
Probabilistic Nearest-Neighbor Query
on Uncertain Objects

Hans-Peter Kriegel, Peter Kunath, Matthias Renz
University of Munich, Germany

 {kriegel, kunath, renz}@dbs.ifi.lmu.de

Abstract. Nearest-neighbor queries are an important query type for commonly
used feature databases. In many different application areas, e.g. sensor databases,
location based services or face recognition systems, distances between objects
have to be computed based on vague and uncertain data. A successful approach
is to express the distance between two uncertain objects by probability density
functions which assign a probability value to each possible distance value. By in-
tegrating the complete probabilistic distance function as a whole directly into the
query algorithm, the full information provided by these functions is exploited.
The result of such a probabilistic query algorithm consists of tuples containing the
result object and a probability value indicating the likelihood that the object sat-
isfies the query predicate. In this paper we introduce an efficient strategy for pro-
cessing probabilistic nearest-neighbor queries, as the computation of these prob-
ability values is very expensive. In a detailed experimental evaluation, we dem-
onstrate the benefits of our probabilistic query approach. The experiments show
that we can achieve high quality query results with rather low computational cost.

1 Introduction

In many modern application ranges, e.g. spatio-temporal query processing of moving
objects [4], sensor databases [3] or personal identification systems [13], usually only un-
certain data is available. In the area of multimedia databases, e.g. image or music data-
bases, or in the area of personal identification systems based on face recognition and fin-
gerprint analysis, there often exists the problem that a feature vector cannot exactly be
determined. This “positional” uncertain data can be handled by assigning confidence in-
tervals to the feature values, by specifying probability density functions indicating the
likelihood of certain feature values, or by specifying confidence values for a set of dis-
crete feature values. The advantage of the latter form of representation of uncertain data
is that distances between the uncertain objects can be processed more easily than object
distances based on smooth probability density functions. Furthermore, positional uncer-
tainties of objects are often given in form of discrete values, in particular, if potential
object locations are derived from different observations. Even when the uncertainty of
the objects are specified by means of smooth probability density functions, we can
achieve our preferred discrete data representation by means of sampling techniques.
With this concept, we can find a good trade-off between accuracy and query perfor-
mance.

The approach proposed in [9] which uses probabilistic distance functions to measure
the similarity between uncertain objects seems very promising for probabilistic similar-
ity queries, in particular for the probabilistic distance-range join. Contrary to traditional

renz
R. Kotagiri, P. R. Krishna, M. Mohania, E. Natajeewarawat (Eds.):
In Proc. 12th International Conference on Database Systems
for Advanced Applications (DASFAA 2007), LNCS 4443, pp. 337–348, 2007.

approaches, they do not extract aggregated values from the probabilistic distance func-
tions but enhance the join algorithms so that they can exploit the full information pro-
vided by these functions. The resulting probabilistic similarity join assigns a probability
value to each object pair indicating the likelihood that the pair belongs to the result set,
i.e. these probably values reflect the trustability of the result. In this paper, we adopt the
idea to use probabilistic distance functions between positional uncertain objects in order
to assign probability values to query results reflecting the trustability of the result. In ap-
plications where wrong results have fatal consequences, e.g. medical treatment, users
might only look at very certain results, whereas in commercial advertising, for instance,
all results might be interesting. Based on this concept, we propose a solution for proba-
bilistic nearest neighbor queries which are practically very important in many applica-
tion areas.

2 Related Work

In the last decade, a lot of work has been done in the field of similarity query process-
ing with the focus on management and processing of uncertain data. Thereby, the devel-
opment of efficient and effective approaches providing probabilistic query results were
of main interest. A survey of the research area concerning uncertainty and incomplete
information in databases is given in [1] and [11]. Recently a lot of work has been pub-
lished in the area of management and query processing of uncertain data in sensor data-
bases [3] and especially in moving object environments [4, 12]. Similar to the approach
presented in this paper, the approaches in [2, 3, 4, 12] model uncertain data by means of
probabilistic density functions (pdfs). In [12], for instance, moving objects send their
new positions to the server, iff their new positions considerably vary from their last sent
positions. Thus, the server always knows that an object can only be a certain threshold
value away from the last sent position. The server, then, assigns a pdf to each object re-
flecting the likelihood of the objects possible positions. Based on this information the
server performs probabilistic range queries. Likewise, in [4] an approach is presented for
probabilistic nearest neighbor queries. Note that both approaches assume non-uncertain
query objects, and thus, they cannot be used for queries where both query and database
objects are uncertain. Queries that support uncertain database objects as well as uncertain
query objects are very important as they build a foundation for probabilistic join proce-
dures. Most recently, in [9] a probabilistic distance range join on uncertain objects was
proposed. Instead of applying their join computations directly on the pdfs describing the
uncertain objects, they used sample points as uncertain object descriptions for the com-
putation of the probabilistic join results.

Furthermore, most recently [5] an approach was proposed dealing with spatial query
processing not on positionally uncertain data but on existentially uncertain data. This
kind of data naturally occurs, if, for instance, objects are extracted from uncertain satel-
lite images. The approach presented in this paper does not deal with existentially uncer-
tain data but with positionally uncertain data which can be modelled by probability den-
sity functions or are already given as probabilistic set of discrete object positions similar
to the approach presented in [9].

3 Probabilistic Nearest Neighbor Query on Uncertain Data

As already mentioned, a non-probabilistic similarity query on positional uncertain
data has some limitations which are overcome by our probabilistic approach introduced
in this section. It is based on a direct integration of the probabilistic distance functions
rather than using only aggregated values. Our new query type assigns to each result ob-
ject a probability value reflecting the likelihood that the object fulfills the query predi-
cate.

Definition 1 (probabilistic similarity query)
Let q be an uncertain object and DB denote a database, and let θd denote any similarity

query predicate based on a given distance function d. Furthermore, let P(q θd o) denote
the probability that q θd o is true for the object pair (q, o) ∈ q × DB. Then, the probabi-
listic similarity query Q consists of result pairs (o, P(q θd o)) ∈ DB × [0,1] for which
P(q θd o) > 0 holds, i.e. Q = {(o, P(q θd o)) | P(q θd o) > 0} ⊆ DB × [0,1]

3.1 Probabilistic Nearest-Neighbor Query Based on Smooth Probabilistic
Distance Functions

In this section, we shortly show how we can theoretically compute the probability val-
ue P(q θd

nn o) underlying the probabilistic nearest-neighbor query.

Lemma 1. For a given uncertain query object q each uncertain database object o, we can
compute P(q θd

nnο) reflecting the probability that o is the nearest neighbor of q as fol-
lows:

Proof: First, we fix a certain position v for the uncertain object representation q. Then,
we weigh the probabilistic distance function between our uncertain
object o and our “certain” position v with a probability value Pweight indicating the like-
lihood that all database objects have a distance higher than τ from v. Integrat-
ing, over all distance values τ yields the probability that o is the nearest neighbor of q
under the condition that the position of q is equal to v. Finally, integrating over all pos-
sible positions of q yields the probability that o is the nearest neighbor of q.

Note that we can extend Lemma 1 so that it can be used as foundation for the proba-
bilistic nearest-neighbor query, by substituting the probability value Pweight by the fol-
lowing expression:

3.2 Probabilistic Nearest-Neighbor Query Based on Discrete Probabilistic
Distance Representations

Although for some uncertain object representations it would be possible to compute
the probabilistic similarity queries directly on Lemma 1, we propose to compute them

θ
prob

θ
prob

P q θd
nno() q v() fd δ τ v–() o,() τ() 1 fd δ τ v–() x,() t() td

∞–

τ

∫–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

x DB\o∈
∏⋅ τd

∞–

 ∞+

∫
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅ vd
IR

d
∫∫=

fd δ τ v–() o,() τ()

x DB\o∈

fd δ τ v–() y,() t() td
∞–

τ

∫⎝ ⎠
⎛ ⎞ 1 fd δ τ v–() x,() t() td

∞–

τ

∫–⎝ ⎠
⎛ ⎞⋅

y A∈
x DB\o()\A∈

∏
A DB\o⊆
A k 1–=

∑

based on the generally applicable concept of monte-carlo sampling. In many applications
the uncertain objects might already be described by a discrete probability density func-
tion, i.e. we have the sample set already. If the uncertain object is described by a contin-
uos probability density function, we can easily sample according to this function and de-
rive a set of samples. In the following, we assume that each object o is represented by a
set of s sample points, i.e. o is represented by s different representations {o1, ..., os}. After
having described how to organize these discrete object representations within a database
(cf. Section 3.2.1), we show how to compute the probabilistic nearest-neighbor query
(cf. Section 3.2.2) based on these discrete object representations.

3.2.1 Database Integration of Uncertain Data. In order to reduce the complexity of
the query computation, we introduce an efficient query algorithm which is based on
groups of samples. Thereby two samples oi and oj of the same object o are grouped to-
gether to one cluster, if they are close to each other. We can generate such a clustering
on the object samples by applying the partitioning clustering algorithm k-means [10] in-
dividually to each sample set {o1, ..., os}. Thus, an object is no longer approximated by
s samples, but by k clusters containing all the s sample points of the object.

Definition 2 (clustered object representation)
Let {o1, ..., os } be a discrete object representation. Then, we call the set {{o1,1, ...,

o1,n 1
},..., {ok,1, ..., ok,nk

}} a clustered object representation where =
{o1, ..., os} and n1+...+ nk = s.

Similar to [9], we store these clustered object representations in R-tree [6] like index
structures.

3.2.2 Nearest-Neighbor Query Algorithm. A straightforward approach for an effi-
cient probabilistic nearest-neighbor query is based on the minimal maximum distance
dminmax (cf. Definition 3). Based on this distance it is possible to exclude many database
objects o from the probabilistic nearest-neighbor search of a query object q (cf. Lemma
2).

Definition 3 (minimal maximum object distance)
Let q be an uncertain query object. Then the minimal maximum object distance of q

is computed by: dminmax = min {maxdist (MBR(q), MBR(o))| o ∈ DB}

Lemma 2. Let q be an uncertain query object and DB be a set of uncertain objects. Then,
the following statement holds:

∀o ∈ DB: mindist (MBR(q), MBR(o)) > dminmax ⇒ P(q θd
nn o) = 0

Proof. Let o’ ∈ DB be the object in the database for which maxdist (MBR(q),
MBR(o’)) = dminmax holds. Then, for all sample points qi,j, oi,j, o’i’,j’ the following
statement holds: d(qi,j, oi,j) > d(qi,j, o’i’,j’). Therefore, the probability that o is the nearest
neighbor of q is equal to 0.

Based on the candidate sets C = {o ∈ DB | mindist (MBR(q), MBR(o)) ≤ dminmax}, we
can introduce a straightforward approach which computes the probability value pnn(q, o)
indicating the likelihood that the object o = {o1, ..., os } is the nearest neighbor of q = {q1,
..., qs}.

oi j,
i 1…k j 1…ni=,=

∪

Lemma 3. Let {o1, ..., os } ∈ C. Then, the probability value pnn(q, o) indicating the
likelihood that o is the nearest neighbor of q can be computed by:

where pnn(qi, oj) is equal to

Proof. First, we compute the probability pnn(qi, oj) that oj is the closest sample to the
sample qi, by computing for each database object p ∈ C the probability P(p, qi, oj) that
no sample of p is closer to the sample qi than the sample oj. Note that for objects p ∈
DB\C P(p, qi, oj) is 1. The combination of these independent probability
values yields the probability that the sample point oj is the nearest sample point for the
sample point qi. The average of these s2 many probability values pnn(qi, oj) is equal to
pnn(q, o).

In the following, show that the pruning distance for the uncertain query object q can
further be decreased. The basic idea is that we do not use the minimal maximum object
distance of q, i.e. dminmax, but the minimal maximum distance of each single sample point.

Definition 4 (minimal maximum sample distance)
Let DB be a set of uncertain objects and let q = {{q1,1, ..., q1,n 1

},..., {qk,1, ..., qk,nk
}} be

a clustered query object representation. Then, the minimal maximum sample distance of
each sample point qi,j and the minimal maximum cluster distance of each cluster Ci =
{qi,1, ..., qi,n i

} are computed as follows:
dminmax(qi,j) = min {maxdist (qi,j, MBR(o))| o ∈DB}
dminmax(Ci) = min {maxdist (MBR(Ci), MBR(o))| o’∈DB}

Lemma 4. Let DB be a set of uncertain objects. Then, the following statement holds for
an uncertain query object q = {{q1,1, ..., q1,n1

},..., {qk,1, ..., qk,nk
}}:

∀i ∈ 1..k ∀j ∈ 1..ni : dminmax(qi,j) ≤ dminmax(Ci) ≤ dminmax
In our final approach, we exploit the above lemma. Basically, our probabilistic near-

est-neighbor query computes for the query object q = {{q1,1, ..., q1,n1
},..., {qk,1, ..., qk,nk

}}
the possible nearest neighbors in the set DB by carrying out the following two steps for
each o ∈ DB, an example is depicted in Figure 1:

pnn q o,()
pnn qi oj,()

i j 1…s∈,
∑

s2---,=

1
qi pl,() d qi pl,() d qi oj,() l 1…s∈∧<{ }

s
--–⎝ ⎠

⎛ ⎞
p C∈

p q≠ p o≠∧

∏

P p oi oj, ,()∏

Fig. 1. Computation of nearest-neighbor probabilities (s=2).

q

o

p’

q1

o1

pnn(q1, o1) = (1-1/2).(1-2/2) = 0/4

o2

q2

pnn(q1, o2) = (1-2/2).(1-2/2) = 0/4
pnn(q2, o1) = (1-0/2).(1-0/2) = 4/4
pnn(q2, o2) = (1-0/2).(1-1/2) = 2/4

pnn(q, o) = (4/4 + 2/4)/4 = 6/16 = 37,5 %

p

 • First, we compute simultaneously for each sample point qi,j the probability pnn(qi,j, o)
that an object o is the nearest neighbor of the sample point qi,j.

 • Second, we combine the s probability values pnn(qi,j, o) to an overall probability value
pnn(q, o) which indicates the likelihood that the object o is the nearest neighbor of q.
The second task can be carried out straightforward based on the following lemma,

whereas the first task is more complex and is explained in the remainder of this section.

Lemma 5. Let DB be a set of uncertain objects and let q = {{q1,1, ..., q1,n1
},..., {qk,1, ...,

qk,nk
}} be an uncertain query object. Then, the following statement holds.

∀o ∈ DB: pnn(q, o) =

ALGORITHM 1. Probabilistic-Nearest-Neighbor Query.
INPUT: q = {{q1,1, ..., q1,n 1

},...,{qk,1, ..., qk,n k
}},

R-tree containing clustered uncertain objects from DB
OUTPUT:(o,pnn(q,o)) for all objects o ∈ DB where pnn(q,o) > 0
BEGIN

1 FOR ALL i ∈ 1...k DO
2 FOR ALL j ∈ 1...ni DO
3 LIST nnlist(qi,j); // manages entries of the form (o, pnn(qi,j,o), sample_cnt_o)
4 PriorityQueue queue; // sorted in ascending order according to the mindist value of the entries
5 queue.insert (mindist(MBR(q), MBR(R-tree.root)), (q, R-tree.root));
6 WHILE NOT (queue.isempty() OR ProbDoNotChange ({nnlist(qi,j) | i ∈ 1...k ∧ j ∈ 1...ni})) DO
7 Element first = queue.pop();
8 CASE type(first.db) // of what type is the R-tree element first.db?
9 DirNode, DataNode: // type of first.query is Object

10 FOR EACH element IN first.db DO {// element is a tree node
11 d = mindist (MBR(first.query), MBR(element));
12 queue.insert (d, (first.query, element)); }
13 Object: // type of first.query is also Object
14 IF SplitFurtherObject(first, queue) THEN
15 FOR EACH Ci(q) IN first.query DO
16 FOR EACH Ci’(o) IN first.db DO {
17 d = mindist (MBR(Ci(q)), MBR(Ci’(o));
18 queue.insert (d, (Ci(q), Ci’(o))); }
19 ELSE UpdateProbValues(first, {nnlist(qi,j) | i ∈ 1..k ∧ j ∈ 1..ni});
20 ObjectCluster: // type of first.query is also ObjectCluster
21 IF SplitFurtherCluster(first, queue) THEN
22 FOR EACH qi,j IN first.query DO
23 FOR EACH oi’,j’ IN first.db DO
24 queue.insert (dist(qi,j, oi’,j’), (qi,j, oi’,j’));
25 ELSE UpdateProbValues(first, {nnlist(qi,j) | Ci(q) = first.query ∧ j ∈ 1..ni});
26 ObjectSample: // type of first.query is also ObjectSample
27 UpdateProbValues(first, {nnlist(qi,j) | qi,j = first.query});
28 END;
29 END DO;
30 ReportResults ({nnlist(qi,j) | i ∈ 1...k ∧ j ∈ 1...ni});
END.

1
s
--- pnn qi j, o,()

i 1…k j 1…ni=,=
∑⋅

Thus, the remaining question is how to compute the values pnn(qi,j, o) efficiently. The
approach proposed in this paper can be regarded as an extension of the nearest-neighbor
search algorithm presented in [7]. Contrary to [7], our approach deals with complex clus-
tered uncertain object representations instead of simple feature vectors. Furthermore, we
do not compute a distance ranking for the query object q but a probability value pnn(qi,j,o)
to each sample point qi,j indicating the likelihood that object o ∈ DB is nearest neighbor
of qi,j.

Algorithm 1 depicts our proposed probabilistic nearest-neighbor query algorithm.
Like in the approach presented in [7], we use a priority queue queue as main data struc-
ture. In our case, the priority queue contains tuples entry=(d, (q, o)), where q is a part of
the query object entry.query, o is a part of a database object entry.db, and d indicates the
minimum distance between q and o. The distance values d determine the ordering of the
priority queue. We have to store pairs of objects instead of simple objects because the
query object itself consists of different parts, i.e. s sample objects qi,j and k clusters Ci
(called Ci(q) in the algorithm for clarity reasons). The priority queue is initialized with
the pair (mindist(MBR(q), MBR(Rtree.root)), (q, Rtree.root)). We always take the first
element from the priority queue and test of what type the stored elements are. Then we
decide for the first element of the priority queue whether it must be further refined or
whether we can already use this first element to change the probability values of the prob-
abilistic nearest neighbors of the query sample points qi,j. Three cases are distinguished
(cf. Figure 2):
 • Assume the elements contained in the first element first of the priority queue are com-

plete uncertain objects q and o. Then we test whether there exists an entry (d, (p, p’))
in queue for which the value d is smaller than maxdist(q, o), using the function Split-
FurtherObject(first, queue). If this is the case, we split q and o into their cluster ele-
ments Ci(q) and Ci’(o) and store the k2 many combinations of these clusters in queue.
If there does not exist such an entry (d, (p, p’)) (cf. Figure 2a), we update the lists
nnlist(qi,j) which contain all information about the up-to-now found probabilistic
nearest neighbors of the sample point qi,j. In the function UpdateProbValues (first,
{nnlist(qi,j) | i ∈ 1...k ∧ j∈ 1...ni}), the entries (o, pnn(qi,j,o), sample_cnt_o) are
updated. The values pnn(qi,j,o) indicating the likelihood that o is the nearest neighbor
of qi,j are set to (cf. Figure 2a):

Furthermore, the values sample_cnt_o are set to s.
 • Assume the elements contained in first are clusters, i.e. cluster Ci(q) corresponds to

the query object and cluster Ci’(o) corresponds to the database object. Then, in the
function SplitFurtherCluster(first, queue), we first test whether there exists an entry
(d, (p, p’)) in queue for which the value d is smaller than maxdist(Ci(q), Ci’(o)) and
for which the following two conditions hold. First, p has to be equal to q, to Ci(q), or
to an object sample qi,j. Second, p’ must not be a part of o, i.e. another cluster of o or
a sample point of o. If an entry (d, (p, p’)) exists for which these conditions hold, we
split Ci(q) and Ci’(o) in its sample points qi,j and oi’,j’ and store the |Ci(q)| .|Ci’(o)| many
combinations of the sample points in queue. If there does not exist such an entry

1 sample_cnt_x
s

-----------------------------------–⎝ ⎠
⎛ ⎞

x pnn qi j, x,() sample_cnt_x,,() nnlist qi j,()∈

x o≠

∏

(d, (p, p’)), we update the lists nnlist(qi,j) (cf. Figure 2b). In the function UpdateProb-
Values (first, {nnlist(qi,j) | j ∈ 1...ni}), the entries (o, pnn(qi,j,o), sample_cnt_o) are
updated. The values pnn(qi,j,o) indicating the likelihood that o is the nearest neighbor
of qi,j are set to:

Furthermore, the values sample_cnt_o are set to sample_cnt_o + |Ci’(o)|.
 • Assume the elements in first are sample points, i.e. qi,j is the query object and oi’,j’ is

the database object. Then, we call the function UpdateProbValues (first, {nnlist(qi,j)})
which updates the entries (o, pnn(qi,j,o), sample_cnt_o). The values pnn(qi,j,o)
indicating the likelihood that o is the nearest neighbor of qi,j are modified as follows
(cf. Figure 2c):

Furthermore, the values sample_cnt_o are set to sample_cnt_o + 1.

The algorithm terminates, if either the priority queue is empty or if in all s lists
nnlist(qi,j) there exists an entry (o, pnn(qi,j,o), sample_cnt_o) for which sample_cnt_o =
s holds. If this is the case, the probability values of all elements in the database do not
change anymore. Thus, we can stop processing any further elements from queue. After
the algorithm terminates, the values pnn(qi,j, o) contained in the lists nnlist(qi,j) indicate
the probability that o is the nearest neighbor of qi,j. Finally, in accordance with Lemma
5, the probability values that o is the nearest neighbor of q are computed in the function
ReportResults ({nnlist(qi,j) | i ∈ 1...k ∧ j ∈ 1...ni}).

4 Experimental Evaluation

In this section, we examine the effectiveness, i.e. the quality, and the efficiency of our
proposed probabilistic nearest-neighbor query approach. The efficiency of our approach

q

o

qi,j

x1
qi’,j’

sample_cnt_x1 = 1

sample_cnt_x2 = 2

x2
x3

sample_cnt_x3 = 1

c) case 3: update of the value pnn(qi,j,o)

q

o

x

a) case 1: object pair (q,o)

d = maxdist(q,o)

maxdist(qi,j,oi’,j’)

Fig. 2. Three cases of the probabilistic nearest-neighbor query algorithm.

mindist(q,x) > d

pnn(qi,j,o) = pnn(qi,j,o) + 1/5·(4/5·3/5·4/5)

y

b) case 2: cluster pair (Ci(q),Ci’(o))
does not have be refineddoes not have to be refined

mindist(Ci(q),x) > d

d = maxdist(Ci(q),Ci’(o))

Ci(q)

Ci’(o)
o

q

x

pnn qi j, o,()
Ci ′ o()

s
----------------- 1 sample_cnt_x

s
-----------------------------------–⎝ ⎠

⎛ ⎞

x pnn qi j, x,() sample_cnt_x,,() nnlist qi j,()∈

x o≠

∏⋅+

pnn qi j, o,() 1
s
--- 1 sample_cnt_x

s
-----------------------------------–⎝ ⎠

⎛ ⎞

x pnn qi j, x,() sample_cnt_x,,() nnlist qi j,()∈

x o≠

∏⋅+

was measured by the average number of required distance computations per query object
which dominate the overall runtime cost.

The following experiments are based on the same datasets as used in [9]. We used
artificial datasets, each consisting of a set of 3- and 10-dimensional uncertain feature
vectors. Additionally, we also applied our approaches to two distributed real-world
datasets PLANE and PDB where the feature vectors were described by multi-dimension-
al boxes according to [8]. The following table summarizes the characteristics of the
datasets:

For the sampling of the possible object positions we assumed an equal distribution
within the corresponding uncertainty areas. All d-dimensional datasets are normalized
w.r.t. the unit space [0,1]d. As distance measure we used the L1-distance (Manhattan dis-
tance). We split all datasets into two sets containing 90% respectively 10% of all objects.
For the nearest neighbor queries, we used the objects from the smaller set as query ob-
jects and summarized the results. If not stated otherwise, the size of the sample set of
each uncertain object is initially set to 25 samples which are approximated by 7 clusters.

4.1 Experiments on the Sample Rate

First, we turned our attention to the quality of our probabilistic nn-query approach by
varying the number of used samples per object. We noticed that for sample rates higher
than 100 the resulting probability values do not change any more considerably. There-
fore, we used the probabilistic nn-query result Rexact = {(o, Pexact(q θd o))| Pexact(q θd o)
> 0} (cf. Definition 1) based on 100 samples as reference query result for measuring the
error of the probabilistic nn-query results Rapprox = {(o, Papprox(q θd o)) | Papprox(q θd ο) >
0} based on sample rates s < 100. The used error measure Errnn for the nearest-neighbor
query is defined as follows:

Figure 3a shows the error of the probabilistic nearest-neighbor query for a varying
sample rate s. It can be clearly seen that the error decreases rapidly with increasing sam-
ple rate s. At a sample rate s = 10 the error is less than half the size compared to the error
at s = 1 for some datasets. Furthermore, comparing the artificial datasets with high un-
certainties (ARTd(high)) to those with low uncertainties (ARTd(low)), we can observe
that a higher uncertainty leads to a higher error.

In the next experiment, we investigated how the sample rate influences the cost of the
query processing. Figure 3b shows the number of distance computations required to per-

dataset ART3
(low)

ART3
(high)

ART10
(low)

ART10
(high)

PLANE PDB

dimensions d 3 3 10 10 42 120

uncertainty u 3% 5% 3% 4% 1% 4%

Table 1. Characteristics of the datasets.

Errnn Rapprox Rexact,() 1
2
--- Papprox q θd

nn o() Pexact q θd
nn o()–q o,() Q DB×∈∑⋅⎝ ⎠

⎛ ⎞
q Q∈∑=

form the nn-query for varying sample rates. We set the number k of clusters to 5 for a
sample rate s higher than 5, otherwise we set k = s. The cost increase superlinear with
increasing sample rates s. For high sample rates, the good quality (cf. Figure 3a) goes
along with high query cost (cf. Figure 3b). In particular, the query processing on datasets
with high uncertainty (ARTd(high)) does not only lead to a lower quality of the results
but is also more expensive than the processing on more accurate datasets (ARTd(low)).
In the case of very uncertain datasets the computational cost are higher because the prun-
ing distances, i.e. the minimal maximum object distances (cf. Definition 3), for very un-
certain objects are much higher than for non-uncertain objects. Altogether, we achieve
a good trade-off between the quality of the results and the required cost when using a
sample rate of s = 25.

4.2 Experiments on the Efficiency

Next, we examine the runtime performance of our probabilistic nearest-neighbor que-
ry approach. Figure 4 shows how the runtime performance depends on the number k of
sample clusters. On the one hand, when using only one cluster per object (k = 1), we have
only a few clusters for which we must compute the distances between them. This is due
to the fact that the cluster covers the entire uncertain object, i.e. it has a large extension.

0

0.1
0.2

0.3

0.4

0.5
0.6

0.7

0.8

1 5 10 25 50

ART3(low) ART3(high)
ART10(low) ART10(high)
PLANE PDB

Fig. 3. Influence of the sample rate. a) error Errnn, b) number of distance computations

a)
er

ro
r E

rr
nn

0 . 0 E+0 0

2 . 0 E+0 7

0 10 20 30 40 50

ART3(low) ART3(high)
ART10(low) ART10(high)
PLANE PDBb)

di

st
an

ce
 c

om
pu

ta
tio

ns

0,0E+00

5,0E+03

1,0E+04

1,5E+04

2,0E+04

2,5E+04

3,0E+04

3,5E+04

0 10 20 30 40 50
sample rate sample rate

0,0E+00
2,0E+07

0 5 10 15 20 25 30 35 40 45 50
ART3(low) ART3(high) ART10(low) ART10(high)

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

1 2 3 4 5
0

5000

10000

15000

20000

25000

1 3 5 7 9 11 13 15 17 19 21 23 25
k (# sample clusters per object)

Fig. 4. Runtime performance for varying number of sample clusters.

di

st
an

ce
 c

om
pu

ta
tio

ns

k (# sample clusters per object) k (# sample clusters per object)

s = 5 s = 10 s = 25

di

st
an

ce
 c

om
pu

ta
tio

ns

di

st
an

ce
 c

om
pu

ta
tio

ns

On the other hand, very small clusters (k = s) also lead to an expensive query processing,
because we have to compute a lot of distances between pairs of clusters when refining
the object pairs. The best trade-off for k can be achieved somewhere in between these
two extremes. As depicted in Figure 4, the optimal setting for k depends on the used sam-
ple rate. Generally, the higher the used sample rate s, the higher is the optimal value for
k. Note that the maxdist values of the cluster pairs are very high when using k = 1 sample
clusters. In this case, we often have to investigate the corresponding sample points of the
clusters which leads to a high number of distance computations. Table 2 shows the ratio
between the cost required for k = 7 and k = 1 for the probabilistic nearest-neighbor query
(θd

nn) (s = 25). We can conclude that the clustering of the object samples pays off when
using an adequate choice of the parameter k.

In the last experiment, we compare our efficient probabilistic nearest-neighbor query
approach (accelerated approach) as presented in Algorithm 1 to the straightforward so-
lution (simple approach) which takes for the pruning of candidate pairs solely the mini-
mal maximum object distance into account (cf. Definition 3 and Lemma 3). Figure 5 de-
picts the results for the query processing on different datasets and varying sample rates.
Figure 5a shows that we achieve a very significant reduction of the query cost using the
pruning techniques of our probabilistic nearest-neighbor query algorithm independent
of the used sample rate. For the ART10(high) dataset the cost were reduced to 20% and
for both real-world datasets we even achieved a reduction to 15%. Figure 5b compares
the performance of both approaches using the artificial datasets for varying uncertainties
of the objects. This experiment shows that the simple approach is not applicable for high
uncertainties due to the enormous number of required distance computations. Contrary,
our accelerated approach is not very sensitive to the uncertainty of the objects and shows
good performance even for very imprecise data.

datasets ART3
(low)

ART3
(high)

ART10
(low)

ART10
(high)

PLANE PDB

θd
nn 0.46 0.43 0.61 0.60 0.64 0.71

Table 2. Cost ratio between k = 7 and k = 1 (s = 25).

0

20000

40000

60000

80000

100000

120000

0,01 0,03 0,05 0,07

ART10 accelerated ART10 simple
ART3 accelerated ART3 simple

0
5000

10000
15000

20000
25000

30000
35000

40000

0
200

400
600
800

1000
1200

1400
1600

di

st
an

ce
 c

om
pu

ta
tio

ns s = 25, k = 7

simple approach

Fig. 5. Runtime performance for different pruning techniques.

di

st
an

ce
 c

om
pu

ta
tio

ns

accelerated approacha) b)

ART3
(low)

ART3
(high)

ART10
(low)

ART10
(high)

PLANE PDB

di

st
an

ce
 c

om
pu

ta
tio

nss = 5, k = 2 s = 25, k = 7

ART3
(low)

ART3
(high)

ART10
(low)

ART10
(high)

PLANE PDB

5 Conclusions

Probabilistic query processing on uncertain data is an important emerging topic in
many modern database application areas. In this paper, we introduced an approach for
computing probabilistic nearest-neighbor queries on uncertain objects which assigns to
each object a probability value indicating the likelihood that it belongs to the result set.
We showed how this probabilistic query can effectively be carried out based on the gen-
erally applicable concept of monte-carlo sampling, i.e. each uncertain object is described
by a set of sample points. In order to improve the query performance, we determined
appropriate approximations of the object samples by means of clustering. Minimal
bounding boxes of these clusters, which can be efficiently managed by spatial index
structures, are then used to identify and skip unnecessary distance computations in a fil-
ter step. In a detailed experimental evaluation based on artificial and real-world data sets,
we showed that our technique yields a performance gain of a factor of up to 6 over a
straightforward comparison partner.

In our future work, we plan to extend our probabilistic algorithms to join processing,
which built a foundation for various data mining algorithms, e.g. clustering and classi-
fication on uncertain data.

References
[1] Abiteboul S., Hull R., Vianu V.: Foundations of Databases. Addison Wesley, 1995.
[2] Böhm, C., Pryakhin A., Schubert M.: The Gaus-Tree: Efficient Object Identification of Prob-

abilistic Feature Vectors. ICDE’06.
[3] Cheng R., Kalashnikov D.V., Prabhakar S.: Evaluating probabilistic queries over imprecise

data. SIGMOD’03.
[4] Cheng R., Kalashnikov D. V., Prabhakar S.: Querying imprecise data in moving object envi-

ronments. IEEE Transactions on Knowledge and Data Engineering, 2004.
[5] Dai X., Yiu M., Mamoulis N., Tao Y., Vaitis M.: Probabilistic Spatial Queries on Existentially

Uncertain Data. SSTD’05.
[6] Guttman A.: R-trees: A Dynamic Index Structure for Spatial Searching. SIGMOD’84.
[7] Hjaltason G. R., Samet H.: Ranking in Spatial Databases. SSD’95.
[8] Kriegel H.-P., Kunath P., Pfeifle M., Renz M.: Approximated Clustering of Distributed High

Dimensional Data. PAKDD’05.
[9] Kriegel H.-P., Kunath P., Pfeifle M., Renz M.: Probabilistic Similarity Join on Uncertain Data.

DASFAA’06.
[10] McQueen J.: Some Methods for Classification and Analysis of Multivariate Observations. In

5th Berkeley Symp. Math. Statist. Prob., volume 1, 1967.
[11] Motro A.: Management of Uncertainty in Database Systems. In Modern Database Systems,

Won Kim (Ed.), Addison Wesley, 1995.
[12] Wolfson O., Sistla A. P. , Chamberlain S., Yesha Y.: Updating and Querying Databases that

Track Mobile Units. Distributed and Parallel Databases, 7(3), 1999.
[13] Zhao W., Chellappa R., Phillips P.J., Rosenfeld A.: Face Recognition: A literature survey.

ACM Computational Survey, 35(4), 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

