. In the
following, we will define a discrete object quality function
PI which assigns either 0 or 1 to an object x, i.e. PI(x) = 0 or
PI(x) = 1. 

Figure 2: Distributed Clustering
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Definition 3 (discrete object quality PI) 
Let  and let ,  be two clusterings.
Then we can define an object quality function

 w.r.t. to a quality parameter qp as follows: 

  • If 

, then .

  • If 

, then .

  • If ,

then .

  • If ,

then .

  • If ,

then .

Table 1 explains the definition for the discrete object
quality function PI for the two cases  and . 

Figure 3 shows two examples for this object quality
function. The test data set were clustered with a partitioning
density-based clustering algorithm where MinPts was set
to 3. In this small example, we followed the reasoning of
the beginning of this subsection and set parameter qp equal
to MinPts. In Figure 3a, a “good” distributed clustering is
depicted. The overall quality QDBDC w.r.t. PI is high and
thus reflects the “good” distributed clustering well. On the
other hand, if we look at Figure 3b, the overall quality QDB-

DC w.r.t. PI does not reflect the “bad” clustering. The distrib-
uted clustering quality QDBDC = 83,3% of Figure 3b is as
high as the one for the “good” distributed clustering of Fig-
ure 3a.

The main advantage of the object quality function PI is
that it is rather simple because it yields only a boolean re-
turn value, i.e. it tells whether an object was clustered cor-
rectly or falsely. Nevertheless, sometimes a more subtle
quality measure is required which does not only assign a
binary quality value to an object. In the following section,
we will introduce a new object quality function which is not
confined to the two binary quality values 0 and 1. This more
sophisticated quality function can compute any value in be-

tween 0 and 1 which much better reflects the notion of “cor-
rectly clustered”. 

4.2 Continuous Object Quality Function PII

The main idea of our new quality function is to take the
number of elements which were clustered together with the
object x during the distributed and the central clustering
into consideration. Furthermore, we decrease the quality of
x if there are objects which have been clustered together
with x in only one of the two clusterings.

Definition 4 (continuous object quality PII) 
Let  and let ,  be a central and a dis-
tributed clustering. Then we define an object quality func-
tion  as follows: 

  • If ,

then .

  • If ,

then .

  • If ,

then .

  • If ,

then .

Table 2 explains the definition for the continuous object
quality function PII for the two cases  and .

x D∈ CLdistr CLcentral
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I
: D 0 1,{ }→

Cd∃ CLdistr:x Cd∈∈( ) Cc∃ CLcentral:x Cc∈∈( )∧  ∧
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explanation

If an object x is assigned to a cluster Cd during a dis-
tributed clustering algorithm, the quality PI of this
object x is 1 iff it is assigned to a cluster Cc by the glo-
bal clustering algorithm. Furthermore, there have to be
at least qp other objects which are also contained in Cd

and Cc. If such an appropriate central cluster does not
exist, the quality PI

 of this object x is 0.

If an object x is not assigned to a distributed cluster
Cd during the DBDC run and furthermore PI (x) = 1
holds, then it must not be contained in any central
cluster Cc.

Table 1: Discrete object quality function PI

Cd∈

Cd∉

Figure 3:  Quality of partitioning density-based 
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Figure 3 shows that our new object quality function PII

much better reflects the quality of a distributed clustering
than PI. The “good” clustering of Figure 3a yields a higher
quality value than the “bad” clustering of Figure 3b. In the
experimental evaluation, we will provide further evidence
for the superiority of the second more sophisticated quality
criterion. 

5 Experimental Evaluation

We evaluated our quality criteria by applying our
DBDC-approach to three different 2-dimensional point sets
with varying number of points and characteristics. Figure 4
depicts the three used test data sets A, B and C on the central
site. We equally distributed the data set onto the different
client sites and then compared DBDC to a single run of DB-
SCAN on all data points. We carried out all local clusterings
sequentially. Then, we collected all representatives of all
local runs, and applied a global clustering on these repre-
sentatives. If not stated otherwise, the local and the global
run of DBSCAN was carried out with a MinPts parameter
of 4 which was also used as a default parameter for the qual-
ity parameter qp of PI.

In the first set of experiments, we evaluated the quality
of our two introduced object quality functions PI and PII,
dependent on the parameter setting of our DBDC approach.
In numerous manually performed tests, we found out that
the DBDC approach, works best with a “normalized param-
eter setting” [7] somewhere between 2 and 3. Figure 5
shows that the quality according to PI of the DBDC ap-
proach is very high and does not change if we vary the pa-
rameters. On the other hand, we can clearly see that for a
normalized parameter of 2, we get the best quality accord-
ing to PII. The quality graph produced by PII reflects that for
small parameters a lot of local clusters are not globally
merged together. Furthermore, for high values it mirrors the

fact that a lot of noise is assigned to clusters. To sum up, for
high and low distributed clustering parameters our DBDC
approach performs bad which is accurately pinpointed by
PII but not detected by PI. 

In the next set of experiments, we evaluated the quality
of our DBDC algorithm for a noisy test data set B and for an
extremely well clustered test data set C. Our DBDC ap-
proach performs very bad for the first kind of data set,
whereas it has no problems to detect the clusters in the data
set C. As the quality function PI depends additionally on a
quality parameter qp, we varied this parameter. Figure 6a
shows that for small qp parameters PI falsely assigns a very
high quality to the distributed clustering of test data set B.
Only, for very high qp parameters it detects the low quality
produced by DBDC for test data set B. For test data set C,

explanation

If an object x is assigned to a cluster Cd during a dis-
tributed clustering algorithm, the quality PII of this
object x is somewhere between 0 and 1. It is close to
1 iff the number of elements contained in  is
almost as high as the number of elements contained
in .

Similar to the case for the discrete object quality
function PI.

Table 2: Continuous object quality function PII

Cd∈
Cd Cc∩

Cd Cc∪

Cd∉
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PI reflects the high quality of our distributed clustering only
for small values, whereas for high values it malfunctions.
On the other hand, PII detects the correct qualities for both
test data sets (cf. Figure 6b).

Figure 7 shows how the quality depends on the number
of transmitted local representatives. Our DBDC approach
works the more accurate, the more local representatives are
transmitted. Again, our continuous object function PII re-
flects this behavior properly, whereas the discrete object
function PI fails to point out the dependency between the
quality and the number of representatives.

Figure 8 shows how the quality of our DBDC approach
depends on the number of client-sites. We can see that the
quality according to PI is independent of the number of cli-
ent sites which indicates again that this quality measure is
unsuitable. On the other hand, the quality computed by PII

is in accordance with the intuitive quality which an experi-
enced user would assign to the distributed clusterings on the
varying number of sites. 

To sum up, for some parameter settings and some data
sets the discrete object quality function PI produces suitable
quality values. Unfortunately, the required conditions often
do not hold. On the other hand, our continuous object qual-
ity function PII reflects the correct quality for all kind of
data sets with varying number of points and characteristics.
Furthermore, it assigns the correct quality to our DBDC ap-
proach for a varying number of local representatives, local
sites, and parameter settings of our distributed clustering
algorithm. 

6 Conclusions
In this paper, we first motivated the need of distributed

clustering algorithms. Due to technical, economical or se-
curity reasons, it is often not possible to transmit all data
from different local sites to one central server site and then
cluster the data there. Therefore, we have to apply efficient
and effective distributed clustering algorithms. We
sketched a partitioning distributed clustering algorithm
which is based on the density-based clustering algorithm
DBSCAN. We clustered the data locally and independently
from each other and transmitted only aggregated informa-
tion about the local data to a central server where a global
clustering was carried out. As there exist no general quality
measures which help to evaluate the quality of a distributed
clustering, we introduced a discrete quality function PI and
a continuous quality function PII. In the experimental eval-
uation, we discussed the suitability of our quality functions
and showed that the continuous object quality function PII

reflects the intuitive quality which an experienced user
would assign to a distributed clustering. Based on this qual-
ity criterion it is possible to evaluate further distributed
clustering algorithms from which a lot of application ranges
will benefit.
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