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Abstract. Popular outlier detection methods require the pairwise com-
parison of objects to compute the nearest neighbors. This inherently
quadratic problem is not scalable to large data sets, making multidi-
mensional outlier detection for big data still an open challenge. Exist-
ing approximate neighbor search methods are designed to preserve dis-
tances as well as possible. In this article, we present a highly scalable
approach to compute the nearest neighbors of objects that instead fo-
cuses on preserving neighborhoods well using an ensemble of space-filling
curves. We show that the method has near-linear complexity, can be dis-
tributed to clusters for computation, and preserves neighborhoods—but
not distances—better than established methods such as locality sensi-
tive hashing and projection indexed nearest neighbors. Furthermore, we
demonstrate that, by preserving neighborhoods, the quality of outlier
detection based on local density estimates is not only well retained but
sometimes even improved, an effect that can be explained by relating
our method to outlier detection ensembles. At the same time, the outlier
detection process is accelerated by two orders of magnitude.

1 Introduction

Vast amounts of data require more and more refined data analysis techniques
capable to process big data. While the volume of the data often decreases dramat-
ically with selection, projection and aggregation, not all problems can be solved
this way. The domain of outlier detection is a good example where individual
records are of interest, not overall trends and frequent patterns. Summarization
will lose the information of interest here and thus cannot be applied to outlier
detection. In the data mining literature, a large variety of methods is based on
object distances, assuming that outliers will essentially exhibit larger distances
to their neighbors than inliers, i.e., the estimated local density is lower than the
“usual” density level in the dataset. Without employing index structures, this
requires the computation of all pairwise distances in the worst case.

Here we focus on methods for improving generically all such methods by
fast approximations of the relevant neighbors. We demonstrate that the approx-
imation error is negligible for the task of outlier detection. In the literature,



approximations of neighborhoods and distances have been used as a filter step.
Here, we show that an approximate identification of the neighborhood is good
enough for the common outlier detection methods since these do not actually
require the neighbors as such but only as a means to derive a local density esti-
mate. Notably, the detection accuracy can even improve by using an approximate
neighborhood. We explain this effect and argue that a tendency to improve the
accuracy of outlier detection by approximate neighborhood identification is not
accidental but follows a certain bias, inherent to our method.

In the remainder, we will discuss outlier detection methods and their effi-
ciency variants (Section 2). Then (Section 3), we reason about the theoretical
background of our method and consequences for its performance, and introduce
the core of our method. We demonstrate the effectiveness and efficiency in an
extensive experimental analysis (Section 4) and conclude the paper with rules
of thumb on the expected usefulness of the different methods (Section 5).

2 Related Work

2.1 Outlier Detection

Existing outlier detection methods differ in the way they model and find the out-
liers and, thus, in the assumptions they, implicitly or explicitly, rely on. The fun-
damentals for modern, database-oriented outlier detection methods (i.e., meth-
ods that are motivated by the need of being scalable to large data sets, where
the exact meaning of “large” has changed over the years) have been laid in the
statistics literature. A broader overview for modern applications has been pre-
sented by Chandola et al. [10]. Here, we focus on techniques based on computing
distances (and derived secondary characteristics) in Euclidean data spaces.

With the first database-oriented approach, Knorr and Ng [22] triggered the
data mining community to develop many different methods, typically with a
focus on scalability. A method in the same spirit [33] uses the distances to the k
nearest neighbors (kNN) of each object to rank the objects. A partition-based
algorithm is then used to efficiently mine top-n outliers. As a variant, the sum of
distances to all points within the set of k nearest neighbors (called the “weight”)
has been used as an outlier degree [4]. The so-called “density-based” approaches
consider ratios between the local density around an object and the local density
around its neighboring objects, starting with the seminal LOF [7] algorithm.
Many variants adapted the original LOF idea in different aspects [36].

2.2 Approximate Neighborhoods

For approximate nearest neighbor search, the Johnson-Lindenstrauss lemma [19]
states the existence and bounds of a projection of n objects into a lower dimen-
sional space of dimensionality O(logn/e?), such that the distances are preserved
within a factor of 1+ ¢. Matousek [26] further improves these error bounds. The
most interesting and surprising property is that the reduced dimensionality de-
pends only logarithmically on the number of objects and on the error bound, but



not on the original dimensionality d. Different ways of obtaining such a projec-
tion have been proposed for common norms such as Manhattan and Euclidean
distance. A popular choice are the “database-friendly” random projections [1],
where 2/3 of the terms are 0 and the others 1 (along with a global scaling factor
of \/§)7 which can be computed more efficiently than the previously used matri-
ces. Another popular choice are projections based on s-stable distributions [11],
where the Cauchy distribution is known to be 1-stable and the Gaussian distri-
bution to be 2-stable [44] (i.e., they preserve L; and Ly norms well). An overview
and empirical study on different variations of the Johnson-Lindenstrauss trans-
form [38] indicates that a reduced dimensionality of k = 2 -logn/e? will usually
maintain the pairwise distances within the expected quality.

2.3 Outlier Detection with Approximate Neighborhoods

Wang et al. [39] propose outlier detection based on Locality Sensitive Hashing
(LSH) [17,14,11]. However—in contrast to what the authors state—it cannot
be used for “any distance-based outlier detection mechanism”, but it will only
be useful for global methods such as kNN-Outlier [33,4]: the key idea of this
method is to use LSH to identify low-density regions, and refine the objects in
these regions first, as they are more likely to be in the top-n global outliers. For
local outlier detection methods there may be interesting outliers within a glob-
ally dense region, though. As a consequence, the pruning rules this method relies
upon will not be applicable. Projection-indexed nearest-neighbours (PINN) [12]
shares the idea of using a random projection to reduce dimensionality. On the
reduced dimensionality, a spatial index is then employed to find neighbor candi-
dates that are refined to k nearest neighbors in the original data space.

Much research aimed at improving efficiency by algorithmic techniques, for
example based on approximations or pruning techniques for mining the top-n
outliers only [6,29]. A broad and general analysis of efficiency techniques for
outlier detection algorithms [30] identifies common principles or building blocks
for efficient variants of the so-called “distance-based” models [22,33,4]. The
most fundamental of these principles is “approximate nearest neighbor search”
(ANNS). The use of this technique in the efficient variants studied by Orair et
al. [30] is, however, different from the approach we are proposing here in a crucial
point. Commonly, ANNS has been used as a filter step to discard objects from
computing the exact outlier score. The exact kNN distance could only become
smaller, not larger, in case some neighbor was missed by the approximation.
Hence, if the upper bound of the kNN distance, coming along with the ANNS; is
already too small to possibly qualify the considered point as a top-n outlier, the
respective point will not be refined. For objects passing this filter step, the exact
neighborhood is still required in order to compute the exact outlier score. All
other efficiency techniques, as discussed by Orair et al. [30], are similarly based
on this consideration and differ primarily in the pruning or ranking strategies.
As opposed to using ANNS as a filter step, we argue to directly use approximate
nearest neighbor search to compute outlier scores without this refinement i.e.,
we base the outlier score on the k approximate nearest neighbors directly.



2.4 Summary

The differentiation between “distance-based” and “density-based” approaches,
commonly found in the literature, is somewhat arbitrary. For both families,
the basic idea is to provide estimates of the density around some point. As
opposed to statistical approaches, that fit specific distributions to the data, the
density-estimates in the efficient database algorithms are, in a statistical sense,
parameter-free, i.e., they do not assume a specific distribution but estimate the
density-level, using typically some simple density model (such as the k nearest
neighbor distance). This observation is crucial here. It justifies our technique also
from the point of view of outlier detection models: the exact neighbors are usually
not really important but just the estimate of the density-level around some point
and the difference from estimated density-levels around other points. In most
cases, this will derive just the same outliers as if the outlier detection model were
based on the exact distances to the eract neighbors, since those outlier scores
will always remain just an estimate, based on the data sample at hand, and
not on the unknown true density-level. The same reasoning relates to ensemble
methods for outlier detection [3,40], where a better overall judgment is yielded
by diversified models. Models are diversified using approximations of different
kinds: subsets of features [23], subsets of the dataset [42], even by adding noise
components to the data points in order to yield diverse density-estimates, the
results for outlier detection ensembles can be improved [41]. As opposed to outlier
detection ensemble methods, here, we push the ensemble principle of diversity
and combination to a deeper level: instead of creating an ensemble from different
outlier models, we create an ensemble of different neighborhood approximations
and use the combined, ensemble approximation of the neighborhood as the base
for the outlier model.

3 Efficient Outlier Detection

Outlier detection methods based on density estimates, such as the kNN [33]
or weighted kNN [4] outlier models, as well as the Local Outlier Factor (LOF)
[7] and its many variants [36], rely on the retrieval of nearest neighbors for
each data object. While the major part of database research on efficient outlier
detection focused on retrieving the exact values of the top n outliers as fast as
possible, using approximate neighborhoods as a filter, we maintain here that
outlier detection methods do not heavily rely on the neighborhood sets to be
exact: they use the distance to the kNN to estimate a density, local methods
additionally use the kNN to compute an average neighbor density as reference.
As long as the distances are not influenced heavily by the approximation, and
the reference (approximate) neighbors still have a similar density, the results
are expected to be similar. For approximations of neighborhoods by space filling
curves the approximation error is not symmetric: it will never underestimate a
k-distance, but by missing some true nearest neighbors it will instead return the
k + e-distance for e > 0. The difference between the k and the k& + e distance
is expected to be rather small in dense areas (i.e., for “inliers”), as there are



many neighbors at similar distances. For an object in a sparse area (i.e., an
“outlier”), the k + 1-distance can already be much larger than the k-distance.
We can expect, on average, the scores of true outliers to further increase, which
is well acceptable for the purpose of detecting outliers.

In computer science and data analysis, we rely on mathematics for correctness
of the results. Yet, we also have to deal with the fact that neither our computation
will be perfect—due to limited numerical precision—nor our data are exact: even
unlimited data will still only yield an approximation of reality. With our data
only being a finite sample, chances are that the exact computation will not be
substantially closer to the truth than a good approximation. Of course we must
not give up precision without having benefits from doing so. However, for large
data sets we have an immediate problem to solve: finding the nearest neighbors
by computing a distance matrix, or by repeated linear scans, will not scale to
such data sets anymore. Trading some precision for reducing the runtime from
quadratic to linear may be well worth the effort.

3.1 Approximate Indexing Techniques

There exist capable indexing methods for low-dimensional data such as the k-d
tree and the R*-tree. In order to use such techniques for high dimensional data,
the data dimensionality must be reduced. Approaches in the context of outlier
detection are feature bagging [23] and PINN [12], using Achlioptas’ database-
friendly random projections [1]. Locality Sensitive Hashing (LSH, [17,14]) uses
s-stable random projections [11] for indexing Minkowski distances and found
use in outlier detection as well [39]. LSH (on dense vector data with L,-norms)
combines multiple established strategies:

dimensionality reduction by s-stable random projections to k dimensions;
grid-based data binning into N¢ bins of width w;

reduction of grid size by hashing to a finite bin index;

similarity search in the bin of the query point only;

ensemble of ¢ such projections.

CU LN

Individual parts of this approach can be substituted to accommodate different
data types and similarity functions. For example, instead of computing the hash
code on a regular grid, it can be based on the bit string of the raw data, or a
bit string obtained by splitting the data space using random hyperplanes. LSH
is an approximate nearest neighbor search algorithm both due to the use of
random projections (which only approximately preserve distances) but also due
to searching within the same bin as the query point only. The use of hash tables
makes it easy to parallelize and distribute on a cluster.

Projection-indexed nearest-neighbours (PINN) [12] also uses random projec-
tion to reduce dimensionality. A spatial index is then employed to find neighbor
candidates in the projected space:

1. dimensionality reduction using “database friendly” random projections;
2. build a spatial index (R*-tree, k-d tree) on the projected data;



3. retrieve the ¢ - k nearest neighbors in the projection;
4. refine candidates to k nearest neighbors in original data space.

Due to the use of random projections, this method may also not return the true &
nearest neighbors, but it has a high probability of retrieving the correct neighbors
[12]. In contrast to LSH, it is also guaranteed to return the desired number of
neighbors and thus to always provide enough data for density estimation and
reference sets to be used in outlier detection. When a true nearest neighbor is not
found, the false positives will still be spatially close to the query point, whereas
with LSH they could be any data.

The type of random projections discussed here are not a general purpose
technique: the Johnson-Lindenstrauss lemma only gives the existence of a ran-
dom projection that preserves the distances, but we may need to choose different
projections for different distance functions. The projections discussed here were
for unweighted L,-norm distances. Furthermore it should be noted, as pointed
out by Kaban [20], that random projection methods are not suitable to defy
the “concentration of distances”-aspect of the “curse of dimensionality” [43]:
since, according to the Johnson-Lindenstrauss lemma, distances are preserved
approximately, these projections will also preserve the distance concentration.

3.2 Space-Filling Curves

Space-filling curves are a classic mathematical method for dimensionality re-
duction [31,15]. In contrast to random projections, by space-filling curves the
data are always reduced to a single dimension. In fact, the earliest proposed
space-filling curves, such as the Peano curve [31] and the Hilbert curve [15],
were defined originally for the two dimensional plane and have only later been
generalized to higher dimensionality. A space-filling curve is a fractal line in a
bounded d dimensional space (usually [0;1]¢) with a Hausdorff dimensionality
of d that will actually pass through every point of the space.

The first curve used for databases was the Z-order. Morton [27] used it
for indexing multidimensional data for range searching, hence the Z-order is
also known as Morton code and Lebesgue curve. This curve can be obtained
by interleaving the bits of two bit strings z; and y; into a new bit string:
(T1Y122Y223Y3T4Yy - - -). The first mathematically analyzed space-filling curve
was the Peano curve [31], closely followed by the Hilbert curve [15] which is
considered to have the best mathematical properties. The Peano curve has not
received much attention from the data indexing community because it splits the
data space into thirds, which makes the encoding of coordinates complex. The
Hilbert curve, while tricky in high dimensional data due to the different rotations
of the primitives, can be implemented efficiently with bit operations [8], and has
been used, e.g., for bulk-loading the R*-tree [21] and for image retrieval [28].

Indexing data with space-filling curves as suggested by Morton [27] is straight-
forward: the data are projected to the 1-dimensional coordinate, then indexed
using a B-tree or similar data structure. However, querying such data is challeng-
ing: while this index can answer exact matches and rectangular window queries



well, finding the exact k nearest neighbors is nontrivial. Thus, for outlier detec-
tion, we will need query windows of different size in order to find the k nearest
neighbors. A basic version of this method for high dimensional similarity search
[37] used a large number of “randomly rotated and shifted” curves for image
retrieval. A variant of this approach [25] uses multiple systematically shifted —
not rotated — copies of Hilbert curves and gives an error bound based on Chan’s
work [9]. To retrieve the k nearest neighbors, both methods look at the preceding
and succeeding k objects in each curve, and refine this set of candidates.

Chan [9] gave approximation guarantees for grid-based indexes based on shift-
ing the data diagonally by 1/(d + 1) times the data extent on each axis. The
proof shows that a data point must be at least 1/(2d + 2) - 27 away from the
nearest border of the surrounding cell of size 27 (for any level £ > 0) in at
least one of these curves due to the pigeonhole principle. Within at least one
grid cell, all neighborhoods within a radius of 1/(2d + 2) - 27¢ therefore are in
the same grid cell (i.e., nearby on the same curve). By looking at the length of
the shared bit string prefix, we can easily determine the ¢ which we have fully
explored, and then stop as desired. An approximate k-nearest neighbor search
on such curves — by looking at the k£ predecessors and successors on each of the
d + 1 curves only — returns approximate k nearest neighbors which are at most
O(d'*1/P) farther than the exact k nearest neighbors, for any L,-norm [25]. For
the 1%%-nearest neighbor, the error factor is at most d'/?(4d +4) + 1 [25].

In our approach, we divert from using the systematic diagonal shifting for
which these error bounds are proved. It can be expected that the errors obtained
by randomized projections are on a similar scale on average, but we cannot
guarantee such bounds for the worst case anymore. We do however achieve better
scalability due to the lower dimensionality of our projections, we gain the ability
to use other space filling curves, and are not restricted to using d + 1 curves.
Similar to how diversity improves outlier ensembles [35, 40], we can expect diverse
random subspaces to improve the detection result.

Space filling curves are easy to use in low dimensional space, but will not
trivially scale up to high dimensionality due to the combinatorial explosion (just
as any other grid based approach) [43]. They work on recursive subdivisioning
of the data space, into 27 (3¢ for the Peano curve) cells, a number which grows
exponentially with the dimensionality d. In most cases, the ordering of points will
then be determined by binary splits on the first few dimensions only. HilOut [4]
suffers both from this aspect of the curse of dimensionality, and from the distance
concentration which reduces its capability to prune outlier candidates: since all
distances are increasingly similar, the set of outlier candidates does not shrink
much with each iteration of HilOut. For this top-n method to perform well, it
must be able to shrink the set of candidates to a minimum fast, so that it can
analyze a wider window of neighbors.

3.3 Fast Approximate kNN Search

Our proposed method to search for nearest neighbors is closely inspired by the
methods discussed before, such as HilOut. However, it is designed with paral-



Algorithm 1: Phase 1: Projection and Data Rearragement

distributed on every node do // Project data locally
foreach block do
foreach curve do
project data to curve
store projected data
send sample to coordination node
on coordination node do // Estimate distribution for sorting
foreach curve do
Read sample
Sort sample
Estimate global data distribution
send global quantiles to every node
distributed on every node do // Rearrange data in cluster
foreach curve do
foreach projected block do
‘ split according to global quantiles
shuffle to new blocks

lelism and distributed computation in mind: where HilOut uses a nested loops

approach to refine the current top candidates for a single outlier detection model,

we focus on a method to compute the k nearest neighbors of all objects (often

called kNN-self-join), so that we can then use an arbitrary kNN-based outlier

detection method. At the same time, our method becomes easy to parallelize.
The principle of the proposed method is:

1. Generate m space-filling curves, by varying
(a) curve families (Hilbert, Peano, Z-curve),
(b) random projections and/or subspaces,
(c) shift offsets to decorrelate discontinuities.
. Project the data to each space-filling-curve.
. Sort data on each space-filling-curve.
. Using a sliding window of width w x k, generate candidates for each point.
. Merge the neighbor candidates across all curves and remove duplicates.
. Compute the distance to each candidate, and keep the k nearest neighbors.

SO W N

The parameter m controls the number of curves, and w can be used to control
the tradeoff between recall and runtime, with w = 1 being a reasonable default.
The proposed algorithm can be broken into three phases. We assume that the
data are organized in blocks in a distributed file system such as HDFS (which
provides built-in functionality for data chunking) or Sparks sliced RDDs.

In the first phase (Algorithm 1), the data are projected to each space-filling
curve. The resulting data are stored on the local node, and only a sample is
sent to the central node for estimating the data distribution. The central node
then reads the projected samples, and estimates the global data distribution.
The resulting split points are then distributed to each node, and the data are
read a second time and reorganized into the desired partitions via the shuffle



Algorithm 2: Phase 2: Compute kNN and RENN

distributed on every node do // Process sliding windows
foreach curve do
foreach projected, shuffled block do
Sort block
foreach object (using sliding windows) do
‘ emit (object, neighbors)
shuffle to (object, neighbor list)
distributed on every node do // compute kNN and build RENN
foreach (object, neighbor list) do
Remove duplicates from neighbor list
Compute distances

emit (object, neighbors, () // Keep forward neighbors
foreach neighbor do
| emit (neighbor, 0, [object]) // Build reverse neighbors

shuffle to (object, kNN, RENN)

process in map-reduce. This sorting strategy was shown to scale to 100 TB
in TritonSort [34]. While this is not a formal map-reduce process (requiring
the transmission and use of auxiliary data), an implementation of this sorting
process can be found in the Hadoop “terasort” example. The first phase serves as
preprocessing to avoid having to project the data twice, and partially sorts the
data according to the spatial curves. The required storage and communication
cost is obviously O(n - m), i.e., linear in the data size and number of curves.

Algorithm 2 reads the output of the first phase. Each block in this data is
a contiguous part of a space filling curve. We first finish the distributed sorting
procedure within this data block. Then we can use a sliding window over the
sorted data set to obtain neighbor candidates of each point. By emitting (object,
neighbor) pairs to the map-reduce shuffle, we can easily reorganize the data to a
(object, neighbor list) data layout and remove duplicates. For many local outlier
detection algorithms, we will also need the reverse k-nearest neighbors (RkNN)
to orchestrate model redistribution. This can be achieved by emitting inverted
triples (neighbor, 0, object). The shuffle process will then reorganize the data
such that for each object we have a triple (object, neighbors, reverse neighbors).

In the third phase (Algorithm 3), we then compute the outlier scores using
the generalized model of Schubert et al. [36]. In the experiments, we will use
the LOF [7] model in this phase. Obviously, one can run other kNN-, SNN- [16],
and reverse-kNN-based [18,32] algorithms on the precomputed neighborhoods
as well in the same framework. The reverse-kNNs are computed by simple list
inversion to optimize data communication: this makes it easy to transmit an
object’s density estimate to the neighbor objects for comparison.

3.4 Favorable Bias of the Approximation

There exists an interesting bias in the approximation using space-filling curves
(SFCs), which makes them particularly useful for outlier detection. The error



Algorithm 3: Phase 3: Compute Outlier Scores

distributed on every node do // Compute models
foreach (object, kNN, RkNN) do

Compute model for object // Build own model

emit (object, (object, model)) // Retain own model

emit (reverse neighbor, (object, model)) // Distribute model

shuffle to (object, model list) // Collect models

distributed on every node do // Compare models

foreach (object, (neighbor, model)) do

Compare model to neighbor models

Store outlier score for model

Collect outlier score statistics // (for normalization)
emit Send statistics to coordination node
on coordination node do // Normalize Outlier Scores
Merge outlier score statistics
send statistics to every node
distributed on every node do
foreach (object, score) do

Normalize Outlier Score

if score above threshold then

‘ emit (outlier, normalized score)

introduced by SFCs scales with the density of the data: if the bit strings of two
vectors agree on the first d - £ bits, the vectors are approximately within a cube
of edge length 2~* times the original data space.

For query points in a dense region of the data, the explored neighbors will
be closely nearby, whereas for objects in less dense areas (i.e., outliers) the error
introduced this way will be much larger on average. Furthermore, for an object
central to a cluster, “wrong” nearest neighbors tend to be still members of the
same cluster, and will just be slightly farther away.

For an outlier however, missing one of the true nearest neighbors — which
may be another outlier with low density — and instead taking an even farther
object as neighbor actually increases the chance that we end up using a cluster
member of a nearby cluster for comparison. So while the approximation will
likely not affect inlier scores much, we can expect it to emphasize outliers.

This effect is related to an observation for subsampling ensembles for outlier
detection [42]: when subsampling a relative share of s objects from a uniformly
distributed ball, the kNN-distances are expected to increase by a relative factor
of (1 — s'/)/s1/. Since for outliers this distance is expected to be higher, the
expected increase will also be larger, and thus the outlier will become more
pronounced with respect to this measure.

For other use cases such as density based cluster analysis, the effects of this
approximation may be much more problematic. Such methods may fail to dis-
cover connected components correctly when a cluster is cut into half by a dis-
continuity in the space-filling curve: in contrast to outlier detection which only
requires representative neighbors, such methods may rely on complete neighbors.



3.5 Discussion

Though our approach and the related approaches, PINN [12] and LSH-based
outlier detection [39], can all be used to find the approximate nearest neighbors
efficiently, they are based on subtly different foundations of approximation.
Random projections are designed to approximately preserve distances, while
reducing dimensionality. Using an exact index on the projected data, as done in
PINN, will therefore find the k nearest neighbors with respect to the approximate
distance. The index based on locality sensitive hashing (LSH) in contrary is lossy:
it is designed to have a high chance of preserving regions of a fized size w, where
the size w is a critical input parameter: the smaller the size that needs to be
preserved, the faster the index; when the parameter is chosen too high, all objects
will be hashed into the same bin, and the index will degenerate to a linear scan.
Space-filling curves on the contrary neither aim at directly preserving dis-
tances, nor do they try to preserve regions of a given radius. Instead, space-filling
curves try to preserve closeness: the nearest neighbors of an object will often be
nearby on the curve, while far neighbors in the data space will often be far away
on the curve as well. For the purpose of density-based outlier detection, this
yields an important effect: the index based on space-filling curves is better at
adapting to different densities in the data set than the other two indexes, which
makes it more appropriate for local density-based outlier detection methods.

4 Experiments

For the experiments, all methods were implemented in ELKI [2]. We tested the
behavior of our method as well as the related approaches PINN [12] and LSH-
based outlier detection on several datasets. As a reference, we have also LOF
results based on an exact index, using the R*-tree in different variants (i.e.,
different page sizes, different bulkload strategies).

In our experiments, we used a number of larger data sets. From the image
database ALOI [13], containing 110,250 images, we extracted 27 and 64 dimen-
sional color histogram vectors. In order to obtain an outlier data set, a random
subset of the classes were downsampled, so that the final data set contains only
75,000 images, of which 717 are labeled as outliers [16]. We also extracted all geo-
graphic coordinates from DBpedia [24] (Wikipedia preprocessed as RDF triples).
This 2-dimensional data set does not have labeled outliers, and thus we used the
top-1% according to LOF as outliers. This allows to see how close methods based
on approximate neighborhoods come to the exact LOF results. However, as it is
a low dimensional dataset, runtime results demonstrate that R*-tree indexes can
work well. The forest covertype data set from the UCI machine learning repos-
itory [5] is a well known classification data set. The type cottonwood/willow is
used as outlier class. In the following, we analyse the results on the 27 dimen-
sional ALOI dataset in detail, as this data set has labeled outliers and is only of
medium dimensionality. For the other datasets, we can draw similar conclusions
and show only some sample results.
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Figure 1 visualizes the results for running the LOF algorithm on the ALOI
data set with £ = 20 on a single CPU core. In total, we evaluated over 4,000
different index variations for this data set. To make the results readable we
visualize only the skyline results in Figure 1a. The skyline are all objects where
no other result is both faster and has a higher score at the same time (upper
skyline) or where no other result is both slower and scores less at the same time
(lower skyline). The upper skyline is useful for judging the potential of a method,
when all parameters were chosen optimal, whereas the lower skyline indicates
the worst case. In Figure 1c, we give a sample of the full parameter space we
explored. Obviously, all 4,000 runs will be an unreadable cloud of points, thus
we filter the results to LSH and only one variant of SFC (random curve families
and random subspaces), which are about 700 runs. To show the continuity of
the explored parameter space, we connected similar parametrizations with a line,
more specifically for SFC indexes we connected those that differ only in window
width w and for LSH we connect those that vary the number of hash tables /.
For exact indexes, different results arise for different page sizes. Note, though,
that the skylines used typically represent hundreds of experiments. The skylines
for LSH in Figure la represent the same set of results as in Figure 1c whereas
the results for SFC in Figure 1c are restricted to the random variant and the
skylines for SFC in Figure 1a include the other variants. Based on the systematic
exploration of the parameter space as sampled in Figure 1c, it is interesting to see
that with SFC we repeatedly were able to get higher outlier detection quality
at a more than 10-fold speedup over the exact indexes. Merely when using a
single space-filling curve, the results were not substantially better. Figure la
visualizes the skyline of outlier detection quality vs. runtime, whereas Figure 1b
is an evaluation of the actual index by measuring the recall of the true 20 nearest
neighbors. In both measures, the SFC based method has the best potential —
it can even be better than the exact indexes — while at the same time it is
usually an order of magnitude faster than PINN and two orders of magnitude
faster than LSH (both at comparable quality). Even if the parameters are chosen
badly (which for SFC usually means using too few curves), the results are still
comparable to LSH and PINN. However, there is a surprising difference between
these two charts. They are using the same indexes, but the LOF ROC AUC
scores for the SFC index start improving quickly at a runtime of 1,000-2,000 ms.
The recall however, starts rising much slower, in the range of 1,500-10,000 ms.
When we choose an average performing combination for the SFC index, e.g.,
8 curves of different families combined with a random subspace projection to
8 dimensions and a window width of w = 1, we get a runtime of 4,989 ms,
a ROC AUC of 0.747, and an average recall of the true nearest neighbors of
0.132. For an explanation for such a good performance despite the low recall,
we refer the reader back to the reasoning provided in Section 3.4. In Figure 1d,
we explore the effect of different random projections. The skyline, marked as
“SFC”, does not use random projections at all. The curves titled “R SFC” are
space filling curves on randomly selected features only (i.e., feature bagging),
while “RP SFC” uses full Achlioptas style random projections. As expected, the



variant without projections is fastest due to the lower computational cost. Using
randomly selected features has the highest potential gains and in general the
largest variance. Achlioptas random projections offer a similar performance as
the full-dimensional SFC, but come at the extra cost of having to project the
data, which makes them usually slower. Figure le visualizes the relative error
of the 20-nearest neighbor distance over the recall. The SFC curves, despite a
very low recall of less than 0.2, often suffer much smaller relative error than
the other approaches. While the method does make more errors, the errors are
less severe, i.e., the incorrect nearest neighbors have a smaller distance than
those retrieved by the other methods. This is again evidence for the outlier-
friendly bias of space filling curves (Section 3.4). Figure 1f is the same sample
as Figure 1lc, but projected to LOF ROC AUC quality and recall. One would
naively expect that a low recall implies that the method cannot work well. While
algorithm performance and recall are correlated for locality sensitive hashing, the
SFC approach violates this intuition: even with very low recall, it already works
surprisingly well; some of the best results have a recall of only around 0.25 —
and outperform the exact solution. The bias (Section 3.4) again proves to be
positive. When looking at the skylines of the complete data in Figure 1g, this
even yields an upper skyline that ends at a recall of 0.2 — no result with a higher
recall performed better than this. As particular 1-dimensional projections, space
filling curves are by design more apt for low dimensional data rather than for
high dimensional data. However, by combining multiple curves, i.e., building an
ensemble of approximate neighborhood predictors, the performance gain is quite
impressive also for high dimensional data. We show skylines for different numbers
of curves combined in Figure 1h. While single curves are performing badly and
remain unstable, combinations, here of up to 18 curves, improve considerably.
For other datasets, we show samples in Figure 2. For the 64 dimensional
variant of ALOI (Figure 2a), including all variants of the exact indexes, backing
PINN and backing LOF (i.e., “exact”), we can draw the same conclusions as
for the 27d ALOI dataset. Again, our method is performing typically better
at a shorter runtime. On the 2-dimensional DBpedia dataset (Figure 2b), as
expected, we cannot beat the exact indices. However, in comparison with the
other approximate methods, our method is performing excellent. For the large
forest covertype dataset, let us study another aspect than those discussed before.
We see in Figure 2c a reason for the faster runtime behavior of our method: we
reach a good recall with far less distance computations than PINN or LSH.

5 Conclusion

We proposed a method, based on space filling curves (that can be used in combi-
nation with other approximation methods such as random projections or LSH),
for highly scalable outlier detection based on ensembles for approximate nearest
neighbor search. As opposed to competing methods, our method can be easily
distributed for parallel computing. We are hereby not only filling the gap of pos-
sible approximation techniques for outlier detection between random projections
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and LSH. We also show that this particular technique is more apt for outlier de-
tection. Its competitive or even improved effectiveness is explained by a bias of
space-filling curves favourable for outlier detection. Furthermore, the principle of
combining different approximations is related to ensemble approaches for outlier
detection [40], where the diversity is created at a different level than usual.

We rely on the same motivation as outlier detection ensembles: diversity
is more important than getting the single most accurate outlier score because
the exact outlier score of some method is not more than just some variant of
the estimate of the density-level around some point and the difference from
estimated density-levels around other points. Therefore, an approximate density
estimate, based on approximate neighborhoods, will be typically good enough
to identify just the same outliers as when computing the exact distances to the
exact neighbors which will still be only an estimate, based on the data sample at
hand, of the true but inevitably unknown density-level. Often, the results based
on approximate neighborhoods are even better.

Based on our reasoning and experimental findings, we conclude with the
following rules of thumb for the practitioner:

1. If the data dimensionality is low, bulk-loaded R*-trees are excellent.

2. If the exact distances are of importance, PINN is expected to work best.

3. If neighborhoods for a known, small radius w are needed, LSH is expected
to work best.

4. If k-nearest neighborhoods are needed, as it is the case for the most well-
known outlier detection methods, SFC is the method of choice.
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