

Reverse-Nearest Neighbor Queries on Uncertain Moving Object Trajectories

Tobias Emrich¹, Hans-Peter Kriegel¹, Nikos Mamoulis², Johannes Niedermayer¹, Matthias Renz¹, Andreas Züfle¹

¹ LMU Munich² HKU Hong Kong

Roadmap

- > Motivation
 - Trajectory Data
 - Uncertainty in Trajectory Data
- > Preliminaries
 - Markov Model
 - Bayesian Model Adaption
 - Indexing
- > Reverse-Nearest Neighbor Search on Uncertain Trajectories
 - Problem Definition
 - Pruning Techniques
 - Evaluation

> Motivation

- Trajectory Data
- Uncertainty in Trajectory Data

> Preliminaries

> Reverse-Nearest Neighbor Search on Uncertain Trajectories

Moving Object Trajectories: Motivation

- Huge flood of geo-spatial data
 - Modern technology
 - New user mentality
- Great research potential
 - New applications
 - Innovative research
 - Economic Boost
 - "\$600 billion potential annual consumer surplus from using personal location data" [1]

[1] McKinsey Global Institute. Big data: The next frontier for innovation, competition, and productivity. June 2011.

IBM.

Research Challenge

Include the uncertainty, which is inherent in trajectory data, directly in the querying process.

Assess the reliability of query results.

Enhance the underlying decision-making process.

Trajectory Data

- (object, location, time) triples
- Queries:
 - "Find friends that attended the same concert last saturday"
- Best case: Continuous function $time \rightarrow space$

GPS log taken from a thirty minute drive through Seattle Dataset provided by: P. Newson and J. Krumm. Hidden Markov Map Matching Through Noise and Sparseness. ACMGIS 2009.

Sources of Uncertainty

- Missing Observations
 - Missing GPS signal
 - RFID sensors available in discrete locations only
 - Wireless sensor nodes sending infrequently to preserve energy
 - Infrequent check-ins of users of geo-social networks

Dataset provided by: E. Cho, S. A. Myers and J. Leskovek. Friendship and Mobility: User Movement in Location-Based Social Networks. SIGKDD 2011.

Sources of Uncertainty

- Uncertain Observations
 - Imprecise sensor measurements (e.g. radio triangulation, Wi-Fi positioning)
 - Inconsistent information (e.g. contradictive sensor data)
 - Human errors (e.g. in crowd-sourcing applications)
- > From database perspective, the position of a mobile object is uncertain

Dataset provided by: E. Cho, S. A. Myers and J. Leskovek. Friendship and Mobility: User Movement in Location-Based Social Networks. SIGKDD 2011.

> Motivation

> Preliminaries

- Markov Model
- Bayesian Model Adaption
- Indexing

> Reverse-Nearest Neighbor Search on Uncertain Trajectories

Markov Model

- > Discretization of time and space
 - treat intersections as states and add additional states on long streets
 - The time interval corresponding to a tick is e.g. 20 sec

- > Estimation of model parameters
 - Transition probabilities from one state to another are learned from historical data (very sparse matrix!!)
 - Transition matrix can change over time and for different object groups

Model Adaption: Observations [1]

- So far we had only one observation
 from which we could extrapolate
- This is not really of interest since cars do not move randomly
- With two observations we have to introduce more artificial states and adapt the techniques

[1]J. Niedermayer, A. Züfle, T. Emrich, M. Renz, N. Mamoulis, L. Chen, H.-P. Kriegel: *Probabilistic Nearest Neighbor Queries on Uncertain Moving Object Trajectories.* PVLDB 2013

Indexing Uncertain Trajectory Data [2]

- > With the above techniques each object in the database has to be processed
- > Index Structure based on R-Tree indexing the ST-Space

[2] T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz, and A. Züfle. *Indexing uncertain spatio-temporal data.* CIKM 2012.

> Motivation

> Preliminaries

> Reverse-Nearest Neighbor Search on Uncertain Trajectories

- Problem Definition
- Pruning Techniques
- Evaluation

Reverse Nearest Neighbor Queries: Example

A probabilistic $\exists(\forall)$ reverse nearest neighbor query retrieves all objects having a sufficiently high probability to be the reverse nearest neighbor of a query trajectory q for at least one point of time (each point of time) in a query time window T.

object	trajectory	P(tr)
o ₁	tr _{1,1} = s ₄ , s ₂ , s ₁	0.4
o ₁	tr _{1,2} = s ₄ , s ₇ , s ₇	0.6
o ₂	$tr_{2,1} = s_{3,} s_{3,} s_{5}$	0.2
0 ₂	$tr_{2,2} = s_{3,} s_{5,} s_{3}$	0.8

16

Reverse Nearest Neighbor Queries: Example

A probabilistic $\exists(\forall)$ reverse nearest neighbor query retrieves all objects having a sufficiently high probability to be the reverse nearest neighbor of a query trajectory q for at least one point of time (each point of time) in a query time window T.

object	trajectory	P(tr)
o ₁	$tr_{1,1} = s_{4,} s_{2,} s_{1}$	0.4
o ₁	$tr_{1,2} = s_{4,} s_{7,} s_{7}$	0.6
o ₂	$tr_{2,1} = s_{3,} s_{3,} s_{5}$	0.2
0 ₂	$tr_{2,2} = s_{3,} s_{5,} s_{3}$	0.8

Example Query: Return objects having a non-zero probability to be the RNN of q at time t=2 and t=3.

Temporal Pruning

Prune page regions of the index not overlapping the query in time.

Spatial Pruning

- Rectangle based pruning at single points of time of the query.[3]
 - Can q(t) be closer to C(t) than A(t)?
 - => C is a candidate at time t
 - Must q(t) be closer to C(t) than A(t)?
 - \Rightarrow C is a true hit at time t
- > Union(Intersect) to obtain probabilistic
 ∃(∀) reverse nearest neighbor candidates

Verification

- > Monte-Carlo-Sampling
 - Using a-posteriori transition matrices conditioned to observations
 - For each sampled world
 - > Check for each object o if it is a $\exists(\forall)$ reverse nearest neighbor
 - Use the relative number of sampled worlds where o is a ∃(∀) reverse nearest neighbor as an unbiased estimator of the probability p that o is a ∃(∀) reverse nearest neighbor.
 - Use standard techniques to obtain a confidence interval of the probability of a binomial random variable.

Evaluation

21

Does the Markov assumption hold in reality ?

- Of course single cars do not follow the Markov Chain (weighted random walk)
- However the Markov Model is just the apriori Model in which we infer the observations

- + A-posteriori Markov model
- * A-priori Markov model
- imes A-posteriori Markov model without a-priori knowledge
- Spatio-Temporal approximations (competitor approach)