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Abstract. A bicriteria network is an interlinked data set where edges
are labeled with two cost attributes. An example is a road network where
edges represent road segments being labeled with traversal time and en-
ergy consumption. To measure the proximity of two nodes in network
data, the common method is to compute a cost optimal path between
the nodes. In a bicriteria network, there often is no unique path be-
ing optimal w.r.t. both types of cost. Instead, a path skyline describes
the set of non-dominated paths that are optimal under varying prefer-
ence functions. In this paper, we examine the subset of the path skyline
which is optimal under the most common type of preference function,
the weighted sum. We will examine characteristics of this more strict
domination relation. Furthermore, we introduce techniques to efficiently
maintain the set of linearly non-dominated paths. Finally, we will in-
troduce a new algorithm to compute all linearly non-dominated paths
denoted as linear path skyline. In our experimental evaluation, we will
compare our new approach to other methods for computing the linear
skyline and efficient approaches to compute path skylines.

1 Introduction

In recent years graph data has gained much importance in numerous informa-
tion management systems. For example, spatial databases no longer rely on free
movement and simple distance measures but more restrictive movement pat-
terns, e.g. along streets or railways being modelled as a network. Other appli-
cations for graph data include social networks, computer networks or the world
wide web itself. In all these networks it is often of interest to determine cost-
optimal paths between nodes in order to determine connections or to simply
measure the distance. The cost for traversing an edge usually depends on the
application, e.g. the number of common friends in social networks or the en-
ergy consumption within a street network. Using a single cost criterion is often
strongly restrictive. For example, when planning a bicycle route, minimizing only
the distance is usually not sufficient. To determine the difficulty of a route, con-
sidering the ascension of a path is essential. In order to employ multiple criteria
when computing optimal paths, a straight forward way is to combine the cost
criteria into a single value and optimize the combined costs. However, finding a
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Fig. 1. The Linear Skyline consists of a subset of the elements of the Ordinary Skyline.

meaningful cost combination means weighting the impact of each cost criterion.
This usually depends on personal preferences, the semantics of the application
as well as the scale of the cost criteria. Hence, finding an appropriate weighting
is often very difficult. An alternative way to cope with multiple cost criteria is to
determine all results that could potentially be optimal under an arbitrary cost
combination. In the database community this type of query is known as skyline
query [1]. The result set of a skyline query contains elements which are not dom-
inated in the following sense: Object o is dominated by object q if for each cost
criterion the cost of o is equal or larger than the cost of q, and for at least one
criterion the cost of q is strictly smaller than the cost of o. This means, there is
no non-negative cost combination where p would be preferable to q. The task of
computing a skyline of paths in a network is called Route Skyline Computation
[2] or Multiobjective Shortest Path Search [?].

Though posing a skyline query does not require the explicit specification of
attribute weights, it still yields two practical problems limiting its usability. The
number of non-dominated solutions typically grows superlinear in the number
of criteria. In consequence, there often is an abundance of results having very
similar costs. Furthermore, for more than two cost criteria, it is hard to determine
the conditions and the combination functions which would lead to the optimality
of a particular element of the skyline. In order to keep the result set easier to
interpret and the amount of potentially optimal paths on a moderate level, we
will focus on the basic case of optimizing two cost criteria. This case also exhibits
mathematical benefits.

To reduce the amount of results to a more intuitive set, we propose the
novel concept of linear skyline queries. A linear skyline consists of the subset
of the conventional skyline which is optimal under all linear combination func-
tions. This concept is introduced more formally in Section 3 and visualized in



Figure 1. The linear skyline contains fewer and more diverse results. Also, the
characteristics of both skyline notions differ greatly. In contrast to conventional
domination, linear domination is defined through sets of objects. In the course
of this paper, we will introduce and discuss the concept and the computation of
linear skylines.

Though the task of computing a linear skyline itself is novel, there exist
approaches which employ the concept as a preprocessing step towards comput-
ing conventional skylines. In contrast to existing approaches (cf. Section 2), we
propose a two-step method which is based on the idea of label correction for
computing the conventional skyline. Our novel method is mainly based on new
techniques to efficiently manage linearly non-dominated solutions, allowing effi-
cient updates and deletions. To summarize, the contributions of the paper are
the following: the introduction of linear skyline computation as a novel type of
query within a network, a discussion of the properties of linear skylines, and an
efficient algorithm that exploits the more restrictive dominance relation.

The rest of the paper is organized as follows: In Section 2, we discuss related
work. The general setting and formalizations are given in Section 3. Section 4
describes our new algorithm for computing the linear path skyline. In Section
5, we compare our new algorithm to methods that can be adapted to compute
linear skylines. Section 6 summarizes the paper and presents some ideas for
future work.

2 Related Work

In the database community, the skyline operator was introduced in [1]. Multi-
ple approaches to compute skylines in database systems on sets of cost vectors
followed [4–6]. Also, different notions of dominance have been presented. In [7]
k-dominant skylines are proposed which generalize the dominance relationship
by requiring that an object needs to improve any other object in at least k
attributes. The approach in [8] is based on identifying subspaces in which the
skyline contains a limited amount of solutions. [9] demonstrates that the selection
of the k most representative skyline objects is a non-trivial task and proposes a
dynamic programming algorithm for two cost criteria and a polynomial time al-
gorithm for higher dimensionalities. In [10], the authors propose to group skyline
points w.r.t. the subspace for which they are part of the skyline.

For network data, the following approaches have been introduced. In [12],
the authors introduce a method for calculating a skyline of landmarks in a road
network that are compared w.r.t. their network distance to several query ob-
jects. In [13] the authors propose in-route skyline processing in road networks.
Assume that a user is moving along a predefined route to a known destination,
the algorithm processes minimal detours to sets of landmarks being distributed
along the path. In [14] the authors discuss continuous skyline queries in road
networks, i.e. a moving user queries for a skyline of point of interest. The most
similar setting to the approach being presented in this paper is computing route
skylines [2]. In this task, we want to find all paths between two nodes in a mul-



ticost network where the costs of paths are not dominated by any other path
between the same two nodes. In Operations Research the task of computing a set
of non-dominated solutions is known as multiobjective optimization or pareto
optimization [?]. In case there are only two cost criteria the task is named bicrite-
ria shortest path problem. This setting is of special interest because the amount
of results is usually less extensive than in higher dimensions, and the result is
much easier to interpret by users. Furthermore, the multicriteria and bicriteria
shortest path problems are known to be NP-hard [16]. Thus, the limitation helps
to keep the computational effort at an applicable level. Finally, the limitation
to a two-dimensional cost space allows several optimizations which cannot be
transferred to higher dimensional cost spaces.

In [17] the authors describe a comparison of several state-of-the-art methods.
The label correcting method [18] maintains a set of non-dominated solutions at
each node. Another approach is the near-shortest path method [20] which is
based on the idea of computing all paths having a length within a certain devia-
tion from the length of the optimal path for one criterion. Finally, [21, 17] finds all
non-dominated paths in a two-phase approach. The first phase computes the set
of so-called supported solutions, followed by the second phase determining the
remaining results. These supported solutions are equivalent to the linearly non-
dominated solutions we aim to find in this paper. In [17], the authors compared
several algorithms for determining the supported solutions. The most success-
ful method for computing k supported solutions is based on 2 · k − 1 Dijkstra
searches, each with a different linear cost combination as optimization criterion.
We will compare two improved versions of this approach in our experiments.

Our method does not employ any precomputation step [22] and thus, it is
applicable to dynamically changing network costs. To guide our search towards
the target, our method generates optimal lower bound estimations as part of the
query processing algorithm as proposed in [3].

The linear path skyline as described in this paper is part of of the convex
hull over the cost vectors of all paths between start and target. However, the set
of all paths is not available at query time. Thus, efficient methods to determine
the convex hull cannot be applied to solve the problem being described in this
paper.

3 Preliminaries

A bicriteria network is a directed graph G = (V,E) where V denotes the set of
vertices and E ∈ V ×V denotes the set of directed edges. Furthermore, we assume
the existence of two cost functions c1, c2 : E → IR≥0. In case G describes a road
network the cost functions may represent height differences, travel distances or
the number of traffic lights. Every edge (u, v) ∈ E is labeled with a non-negative
two-dimensional cost vector, c((u, v)) := ((u, v)1, (u, v)2). A path or route P
is a consecutive set of edges ((s, v), . . . , (u, t)) which does not visit any node
twice. Likewise, any path has a cost vector p = (p1, p2) =

∑
(u,v)∈P c((u, v)).

Throughout this paper, we shall denote paths with capital letters (e.g. P ) and



the corresponding cost vector with the same lowercase letter (e.g. p). For multiple
paths, we either choose different capital letters or superscript their indices.

Given a start node s ∈ V and a target node t ∈ V , our algorithm computes
a subset of all the routes R := R(s, t) starting at s and ending at t. Let us note
that the following definitions and theoretical results are equally applicable to
any set of vectors in IRd

≥0 as well.
In order to distinguish between linear skylines and skylines in the ordinary

sense, we first recall the definiton of conventional skylines and the conventional
dominance relation they are based on. For reasons of generality, we do not restrict
our definitions to the bicriteria case.

Definition 1 Conventional Route Skyline
Let R be a set of paths in a d-dimensional cost space. Then P ∈ R dominates
Q ∈ R, denoted as p ≺ q (orP ≺ Q), iff

∃ 1 ≤ i ≤ d : pi < qi ∧ @ 1 ≤ i ≤ d : pi > qi.

The set of non-dominated routes, i.e. {P ∈ R | @Q ∈ R : q ≺ p}, is denoted
conventional skyline.
Let § be a set of non-dominated paths and Q be a route. If there exists P ∈ § such
that p ≺ q, we say Q is dominated by §. Conversely, we say Q is non-dominated
by § if no such P exists.

After describing conventional dominance, we now present the definintion of
linear dominance which is more strict.

Definition 2 Linear Dominance
Let R be a set of paths in a d-dimensional cost space. P ∈ R w-dominates
Q ∈ R, where 0 6= w ∈ IRd

≥0, iff wT p < wT q. w is called a weight vector.

Definition 3 Linear Skyline
Let R be a set of paths in a d-dimensional cost space.
A subset S ′ = {P 1, . . . , PK} ⊆ R linearly dominates a path Q ∈ R, denoted as
S ′ ≺lin Q (or {p1, . . . , pK} ≺lin q) iff

∃ P ∈ S ′ : P ≺ Q) ∨ (∀ w ∈ IRd
≥0 ∃P ∈ S ′ : wT p < wT q.

The maximal set of linearly non-dominated paths (i.e. for all Ŝ ) S ′ exists
Q ∈ Ŝ \ S ′ such that S ′ ≺lin Q) is referred to as linear skyline.

In contrast to conventional domination, testing for linear domination might
require comparing an object to more than one other object. That is, unless
an object is already conventionally dominated. The definition also implies that
the set of linearly non-dominated paths is a subset of the conventionally non-
dominated paths. Figure 1(a) and 1(b) illustrate both concepts on the same
two-dimensional dataset.

The term linear dominance has a graphical intuition: Consider a two-dimensional
cost space. One would expect K linearly non-dominated paths {P 1, . . . , PK} to
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dominate another path Q if q lies “behind” any line that can be spanned by the el-
ements of {p1, . . . , pK}. Thus, the area being linearly dominated by {p1, . . . , pK}
corresponds to the the part of the convex hull being directed towards the origin.
Furthermore, the line connecting q to the origin has to intersect this hull.

We show that this intuition coincides with our definition for two-dimensional
cost spaces. The proof for an arbitrary number of dimensions is not straight
forward and therefore omitted here.

Theorem 1 Let O and Q be two paths with o1 < q1 and q2 < o2 and let P be
another path, for which we want to know if it is linearly dominated by {O,Q}.
Let n be the normal vector of the line between O and Q, such that nT o = nT q.
u shall be the component-wise minimum of o and q, such that u1 = min(o1, q1)
and u2 = min(o2, q2). Then, it follows that:

{o, q} ≺lin p ⇔ u ≺ p ∧ nT p > nT o = nT q

This is illustrated in Figure 2.

Proof. If P is conventionally dominated by O or Q, P has to lie above the line
between o and q such that nT p > nT o = nT q and p is also dominated by the
component-wise minimum u of o and q. If p is not dominated by u, p has either a
smaller x-value than both o and q, a smaller y-value than both, or dominates o or
q. If p is not dominated by u, it is therefore not linearly dominated by {o, q}. In
the remaining cases, p is not dominated by o or q but is dominated by u. From the
statement {o, q} ≺lin p then follows that ∀ w ∈ R≥0 : wT o < wT p∨wT q < wT p.
This contradicts nT o = nT q ≥ nT p for w = n and therefore requires nT p > nT o.
If p is dominated by u, p therefore lies above the line between o and q if it
is linearly dominated by {o, q}. Accordingly if nT p ≤ nT o = nT q there is a
contradiction with {o, q} ≺lin p. If p is dominated by u, p is therefore not
linearly dominated by {o, q} if it lies below the line or on the line between o and
q.



Based on this comprehension of linear skylines, we now move on to introduce
the algorithmic structure of our approach.

4 Linear Skyline Computation in Bicriterion Networks

In this section, we will describe our new method and its theoretical foundations.
We will start with describing our solution to the most critical aspect of our
algorithm, efficiently maintaining all linearly non-dominated paths between two
nodes s and v. Afterwards, we will describe our complete algorithm and all its
remaining steps in detail.

4.1 Managing Linear Skylines

As for conventional domination, it can be shown that for any linearly non-
dominated path P from s to t all subpaths from s to any intermediate node
v ∈ P are non-dominated in the linear skyline S(s, v).

Lemma 1. Let P = ((s, n1).., (ni, v), ..(nj , t)) ∈ S(s, t) then any subpath Q =
((s, n1), .., (ni, v)) is linearly non-dominated in S(s, v).

Proof. Given that the cost vector p of path P is linearly non-dominated, we
know that ∃ w ∈ IRd

≥0 where wT p is optimal. If there would be a subpath

Q = ((s, n1), .., (ni, v)) of P which is linearly dominated in LS(s, v) then wT q
cannot be optimal because that linear domination implies w-domination as well.
Thus, exchanging Q with Q̂ with wT q̂ < wT q implies the existence of a path P̂
with wT p̂ < wT p. This is a contradiction to P ∈ S(s, t).

Based on this lemma, it makes sense to only extend paths not being linearly
dominated during traversal. Furthermore, after extending a path P from s to v,
it has to be checked whether there are any other paths P i, P j linearly dominating
P . If P is linearly non-dominated, it must be stored with v as part of its local
linear skyline S(s, v). Furthermore, we have to delete any other P i ∈ S(s, v) for
which ∃ P j ∈ S(s, v) : {p, pj} ≺lin pi holds.

This step is the most critical operation in our algorithm because it is per-
formed frequently during each query. Moreover, the complexity increases with
the number of elements in S(s, v). Thus, optimizing this operation is the key to
efficiently computing linear skylines.

A naive solution to solve this problem is to compare the new path P to any
pair P i, P j ∈ S(s, v), i 6= j,. If a new path P is non-dominated, we also need to
check whether for any pair P i, P j ∈ S(s, v), {p, pj} ≺lin pi holds. All paths P i

for which this property holds must be deleted from S(s, v). Both steps have a
quadratic complexity in the number of elements K being contained in S(s, v).

A characteristic of linear skylines in a two-dimensional cost space is that
sorting the values of the first criterion in ascending order implies an descending
order in the second criterion. Formally, an ordering of S(s, v) can be expressed
as a tuple (P 1, . . . , PK) where ∀ i < j ∈ {1, ..,K} the following conditions hold:



pi1 < pj1 ∧ pi2 > pj2. This follows directly from the definition of conventional
domination.

For a given path P and a linear skyline S(s, v), we refer to the elements
P k, P k+1 ∈ S(s, v) being closest to p w.r.t. the first cost criterion as neighbors.
We refer to P k with pk1 ≤ p1 as left neighbor and denote P k+1 with pk+1

1 > p1
as right neighbor. At least one of both neighbors must exist, unless S(s, v) = ∅.
For checking linear dominance, it is only necessary to compare to the potential
neighbors of P in S which is shown in the following lemma.

Lemma 2. Given a path P = ((s, v), . . . , (u, t)) and the linear skyline S(s, v) =
(P 1, .., PK). Then the following statements hold:
Case 1: If p11 > p1 then P is linearly non-dominated in S(s, t).
Case 2: If pK1 < p1 ∧ pK2 > p2 then P is linearly non-dominated.
Case 3: If ∃ k ∈ {1, ..,K−1} with pk1 ≤ p1∧pk+1

1 ≥ p1 and ∃O,Q ∈ S(s, v) with
{o, q} ≺lin p then {pk, pk+1} ≺lin p holds as well.

Proof. Case 1: p1 < p11 ⇒ p1 < pi1 with 1 ≤ i ≤ K. Thus, P w-dominates all P i

for w = (1, 0). Case 2: p2 < pK2 ⇒ p2 < pi2 with 1 < i < K. Thus, P w-dominates
all P i for w = (0, 1). If neither case 1 nor case 2 applies, P has two neighbors
and case 3 applies. Case 3: There are only two valid orderings for the values
o1, q1, p

k
1 , p1, p

k+1 where {o, q} ≺lin q and pk1 ≤ p1 ≤ pk+1
1 can both hold.

Subcase 1: o1 ≤ q1 ≤ pk1 ≤ p1 ≤ pk+1
1 . From q1 ≤ p1 ∧ o1 < p1 follows q2 < p2

Since P k ∈ S(s, v) ∧ q1 ≤ pk1 ⇒ q2 > pk2 . Therefore, pk1 ≤ p1 ∧ pk2 ≤ p2 which
implies pk ≺ p⇒ {pk, pk+1} ≺lin p.
Subcase 2: o1 ≤ pk1 ≤ p1 ≤ pk+1

1 ≤ q1 This case can be shown by contradic-
tion. Assume {pk, pk+1} ≺lin p does not hold. Then either {o, q} ≺lin pk or
{o, q} ≺lin pk+1 or both would hold. This is a contradiction to P k, P k+1 ∈
S(s, v).

Practically, this observation allows us to reduce the amount of domination
checks to one single check for each insertion candidate. Furthermore, determining
the neighbors of P in S(s, v) can be performed using a binary search w.r.t. the
first criterion. Thus, the complexity of checking whether P has to be inserted
into S(s, v) has a time complexity of O(log |S(s, v)|).

As mentioned above, we have to check whether inserting P leads to the
deletion of other elements from S(s, v). The general idea of how to efficiently
determine elements which are now linearly dominated is the following: All dom-
inated elements have to be either conventionally dominated by P or linearly
dominated by P and some other element P i ∈ S(s, v). To find all linearly dom-
inated paths efficiently (rather than testing all pairs), we propose to start two
linear searches. The first search beginning with the left neighbor and the second
search beginning with the right neighbor of P . As was shown in Lemma 2 a
path P i is only dominated, if it is dominated by both of its neighbors. Thus,
it is sufficient to check whether P k is dominated by P and its other neighbor
P k−1 when searching to the left side and P k+1 when searching to the right side.
Let us note that the left neighbor P k−1 can already conventionally dominate a
path P k. Thus, we can improve the search in the left direction by checking this



simpler property before testing for linear dominance. If P k indeed is dominated,
there might be more dominated objects in the same search direction and we
would have to repeat the domination check with the new neighbor. On the other
hand, if P k is not linearly dominated, we can stop the search in this direction.
Formally, this is formulated in the following lemma:

Lemma 3. Given a linear skyline S(s, v) = (P 1, .., PK) being ordered w.r.t. the
first cost criterion and a new non-dominated Path P . For any P k ∈ S(s, v) with
pk1 < p1 it holds that if {p, pk−1} ≺lin pk does not hold then @ i ∈ {1, .., k} :
{p, pi−1} ≺lin pi. Correspondingly, for any P k ∈ S(s, v) with pk1 > p1 it holds
that if {p, pk+1} ≺lin pk does not hold,then @ i ∈ {k, ..,K} : {p, pi+1} ≺lin pi.

Proof. From Lemma 2 we know that if P k is linearly dominated it has to be
linearly dominated by its neighbors P k−1 and P k+1. If neither P k−1 nor P k+1

have been deleted from S(s, v), the new path P cannot be a neighbor of P k

and since P k−1, P k, P k+1 were members in the original linear skyline S(s, v),
P k must remain linearly non-dominated.

To conclude, when determining the dominated elements of S(s, v), we have
to repeatedly check the current neighbors of P . If a neighbor is not linearly
dominated, we can terminate the search in this direction. Updating the linear
skyline S(s, v) has a linear worst case complexity in K = |S(s, v)| because in
the worst case we have to delete any former elements of S(s, v). Let us note
that the results of the dominance checks are negative in the majority of cases.
Typically, we only have to perform the domination test having a logarithmic
time complexity.

4.2 Computing Bicriterion Linear Skylines

After describing the efficient management of linear skylines, we will now specify
our complete algorithm for computing linear skylines in bicriteria networks. In
general, our algorithm starts to construct linearly non-dominated paths begin-
ning with the start node s by successively selecting nodes and expanding all
linearly non-dominated paths being discovered so far. Furthermore, we mark
paths which have been already expanded to avoid duplicate expansions.

Our method employs two pruning rules to exclude paths which cannot be
extended into a linearly non-dominated result path. The first is that a path
ending at node v has to be linearly non-dominated in S(s, v). To enforce this
rule, we maintain a local linear skyline for each visited node v and delete all
paths that are linearly dominated.

The second pruning method is based on the condition whether a path P
might be extended into a linearly non-dominated path between s and t. In other
words, any path P = ((s, n1), ..(ni, v)) having a cost vector being already linearly
dominated in S(s, t) does not have to be extended because any extension from
v to t would only add costs. Thus, the extension would be dominated in S(s, t)
as well. This pruning method can be considerably improved by adding a lower



Algorithm 1 BLRSC

Require: start s and target t
Ensure: Linear Route Skyline between s and t

Compute Minimal costs to t using backward Dijkstra search
init queue Q of nodes with s
while ¬ Q.isEmpty do

n := Q.pop
for all Path P ∈ S(s, n) do

if ¬P.isExtended then
if (p+nmin) not linearly dominated in S(s, t) /*forward estimation*/ then

for all Outgoing Link (n,m) of Node n do
O := extend(P,(n,m))
Search P k, P k+1 for O in S(s,m) using binary search
if ¬({pk, pk+1} ≺lin o) then

i = k // prune dominated elements left of o
while i > 2 ∧ {pi−1, o} ≺lin pi do

Delete pi from S(s,m)
i = i− 1

end while
i = k + 1 // prune dominated elements right of o
while i < (|S(s,m)| − 1) ∧ {o, pi+1} ≺lin pi do

Delete pi in S(s,m)
i = i + 1

end while
Q.insertOrUpdate(m)

end if
end for

end if
P.setExtended

end if
end for

end while
return S(s,t)

bound of the cost values for each cost criterion. In [2] a reference point embed-
ding is used to estimate the lower bound costs. This method has two drawbacks.
The first is that the quality of the cost approximation strongly depends on the
selected reference points. The second drawback is that a reference point embed-
ding requires offline precomputation which limits the usablitiy of this solution
under dynamically changing cost values. Recently, [3] proposed to generate op-
timal forward estimations during query processing by performing two reverse
single-source all-target Dijkstra searches from the target t to the start s. The
method starts by determining the shortest path SP 1 = ((s, n1), .., (ni, t) with
respect to criterion 1 und thus, derives an upper bound w.r.t. criterion 2 sp12.
Afterwards, we compute the shortest path to SP 2 = ((s,m1), .., (mj , t) w.r.t.
criterion 2 and thus, receive an upper bound for the costs in criterion 1 sp21.
Now we continue the search w.r.t. criterion 1 until all nodes having a smaller



cost than sp21 are found. Finally, the search w.r.t. criterion 2 is continued un-
til all nodes having a smaller distance than sp12 are retrieved. This way, each
visited node v can be labeled with a cost vector (vmin

1 , vmin
2 ) representing the

costs of the shortest paths between v and t. Though this precomputation step
seems to be rather expensive, it offers a tight lower bound for any intermediate
node which extremely increases the pruning power of the global pruning criterion
testing forward estimations against already retrieved paths. Since the step con-
structing all linearly non-dominated paths is multiple times more expensive than
the backsearch determining the lower bound costs, using this step still yields a
dramatic runtime improvement.

Algorithm 1 describes our method in pseudocode. In the first step, we per-
form the precomputation step by performing the reverse single-source all-target
Dijkstra searches starting with the target node t. In the next step, the forward
traversal is started. We maintain a priority queue of nodes being ordered w.r.t.
the first attribute in ascending order. The queue is initialized by adding the start
node s. For each visited node v, we store a linear skyline which is managed as an
ordered list. The priority of a node always corresponds to the smallest cost value
of any linearly non-dominated path which has not been extended yet. Already
extended paths are kept in the skyline to use them to dominate other paths, but
are marked to prevent multiple extensions. In the main loop the algorithm pops
the top node v. For each unprocessed path P ∈ S(s, v, ), we check linear domi-
nance in the current result skyline S(s, t) by adding the lower bound costs from
v to t to the cost vector p. If p is dominated, it is flagged as already extended. If
the forward estimation of p is not linearly dominated yet, the path is extended
with all outgoing edges of node v. Each new path P̂ ending at node n is checked
for linear dominance in the current skyline S(s, n). If P̂ has to be inserted into
S(s, n), all linearly dominated results are removed from S(s, n) by successively
searching the left and the right neighbors until a linearly non-dominated path is
found in each direction. Furthermore, the node n is either inserted into the pri-
ority queue or its position in the queue is checked for a potential improvement.
The algorithm terminates, if the queue is empty meaning that there is no path
left which can be potentially extended into a result path.

5 Evaluation

All experiments are performed on a dedicated machine with an 3.0 Ghz Intel
Xeon 5160 processor and 32 GB RAM. The algorithms were implemented in Java
1.7 and do not make use of multiple cores. Each task is consecutively solved by
all compared algorithms and the execution order is randomized for each task. If
an algorithm is not able to solve a task in less than 60 seconds the computation
is aborted and it is counted as a timeout. Three separate runs of all tasks are
performed and the average of these three runs is used. This experimental setup
is intended to ensure similar evaluation conditions, eliminate possible evaluation
order effects and smooth out runtime discrepancies.

There are four different graphs on which routing tasks are performed:



Table 1. Overview of absolute runtime averages. In case of timeouts (>60s) the
rounded number of timeouts is denoted next to the † symbol.

cost criteria time & distance time & crossings rand.1 & rand.2
graph Gmunich Gbavaria Gmunich Gbavaria G250×250 G50×50×50
# of tasks 2450 90 2450 90 4 8

BLRSC 0.2s 4s 0.36s 4.83s 17s 22.49s

Multi-A∗ 0.21s 5.13s 0.37s >8.47s †3 30.4s >55.4s †4

ARSC 0.25s >21.06s †18 0.4s >11.12s †6 >60s †4 >60s †8

Multi-BD 0.61s >33.05s †32 0.41s >17.54s †13 30.85s 41.3s

1. Gmunich is a OpenStreet Map (OSM) road network of the area around Munich
which covers 6 992 km2 including the neighboring city Augsburg and consists
of 782 030 nodes and 1 595 261 edges. The 2450 routing tasks on this graph
are between 50 city districts and municipalities in and around Munich.

2. Gbavaria is a OSM road network of Bavaria which covers 70 549 km2 and
consists of 4 044 556 nodes and 8 298 017 edges. The 90 routing tasks on this
graph are between 10 major Bavarian cities.

3. G250×250 is a 2d grid network with 62 500 nodes and 249 000 edges. The 4
routing tasks on this graph are between opposite corners of the grid.

4. G50×50×50 is a 3d grid network with 125 000 nodes and 735 000 links. The 8
routing tasks on this graph are between opposite corners of the lattice.

On Gmunich and Gbavaria, the criteria time & distance and time & crossings
are used for the routing tasks. On G250×250 and G50×50×50, the criteria rand.1 &
rand.2 are used which have independent pseudorandom cost values.

We compare our new method BLRSC to three other algorithms: The first
is ARSC [2] to a have a comparision partner for computing conventional route
skylines. We modified ARSC by using the same precomputation step proposed in
[3] to achieve a better comparability to BLRSC. Multi-BD represents the state-
of-the-art for computing supported solutions as proposed in [17]. For Multi-BD,
the single objective shortest paths are computed using Bidirectional Dijkstra.
However, the lower bounds in [3] can be used in combination with the approach
from [17] as well which allows us to employ A∗-search instead of Bidirectional
Dijkstra. We will refer to this algorithm as Multi-A∗ and compare to this ap-
praoch to evaluate how much of the performance gain is caused by the optimal
lower bounds.

As can be seen in Table 1 the proposed algorithm BLRSC has the lowest
runtime average in all experimental conditions, and it is the only algorithm in
the experiments which solves all tasks in less than 60 seconds. As can be seen in
Figure 3 this is the case throughout different task difficulties which is assessed
through the number of hops between end points. The only exception can be seen
in Figure 4(a), where Multi-BD is faster than BLRSC for less than 300 hops.
BLRSC is also clearly faster for grid networks as can be seen in Figure 4. BLRSC
is on average significantly faster than the previous approach Multi-BD. As can



Table 2. Overview of runtime averages relative to runtime averages of our main contri-
bution BLRSC. In case of timeouts (>60s) the rounded number of timeouts is denoted
next to the † symbol.

cost criteria time & distance time & crossings rand.1 & rand.2
graph Gmunich Gbavaria Gmunich Gbavaria G250×250 G50×50×50
# of tasks 2450 90 2450 90 4 8

BLRSC 1 1 1 1 1 1

Multi-A∗ 1.05 1.28 1.02 >1.75 †3 1.78 >2.46 †4

ARSC 1.22 >5.25 †18 1.09 >2.29 †6 >3.52 †4 >2.66 †8

Multi-BD 2.98 >8.24 †32 1.12 >3.62 †13 1.81 1.83
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Fig. 3. Values on the x-axis are numbers of hops between end points and values on the
y-axis are average runtimes in seconds.

be seen in Table 2, on Gmunich with criteria time & distance it is about three
times faster and on Gbavaria more than eight times faster, and on Gbavaria with
criteria time & crossings it is more than three times faster.

ARSC performs very poorly on G250×250 and G50×50×50, where it cannot solve
a single task in less than 60 seconds which is also the worst performance out of
all tested algorithms. ARSC is also more than five times slower for than BLRSC
on Gbavaria with time & distance. Multi-A∗ also performs poorly on G250×250 and
G50×50×50, where it is even slower than Multi-BD and much slower than BLRSC.
It is also at least about twice as slow on Gbavaria using time & crossings than
BLRSC. The experiments therefore show that BLRSC clearly outperforms all
other tested approaches and that its performance gain is not only caused by the
use the forward estimation. In other words, making use of the forward estimation
with ARSC or using multiple A∗ searches performs worse than BLRSC.

6 Conclusions

In this paper, we introduced linear skyline queries as a new query type in bicrite-
ria network data. After discussing related work in different research communities,
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we proposed a new algorithm which is based on efficient techniques for manag-
ing and updating linear skylines. Our new algorithm performs two steps. In a
first precomputation step, we perform two network traversals to determine lower
bounds for both cost criteria and all nodes being potentially visited during the
search. In the next step, we use these lower bounds to perform a third graph
traversal determining the linear skylines for all visited nodes until the linear
skyline of the target is complete. In our experimental evaluation, we compare
our new algorithm to the state-of-the-art algorithm for computing supported
solutions which is the same task from a technical point of view. It can be ob-
served that our new approach outperforms the compared methods, even though
the compared methods were optimized by more efficient search techniques.

For future work, we would like to develop new efficient methods for determin-
ing linear path skylines in general multicriteria datasets. Furthermore, we would
like to investigate linear path skyline computation under time-dependency, i.e.
at least one cost criterion depends on the time an edge is visited.
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