
Probabilistic Similarity Join on Uncertain Data

Hans-Peter Kriegel, Peter Kunath, Martin Pfeifle, Matthias Renz
University of Munich, Germany

 {kriegel, kunath, pfeifle, renz}@dbs.ifi.lmu.de

Abstract. An important database primitive for commonly used feature databases
is the similarity join. It combines two datasets based on some similarity predicate
into one set such that the new set contains pairs of objects of the two original sets.
In many different application areas, e.g. sensor databases, location based ser-
vices or face recognition systems, distances between objects have to be computed
based on vague and uncertain data. In this paper, we propose to express the sim-
ilarity between two uncertain objects by probability density functions which as-
sign a probability value to each possible distance value. By integrating these
probabilistic distance functions directly into the join algorithms the full informa-
tion provided by these functions is exploited. The resulting probabilistic similar-
ity join assigns to each object pair a probability value indicating the likelihood
that the object pair belongs to the result set. As the computation of these proba-
bility values is very expensive, we introduce an efficient join processing strategy
exemplarily for the distance-range join. In a detailed experimental evaluation, we
demonstrate the benefits of our probabilistic similarity join. The experiments
show that we can achieve high quality join results with rather low computational
cost.

1 Introduction

In many modern application ranges, e.g. spatio-temporal query processing of moving
objects [9], sensor databases [8] or personal identification systems [28], usually only un-
certain data is available. For instance, in the area of mobile services, the objects contin-
uously change their positions so that exact positional information is almost impossible
to obtain. In the area of multimedia databases, e.g. image or music databases, or in the
area of personal identification systems based on face recognition and fingerprint analy-
sis, there often exists the problem that a feature value cannot exactly be determined. This
uncertain data can be handled by assigning confidence intervals to the feature values, or
by specifying probability density functions indicating the likelihoods of certain feature
values. In other application areas such as the clustering of distributed feature vectors
[13], only approximated (uncertain) information is transmitted to a central server site due
to security aspects or limited bandwidth. Let us note that the distance-range join can act
as a preprocessing step to speed up clustering.

In order to join these uncertain object representations by traditional join methods, the
similarity between the objects has to be measured by one numerical value, i.e. the com-
plete probabilistic distance information is aggregated by only one distance value. Obvi-
ously, aggregation goes hand in hand with information loss. For instance, we have no
information about the degree of uncertainty of such a single distance value. Even if we

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): In Proc. 11th International Conference on
Database Systems for Advanced Applications (DASFAA 2006), LNCS 3882, pp. 295–309, 2006.

DASFAA 2006 BEST PAPER

had one, it would be of no use because traditional join algorithms cannot handle this ad-
ditional information.

In this paper, we propose to use probabilistic distance functions to measure the simi-
larity between uncertain objects. Contrary to traditional approaches, we do not extract
aggregated values from the probabilistic distance functions but enhance the join algo-
rithms so that they can exploit the full information provided by these functions. The re-
sulting probabilistic similarity join assigns a probability value to each object pair indi-
cating the likelihood that the pair belongs to the result set, i.e. these probably values
reflect the trustability of the result. In applications where wrong results have fatal con-
sequences, e.g. medical treatment, users might only look at very certain results, whereas
in commercial advertising, for instance, all results might be interesting. In this paper, we
propose a solution for a probabilistic similarity join which is practically very important,
the problematic distance-range join.

Probabilistic distance-range joins can be used in the area of location based services
but also in many different other areas. For instance, like their non-probabilistic counter-
parts, they can serve as basic operations for data mining algorithms. Based on the result
set of the probabilistic distance-range join, we can efficiently generate a density based
clustering of uncertain data. We could group those objects together into one cluster which
have a probability value higher than 0.5 that their distance is lower than a certain thresh-
old value.

In this paper, we first present the theoretical foundations of probabilistic similarity
joins, and then show how to compute them based on the generally applicable concept of
monte-carlo sampling. Thereby, each uncertain object is described by a set of sample
points. In order to guarantee efficient join processing, we group the sample points of one
uncertain object into k clusters. Minimal bounding boxes of these clusters are then used
to identify and skip unnecessary distance computations in a filter step. For the dis-
tance-range join, the filter step has an additional advantage. Often an incremental pro-
cessing of the join query is desired which returns the results in descending order of their
probabilities, i.e. the most promising results are returned first. Our approach allows us
to determine an upper-bound probability value for each object pair in the filter step which
can then be used to return the first results very early.

The remainder of this paper is organized as follows: In Section 2, we present the re-
lated work in the area of similarity join processing and query processing of uncertain
data. In Section 3, we show how we can carry out a non-probabilistic similarity join on
uncertain data. In Section 4, we propose our probabilistic similarity join, which is eval-
uated in detail in Section 5. We conclude this paper in Section 6 with a short summary
and a few remarks on future work.

2 Related Work

In the past decade, a lot of work has been done in the field of similarity join processing.
Recently some researchers have focused on the area of query processing of uncertain
data. However, to the best of our knowledge no work has been done in the area of join
processing of uncertain data. In the following, we present related work on both topics,
similarity join processing and query processing of uncertain data.

2.1 Similarity Join
A join groups tuples of two relations R and S into pairs if a join predicate is fulfilled.

In a similarity join, the join predicate is based on the similarity between the objects stored
in the relations. This similarity is measured by a distance function d: O × O → IR0

+ , e.g.
the Euclidean distance between two feature vectors. The most popular similarity join op-
eration is the distance range join. The distance range join R S of two multidimen-
sional or metric sets R and S is the set of pairs where the distance of the objects does not
exceed a given parameter ε:

Definition 1 distance-range join (ε-join)
The distance range join R S of two finite sets R and S is the set R S := {(r, s) ∈
R × S: d(r, s) ≤ ε}.

The distance range join can be applied in density-based clustering algorithms which
often define the local data density as the number of objects in the ε-neighborhood of some
data object. These clustering algorithms can beneficially be expressed by a self-join us-
ing the distance-range paradigm [3].

Most related work on efficient join processing is related to the spatial intersection
join. These algorithms which are often based on multidimensional index structures can
easily be adapted to distance based predicates for multidimensional point databases in-
stead of the intersection of polygons. The most common technique is the R-tree Spatial
Join (RSJ) [4] which processes R-tree like index structures built on both relations R and
S. The RSJ algorithm traverses the indexes of R and S synchronously. When a pair of
directory pages (PR, PS) is under consideration, the algorithm forms all pairs of the child
pages of PR and PS having distances of at most ε. For these pairs of child pages, the al-
gorithm is called recursively, i.e. the corresponding indexes are traversed in a depth-first
order. Various optimizations of RSJ have been proposed such as the BFRJ-algorithm
[12] which traverses the indexes according to a breadth-first strategy.

If no multidimensional index is available, it is possible to construct the index on the
fly before starting the join algorithm. Several techniques for bulk-loading multidimen-
sional index structures exist [5, 14]. The seeded tree method [19] joins two point sets
provided that only one is supported by an R-tree. The partitioning of this R-tree is used
for a fast construction of the second index on the fly. The spatial hash-join [20, 23] de-
composes the set R into a number of partitions which is determined according to given
system parameters.

A join algorithm particularly suited for similarity self joins is based on the ε-kdB-tree
[25]. Koudas and Sevcik proposed the Size Separation Spatial Join [16] and the Multi-
dimensional Spatial Join [15] which make use of space filling curves to order the points
in a multidimensional space.

2.2 Query Processing of Uncertain Data
Many studies have focused on the management of uncertain data and on providing

probabilistic queries on databases with uncertain data. A survey of the research area
concerning uncertainty and incomplete information in databases is given in [1] and [22].

Recently, a lot of work has been published in the area of management and query pro-
cessing of uncertain data in sensor databases [8] and especially in moving object envi-

ε

ε ε

ronments [9, 26]. Similar to the approach presented in this paper, the approaches in [8,
9, 26] model uncertain data by means of probabilistic density functions (pdfs). In [26],
for instance, moving objects send their new positions to the server, iff their new positions
considerably vary from their last sent positions. Thus, the server always knows that an
object can only be a certain threshold value away from the last sent position. The server,
then assigns a pdf to each object reflecting the likelihood of the objects possible posi-
tions. Based on this information the server performs probabilistic range queries. Like-
wise, in [9] an approach is presented for probabilistic nearest neighbor queries. Note that
both approaches assume non-uncertain query objects. Thus, they cannot be used as foun-
dation for a join on uncertain objects where both query and database objects are uncer-
tain.

Furthermore, most recently [10] an approach was proposed dealing with spatial
query processing not on positionally uncertain data but on existentially uncertain data.
This kind of data naturally occurs, if, for instance, objects are extracted from uncertain
satellite images. The approach presented in this paper does not deal with existentially
uncertain data but with positionally uncertain data which can be modelled by probability
density functions.
Definition 2 uncertain object representation
Let o ∈ D ⊆ IRd be an object from a database. An uncertain object representation is a
function ouncertain: IRd → , for which the following condition holds:

In the following, we will show that the above definition is a generalization of existing
object description techniques used to describe uncertain data.

Modelling Distributed Feature Vectors. In [13], feature vectors were grouped to-
gether to small clusters at client site. Then each cluster is represented by a feature vector
and a covering-radius and this information was transmitted to the server. If we assume
that V is the volume of the hyper-sphere belonging to the micro-cluster of object o, the
uncertain object representation ouncertain assigns to each feature vector contained in the
hyper-sphere a value of 1/V and to each feature vector outside of the hyper-sphere a value
of 0. Note that all objects within such a micro-cluster have the same uncertain object rep-
resentation.

In [18], an approach for distributed clustering of high-dimensional feature vectors
was introduced. In order to save transmission cost, only certain dimensions of a feature
vector were transmitted to the server. For the dimensions which were not transmitted,
the server can limit the possible values by an interval. Thus, the server can individually

IR0
+ ∞∪

ouncertain v() vd
IR d

∫∫ 1=

Fig. 1. Uncertain object descriptions.

ouncertain(x, y)

b) moving object approximation c) sensor data approximation

ouncertain(x)

a) feature-vector approximation

ouncertain(x, y)

xx

y

x

y1/V

generate for each feature vector a conservative approximating box. If we assume that V
is the volume of the box belonging to object o, the uncertain object representation ouncer-

tain assigns to each feature vector contained in the box a value of 1/V and to each feature
vector outside of the box a value of 0 (cf. Figure 1a). In this case, the uncertain object
descriptions are different for the different objects.

Modelling Moving Objects. Technical problems with the GPS system, or outdated
positional information force the server to approximate moving objects by one- or two-di-
mensional Gaussian probability density functions ouncertain (cf. Figure 1b). If we assume
that the exact positions of the moving objects are available [27], the probability density
functions ouncertain correspond to dirac-delta functions which assign to the exact position
a value of infinity and to all other positions a value of 0.

Modelling Sensor Data. Many applications use sensors for monitoring values like
wind speed, pressure or temperature. Due to continuous changes, a central database has
at each time only approximated information of each of these attributes. In [8], it was sug-
gested to model each of these values by appropriate density functions, which corre-
sponds to a 1-dimensional uncertain object representation according to Definition 2 (cf.
Figure 1c).

If clear from the context, we simply write o for the uncertain object representation
ouncertain from now on. As already mentioned there exists a lot of work in the area of query
processing on these uncertain object representations, but, to the best of our knowledge,
there does not exist any work in the literature which tackles the complex problem of join-
ing these uncertain objects.

3 Non-Probabilistic Similarity Join on Uncertain Data

Traditional join algorithms require distance functions which express the similarity be-
tween two objects by exactly one numerical value. Based on these traditional distance
functions, the join algorithms decide for each object pair unambiguously whether it be-
longs to the result set or not. Usually, this decision is based on ’sharp’ object representa-
tions, i.e. the objects are assumed to be certain.

In this section, we introduce distance functions which do not express the similarity
between two objects by a single numerical value. Instead, we propose distance functions
expressing the similarity between two objects by means of a probability density function
which we call probabilistic distance function. This function describes the probability
distribution of all possible distances between two objects. A one-dimensional example
is depicted in Figure 2. Figure 2a shows two uncertain objects o and o’ according to Def-
inition 2. The distance between these two objects is described by a probabilistic distance
function.

Definition 3 probabilistic distance function
Let d: D × D → IR0

+ be a distance function, and let denote the prob-
ability that d(o, o’) is between a and b. Then a probabilistic density function fd: D × D →
(IR0

+ →) is called a probabilistic distance function if the following condition
holds:

P a d o o',() b≤ ≤()

IR0
+ ∞∪

P a d o o',() b≤ ≤() fd o o',() x() xda
b∫=

If the distance τ = d(o,o’) between two objects can exactly be determined, the proba-
bilistic distance function fd is equal to the dirac-delta-function δ, i.e. fd(o, o’)(x) = δ(x-τ)
[7]. Thus, the traditional approach can be regarded as a special case of Definition 3. Let
us point out that the probability distribution of each uncertain data item is considered
independent.

As traditional join algorithms can only handle distance functions which yield a unique
distance value, we propose to extract the expected distance value from these probabilistic
distance functions. The expected distance value Ed: O × O → IR0

+ represents the proba-
bilistic distance function by one single value (cf. Fig-
ure 2b).

Although, this expected distance value expresses the distance between two uncertain
objects in an appropriate way, similarity joins based on this distance measure might be
misleading. Look at the example shown in Figure 3 depicting 4 uncertain objects oA, oB,
oC and oD having different uncertainties. On the right hand side of Figure 3 the corre-
sponding probabilistic distance functions of the object pairs are shown. This example
demonstrates that both objects oB and oD are within the ε-range of object oA, when simply
using the expected distances. Although, the probabilities that the objects oB and oC are
within the ε-range of oA are very similar, oB belongs to the result set and oC not. Further-
more, although the expected distance between the uncertain objects oA and oB is lower
than the expected distance between the objects oA and oD, the probability that oB is within
the ε-range of oA is much smaller than the probability for oD. To sum up, similarity joins
based on the expected distances are not able to take the uncertainty of the object repre-
sentations into account and thus fail to produce meaningful results.

Ed o o',() x f⋅ d o o',() x() xd
∞–

∞
∫=

Ed o o',() τ f⋅ d o o',() τ() τd∞–
∞

∫=

Fig. 2. Probabilistic distance function in an uncertain feature space
b) probabilistic distance function

a) reflecting the distance between two one-dimensional uncertain objects.

distance
0

distance density function

probability

fd(o,o’)

a)

b)

position
0

probability ouncertain o’uncertain

x

ouncertain x() o'uncertain x τ–()⋅ xd∞–
∞

∫
 +

ouncertain x() o'uncertain x τ+()⋅ xd∞–
∞

∫

}

τ

ouncertain(x)
o’uncertain(x+τ)

τ x+τ

|area| = 1

4 Probabilistic Similarity Join on Uncertain Data

As outlined in Section 3, a non-probabilistic similarity join on uncertain data has some
limitations which are overcome by the probabilistic similarity join introduced in this sec-
tion. The probabilistic similarity join is based on a direct integration of the probabilistic
distance functions rather than using only aggregated values. Our new probabilistic sim-
ilarity join assigns to each object pair a probability value reflecting the likelihood that
the object pair belongs to the join result set.
Definition 4 probabilistic similarity join
Let R and S denote two relations, and let θd denote any similarity join predicate based on
a given distance function d. Furthermore, let P(r θd s) denote the probability that r θd s
is true for an object pair (r, s) ∈ R × S. Then, the probabilistic similarity join R S con-
sists of object pairs (r, s) ∈ R × S for which P(r θd s) > 0 holds, i.e.

R S = {(r, s, P(r θd s)) | P(r θd s) > 0} ⊆ R × S × [0,1]

4.1 Theoretical Foundations
In this section, we shortly show how we can theoretically compute the probability val-

ue P(o θd
dr o’)1 underlying the probabilistic distance-range join.

Lemma 1. Let ε ∈ IR0
+ and let d be an arbitrary distance function between feature vec-

tors. For each pair of uncertain object representations (o, o’), we can compute the prob-
ability P(o θd

dr o’) based on their probabilistic distance function fd (o, o’) as follows:

Proof: Lemma 1 directly follows from the definition of the distance-range join (cf.
Definition 1) and the definition of the probabilistic distance function (cf. Definition
3).

1. In the remainder of the paper θd
dr denotes the join predicate of the distance-range join.

Fig. 3. Distance-range join based on the expected distance.

ε
oA

oB

oC

oD

distance
0

probability

fd(oA,oB)
fd(oA,oC)

fd(oA,oD)

ε

θ
prob

θ
prob

P o θd
dro' () fd o o',() x() xd

∞–
ε

∫=

4.2 Computational Aspects
Although for some uncertain object representations it would be possible to compute

the probabilistic similarity join directly on Lemma 1, we propose to compute it based on
the generally applicable concept of monte-carlo sampling. In many applications the un-
certain objects might already be described by a discrete probability density function, i.e.
we have the sample set already. If the uncertain object is described by a continuos prob-
ability density function, we can easily sample according to this function and derive a set
of samples. In the following, we assume that each object o is represented by a set of sr
sample points, i.e. o is represented by sr different representations {o1, ..., osr}. After hav-
ing described how to organize these discrete object representations within a database (cf.
Section 4.2.1), we show how to compute the probabilistic distance-range join (cf. Section
4.2.2) based on these discrete object representations.

4.2.1. Database Integration of Uncertain Data. In order to reduce the complexity of
the join computations, we introduce efficient join variants which are based on groups of
samples. Thereby two samples oi and oj of the same object o are grouped together to one
cluster, if they are close to each other. We can generate such a clustering on the object
samples by applying the partitioning clustering algorithm k-means [21] individually to
each sample set {o1, ..., osr}. Thus, an object is no longer approximated by sr samples,
but by k clusters containing all the sr sample points of the object (cf. Figure 4a).

Definition 5 Clustered Object Representation
Let {o1, ..., osr } be a discrete object representation. Then, we call the set {{o1,1, ...,
o1,n 1

},..., {ok,1, ..., ok,nk
}} a clustered object representation where =

{o1, ..., osr} and n1+...+ nk = sr.

We store these clustered object representations in R-tree [11] like index structures.
Thereto, we determine the minimum bounding rectangle MBR(Ci(o)) of each cluster

. .
. .. .

Fig. 4. Database Integration of Uncertain Data.

a) clustered object

b) index organization of clustered objects

data pages

.... .. .
containing
clustered object
representations

.... .. .
. .

. . .
.

. .
....

...

directory pages

MBR(o)

MBR(C1(o)) MBR(C2(o))

MBR(C3(o))

mindist(R1,R2)

R1

R2

maxdist(R1,R2)

c) mindist/maxdist
(k = 3, sr = 17) function

oi j,
i 1…k j 1…ni=,=

∪

Ci(o) = {oi,1, ..., oi,n i
}, and the minimum bounding rectangle MBR(o) of o = {o1, ..., osr }.

Then, we store the clustered object representations as depicted in Figure 4b in a standard
index structure suitable for managing spatially extended objects. In the following sec-
tion, we assume that there exist two functions mindist and maxdist which return the min-
imal and the maximal distance between two rectangles, between two points, or between
a point and a rectangle (cf. Figure 4c).

4.2.2. Distance Range Join. Managing the uncertain objects in R-tree like index struc-
tures (cf. Figure 4) enables us to carry out a distance-range join based on a parallel R-tree
run as described in [4]. In general, we can use this approach without any changes regard-
ing the way we use the hierarchical directory structure for pruning branches in the R-tree.
The only difference is on the leaf level where we assign a probability value to each object
pair. Figure 5a shows the algorithm for computing such a probability value.

Definition 4 requires that the result set of the probabilistic similarity join contains all
objects having a probability value higher than 0. Sometimes, it is desirable that this result
set is sorted in descending order of the probability values. A straightforward approach
would be to determine the complete result set, and then sort it. The disadvantage of this
approach is that we have to wait rather long for getting the first element of the result set.
In the following, we present an approach which allows us to determine the first element
of the sorted result set very efficiently. The basic idea is to adapt the optimal multi-step
k-nearest-neighbor approach presented in [24] to our needs.

First, we carry out an approximated probabilistic distance-range join based on a par-
allel R-tree run and on the probability function presented in Figure 5b. Note that, espe-
cially for high sample rates s, this function can be computed much more efficiently than
the one presented in Figure 5a. Obviously, for the result set of this approximated join the
following lemma holds.

Lemma 2.Let R S denote the result set of a probabilistic similarity join based on
the probability function presented in Figure 5a, and let R S denote the result set of
a probabilistic similarity join based on the probability function presented in Figure 5b.
Then the following statement holds:
(r, s, pdr,exact(r,s)) ∈ R S ⇒ ∃(r, s, pdr,filter(r,s)) ∈ R S: pdr,exact(r,s) ≤ pdr,filter(r,s)

Proof. As both join variants run through the R-tree directory in the same way, they only
differ in the computation of the probability values of object pairs. If we assume an object
pair (r,s), the value pdr,filter(r,s) (cf. Figure 5b) is always equal to or larger than pdr,exact(r,s)
(cf. Figure 5a), as mindist (MBR(Ci(s)), MBR(Ci’(r))) ≤ maxdist (MBR(Ci(s)),
MBR(Ci’(r))) holds. Furthermore, if mindist (MBR(Ci(s)), MBR(Ci’(r))) > ε holds, then
for all sample points si,j and ri’,j’ the distance dist(si,j,ri’,j’) is also larger than ε.

Next, we sort the set R S in descending order according to the filter probability
values. In the refinement step, we incrementally walk through this sorted list and com-
pute the exact probability values pdr,exact(r,s) as shown in Figure 5a. If the filter probabil-
ity value pdr,filter of the currently considered join candidate pair is smaller or equal to the
maximal exact probability value computed so far, we can immediately report the object
pair having the maximal exact probability value. If we have already refined further object
pairs for which the exact probability value is equal or higher than pdr,filter, then all these

dr,exact
prob

dr,filter
prob

dr,exact
prob

dr,filter
prob

dr,filter
prob

pairs can be reported before starting the next refinement. Obviously, this process can it-
eratively be continued until the user decides that he has received enough object pairs.

Fig. 5. Probability functions underlying the distance-range join.
a) Computation of the exact probability b) Computation of the filter probability

FUNCTION pdr,exact /* computes the exact probability */
INPUT:
o = {{o1,1, ..., o1,n 1

},...,{ok,1, ..., ok,n k
}}clustered_uncertain_object,

o’ = {{o’1,1, ..., o’1,n’ 1
},..., {o’k,1, ..., o’k,n’ k

}}clustered_uncertain_object
OUTPUT: numerical value p∈[0..1];

BEGIN
IF mindist (MBR(o), MBR(o’)) > ε THEN

RETURN 0
ELSE IF maxdist (MBR(o), MBR(o’)) ≤ ε THEN

RETURN 1
ELSE BEGIN

probability := 0;
FOR i = 1 TO k DO

FOR i’ = 1 TO k DO
IF maxdist (MBR(Ci(o)), MBR(Ci’(o’))) ≤ ε THEN

probability := probability + ni . n’i’
ELSE

FOR j = 1 TO ni DO
FOR j’ = 1 TO n’i’ DO

IF dist (oi,j , o’i’,j’) ≤ ε THEN
probability := probability + 1;

RETURN probability / sr2;
END;

END.

a)

FUNCTION pdr,filter /* computes the filter probability */
INPUT:
o = {{o1,1, ..., o1,n 1

},...,{ok,1, ..., ok,n k
}}clustered_uncertain_object,

o’ = {{o’1,1, ..., o’1,n’ 1
},..., {o’k,1, ..., o’k,n’ k

}}clustered_uncertain_object
OUTPUT: numerical value p∈[0..1];

BEGIN
IF mindist (MBR(o), MBR(o’)) > ε THEN

RETURN 0
ELSE IF maxdist (MBR(o), MBR(o’)) ≤ ε THEN

RETURN 1
ELSE BEGIN

filter_probability := 0;
FOR i = 1 TO k DO

FOR i’ = 1 TO k DO
IF mindist (MBR(Ci(o)), MBR(Ci’(o’))) ≤ ε THEN

filter_probability := filter_probability + ni . n’i’
RETURN filter_probability / sr2;

END;
END.

b)

5 Experimental Evaluation

In this section, we examine the effectiveness, i.e. the quality, and the efficiency of our
proposed probabilistic similarity join approach. The efficiency of our approach was mea-
sured by the number of required distance computations which dominate the overall
runtime cost. The depicted cost concerning the probabilistic distance-range join exper-
iments reflect the overall number of required distance computations.

5.1 Experimental Setup
The following experiments are based on artificial datasets, each consisting of a set of

3- and 10-dimensional uncertain feature vectors. Additionally, we also applied our ap-
proaches to two distributed real-world datasets PLANE and PDB where the feature vec-
tors were described by multi-dimensional boxes according to [18].

ARTd(u) datasets. Each of these artificial datasets contains 1000 uncertain objects
distributed equally in a d-dimensional normalized data space. Thereby the parameter u
denotes the grade of uncertainty of the objects in the dataset. The uncertainty of the ob-
jects, i.e. the maximal variance of the feature values, is measured relatively to the data
space. In our experiments, we used two different settings for the uncertainty. For the
ART3 data set, u = ’low’ denotes an uncertainty of 3% of the data space and u = ’high’
denotes an uncertainty of 5% of the data space. For the ART10 data set, u = ’low’ denotes
an uncertainty of 3% of the data space and u = ’high’ denotes an uncertainty of 4% of the
data space.

PLANE dataset. The real world dataset PLANE consists of 1000 high-resolution 3D
CAD objects provided by our industrial partner, an American airplane manufacturer.
Each object is represented by a 42-dimensional feature vector which is derived from the
cover sequence model as described in [17]. The average uncertainty of the PLANE data
set is 1% of the data space.

PDB dataset. This 3D protein structure dataset is a real world dataset derived from
the Brookhaven Protein Data Bank (PDB) [6]. The 1000 objects are represented by 3D
shape histograms [2] resulting in a 120-dimensional feature vector per object. The aver-
age uncertainty of the PDB data set is 4% of the data space.

For the sampling of the possible object positions we assumed an equal distribution
within the corresponding uncertainty areas. All d-dimensional datasets are normalized
w.r.t. the unit space [0,1]d. As distance measure we used the L1-distance (Manhattan dis-
tance). We performed a self-join on the datasets where the ε-distance was set to 3% of
the dataspace for all datasets, except of the PDB dataset for which we set ε = 1%. If not
stated otherwise, the size of the sample set of each uncertain object is initially set to 25
samples which are approximated by 7 clusters.

5.2 Experiments on the Sample Rate
In the first experiments, we examined the quality of our similarity join approaches by

varying the number of used samples per object. We noticed that for sample rates higher
than 100 the resulting probability values do not change any more considerably. There-
fore, we used the probabilistic similarity join result Rexact = {(r, s, Pexact(r θd s))|
Pexact(r θd s) > 0} (cf. Definition 4) based on 100 samples as reference join result for mea-
suring the error of the probabilistic similarity join results Rapprox= {(r, s, Papprox(r θd s)) |

Papprox(r θd s) > 0} based on sample rates sr < 100. The used error measure Errdr for the
distance-range joins is defined as follows: Errdr(Rapprox, Rexact) =

Figure 6a shows the error of the probabilistic distance-range join for a varying sample
rate sr. The figure shows clearly that the error decreases rapidly with increasing sample
rates. At a sample rate sr = 10 the error is less than half the size compared to the error at
sr = 1 for all datasets. Furthermore, comparing the artificial datasets with high uncertain-
ties (ARTd(high)) to those with low uncertainties (ARTd(low)), we can observe that a
higher uncertainty leads to a higher error.

In the next experiment, we investigated how the sample rate influences the cost of
the join processing. Figure 6b shows the number of distance computations required to
perform the join for varying sample rates. We set the number k of clusters to 5 for a
sample rate sr higher than 5, otherwise we set k = sr. The cost increase superlinear with
increasing sample rates sr. For high sample rates, the good quality (cf. Figure 6a) goes
along with high join cost (cf. Figure 6b). In particular, the join processing on datasets
with high uncertainty (ARTd(high)) does not only lead to a lower quality of the results
but is also more expensive than the processing on more accurate datasets (ARTd(low)).
Altogether, we achieve a good trade-off between the quality of the results and the re-
quired cost when using a sample rate of sr = 25.

5.3 Experiments on the Efficiency
In this subsection, we examine the runtime performance of our probabilistic join

approach. At first, we consider the runtime behavior for different sample rates sr and
varying number of clusters k. The experimental results are depicted in Figure 7. On the
one hand, when using only one cluster per object (k = 1), we have only a few clusters for
which we must compute the distances between them. On the other hand, the refinement
of these clusters is very expensive. When using one cluster per object, the cluster covers
the entire uncertain object, i.e. it has a large extension. The probability that the ε-range
value is between the mindist value and the maxdist value of a pair of such clusters is very

Papprox r θd
dr s() Pexact r θd

dr s()–r s,() R S×∈∑

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 5 10 25 50

ART3(low) ART3(high)
ART10(low) ART10(high)
PLANE PDB

0
100
200

300
400
500
600

700
800
900

1 5 10 25 50

Fig. 6. Influence of the sample rate sr
a) Error b) Number of distance computations

a)

sample rate

er
ro

r E
rr

dr

0 . 0 E+0 0

2 . 0 E+0 7

-10 10 30 50

ART3(low) ART3(high)
ART10(low) ART10(high)
PLANE PDB

0,0E+00

2,0E+06

4,0E+06

6,0E+06

8,0E+06

1,0E+07

1,2E+07

1,4E+07

1,6E+07

1,8E+07

0 10 20 30 40 50sample rate

di

st
an

ce
 c

om
pu

ta
tio

ns

b)

high, i.e. a lot of cluster pairs have to be refined. Very small clusters (k = s) also lead to
an expensive join processing, because we have to compute a lot of distances between
pairs of clusters when refining the object pairs. The best trade-off for k can be achieved
somewhere in between these two extremes. As depicted in Figure 7, the optimal setting
for k depends on the used sample rate. Generally, the higher the used sample rate sr, the
higher is the optimal value for k.

In the next experiments, we demonstrate the advantages of the filter step when
enabling a ranked output of the results in descending order of their probabilities. As
mentioned in Section 4.2.2, the proposed filter step enables an early output of the first
join results. Figure 8a depicts the performance of the ranked distance-range join w.r.t.
the probabilities of the results. Only 25% of the distance computations are required to
output all certain results, i.e. results having a probability higher than 95%. Only 70% of
the distance computations are required to output all results having a probability higher
than 50%. The join cost w.r.t. the number of returned results are depicted in Figure 8b.
Only 45% of the distance computations are required to return the first 10% of the result
set. The proposed incremental join processing is particularly useful when the user wants
to stop the query after getting either the most significant results or a small portion of the
result set.

0.0E+00
2.0E+07

-10 10 30 50

ART3(low)

ART3(high)

ART10(low)

ART10(high)

PLANE

PDB
0,0E+00

5,0E+04

1,0E+05

1,5E+05

2,0E+05

2,5E+05

3,0E+05

3,5E+05

4,0E+05

1 2 3 4 5

0,0E+00

2,0E+05

4,0E+05

6,0E+05

8,0E+05

1,0E+06

1,2E+06

1,4E+06

1,6E+06

1 2 3 4 5 6 7 8 9 10
0,0E+00

1,0E+06

2,0E+06

3,0E+06

4,0E+06

5,0E+06

6,0E+06

7,0E+06

8,0E+06

9,0E+06

1 3 5 7 9 11 13 15 17 19 21 23 25

Fig. 7. Runtime performance for varying number of sample clusters

k (# sample clusters per object)

k (# sample clusters per object) k (# sample clusters per object)

di

st
an

ce
 c

om
pu

ta
tio

ns

di

st
an

ce
 c

om
pu

ta
tio

ns

di

st
an

ce
 c

om
pu

ta
tio

ns

sr = 5

sr = 10 sr = 25

6 Conclusions

Similarity query processing on uncertain data is an important emerging topic in
many modern database application areas. In this paper, we introduced the general con-
cept of probabilistic similarity joins on uncertain objects which assign to each object
pair a probability value indicating the likelihood that it belongs to the result set. In
particular, we introduced in detail how to compute these probability values for the dis-
tance-range join. We showed how this similarity join can effectively be carried out
based on the generally applicable concept of monte-carlo sampling. In order to improve
the efficiency of the proposed probabilistic similarity join, we determined appropriate
approximations of the object samples by means of clustering. Based on these approxi-
mations, the proposed probabilistic distance-range join algorithm also supports an in-
cremental report of the join results ranked in descending order of their probability val-
ues. In a detailed experimental evaluation based on artificial and real-world data sets, we
demonstrated that the incremental probabilistic distance-range join allows to report the
most significant join results very early.

In our future work, we plan to extend our probabilistic algorithm to further similar-
ity join predicates, e.g. the nearest-neighbor and reverse-nearest neighbor predicates.
Furthermore, we will show that probabilistic similarity joins can beneficially be used as
a basic operation for various data mining algorithms, e.g. clustering and classification
algorithms, which have to process uncertain data.

References

1. Abiteboul S., Hull R., Vianu V.: Foundations of Databases. Addison Wesley, 1995.
2. Ankerst M., Kastenmüller G., Kriegel H.-P., Seidl T.: 3D Shape Histograms for Similarity

Search and Classification in Spatial Databases. SSD'99.
3. Böhm C., Braunmüller B., Breunig M., Kriegel H.-P.: High Performance Clustering Based on

the Similarity Join. CIKM’00.
4. Brinkhoff T., Kriegel H.P., Seeger B.: Efficient Processing of Spatial Joins Using R-trees.

SIGMOD ’93.

0

200000

400000

600000

800000

1000000

1200000

0 0,2 0,4 0,6 0,8 1
0

200000

400000

600000

800000

1000000

1200000

0 1000 2000 3000 4000
probability values of the returned results

di

st
an

ce
 c

om
pu

ta
tio

ns

di

st
an

ce
 c

om
pu

ta
tio

ns

Fig. 8. Runtime ranked distance-range join (ART3(high))
a) performance with respect to the result probability

b) performance with respect to the number of returned results

number of returned results

a) b)

5. van den Bercken J., Seeger B., Widmayer P.: A General Approach to Bulk Loading Multidi-
mensional Index Structures. VLDB’97.

6. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Brice M. D., Rodgers J. R., Kennard
O., Shimanovichi T., Tasumi M.: The Protein Data Bank: a Computer-based Archival File for
Macromolecular Structures. Journal of Molecular Biology, Vol. 112 (1977).

7. Bracewell R.: The Impulse Symbol. Ch. 5 in The Fourier Transform and Its Applications, 3rd
ed.: McGraw-Hill, 1999.

8. Cheng R., Kalashnikov D.V., Prabhakar S.: Evaluating probabilistic queries over imprecise
data. SIGMOD’03.

9. Cheng R., Kalashnikov D. V., Prabhakar S.: Querying imprecise data in moving object envi-
ronments. IEEE Transactions on Knowledge and Data Engineering, 2004.

10. Dai X., Yiu M., Mamoulis N., Tao Y., Vaitis M.: Probabilistic Spatial Queries on Existentially
Uncertain Data. SSTD’05.

11. Guttman A.: R-trees: A Dynamic Index Structure for Spatial Searching. SIGMOD’84.
12. Huang Y.-W., Jing N., Rundensteiner E. A.: Spatial Joins Using R-trees: Breadth-First Tra-

versal with Global Optimizations. VLDB’97.
13. Januzaj E., Kriegel H.-P., Pfeifle M.: Scalable Density-Based Distributed Clustering.

PKDD'04.
14. Kamel I., Faloutsos C.: Hilbert R-tree: An Improved R-tree using Fractals. VLDB’94.
15. Koudas N., Sevcik K.: High Dimensional Similarity Joins: Algorithms and Performance

Evaluation. ICDE’98.
16. Koudas N., Sevcik K.: Size Separation Spatial Join. SIGMOD’97.
17. Kriegel H.-P., Brecheisen S., Kröger P., Pfeifle M., Schubert M.: Using Sets of Feature Vectors

for Similarity Search on Voxelized CAD Objects. SIGMOD’03.
18. Kriegel H.-P., Kunath P., Pfeifle M., Renz M.: Approximated Clustering of Distributed High

Dimensional Data. PAKDD’05.
19. Lo M.-L., Ravishankar C. V.: Spatial Joins Using Seeded Trees. SIGMOD’94.
20. Lo M.-L., Ravishankar C. V.: Spatial Hash Joins. SIGMOD’96.
21. McQueen J.: Some Methods for Classification and Analysis of Multivariate Observations. In

5th Berkeley Symp. Math. Statist. Prob., volume 1, 1967.
22. Motro A.: Management of Uncertainty in Database Systems. In Modern Database Systems,

Won Kim (Ed.), Addison Wesley, 1995.
23. Patel J.M., DeWitt D.J.: Partition Based Spatial-Merge Join. SIGMOD’96.
24. Seidl T., Kriegel H.-P: Optimal Multi-Step k-Nearest Neighbor Search. SIGMOD’98.
25. Shim K., Srikant R., Agrawal R.: High-Dimensional Similarity Joins. ICDE’97.
26. Wolfson O., Sistla A. P. , Chamberlain S., Yesha Y.: Updating and Querying Databases that

Track Mobile Units. Distributed and Parallel Databases, 7(3), 1999.
27. Yiu M. L., N. Mamoulis N.: Clustering Objects on a Spatial Network. SIGMOD’04, pp.

443-454.
28. Zhao W., Chellappa R., Phillips P.J., Rosenfeld A.: Face Recognition: A literature survey.

ACM Computational Survey, 35(4), 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

