
Statistic Driven Acceleration of Object-Relational
Space-Partitioning Index Structures

Hans-Peter Kriegel, Peter Kunath, Martin Pfeifle, Matthias Renz
University of Munich, Germany

{kriegel, kunath, pfeifle, renz}@dbs.informatik.uni-muenchen.de

Abstract. Relational index structures, as for instance the Relational Interval Tree
or the Linear Quadtree, support efficient processing of queries on top of existing
object-relational database systems. Furthermore, there exist effective and effi-
cient models to estimate the selectivity and the I/O cost in order to guide the
cost-based optimizer whether and how to include these index structures into the
execution plan. By design, the models immediately fit to common extensible in-
dexing/optimization frameworks, and their implementations exploit the built-in
statistics facilities of the database server. In this paper, we show how these statis-
tics can also be used for accelerating the access methods themselves by reducing
the number of generated join partners which results in fewer logical reads and
consequently improves the overall runtime. We cut down on the number of join
partners by grouping different join partners together according to a statistic driven
grouping algorithm. Our experiments on an Oracle9i database yield an average
speed-up between 20% and 10,000% for spatial collision queries on the Rela-
tional Interval Tree and on the Relational Quadtree.

1 Introduction

The efficient management of complex objects has become an enabling technology for
many novel database applications, including computer aided design (CAD), medical
imaging or molecular biology. For commercial use, a seamless and capable integration
of spatial indexing into industrial-strength databases is essential. In order to integrate
these index structures into modern ORDBMSs, we need suitable cost models [4], which
exploit the built-in statistics facilities of the database server. Based on these statistics it
is possible to estimate the selectivity of a given query and to predict the cost of process-
ing that query.

In an ORDBMS, the user has no access to the exact information where the blocks are
located on the disk. Former approaches which try to generate efficient read schedules for
a given set of disk pages [11] must know the actual position of the pages on the storage
media. As this information is not available in an ORDBMS, we pursue another idea
which exploits already existing statistics in order to accelerate spatial query processing.
We introduce our approach in general as well as exemplarily for spatial intersection
queries performed on the Relational Quadtree (RQ-tree) and the Relational Interval Tree
(RI-tree). A rough sketch of the presented idea can be found in [3]. For a comprehensive
overview about Relational Access Methods and how to integrate them into modern OR-
DBMs, we refer the reader to [6].

The remainder of this paper is organized as follows. In Section 2, we show how we
can use the already existing statistics to accelerate the query process. In addition to the
known error- and size-bound decomposition approaches, we present a new statis-

renz
Proc. 9th International Conference on Database Systems for Advanced Applications (DASFAA 2004), Jeju, South Korea, pp. 169-183

tic-bound decomposition approach for decomposing spatially extended objects. Exem-
plarily, we show how to adopt our new approach to the RQ-tree and the RI-tree. In
Section 3, we present convincing experimental results and conclude the paper with a
few remarks on future work.

2 Statistic based Acceleration of Relational Access Methods

In addition to the query optimizer of an ORDBMS, which uses statistics for rule-based
optimizations such as push-selections, we use the statistics to minimize the overall nav-
igational cost of a relational index structure. Our approach accelerates relational access
methods by trying to reduce the total number of logical reads for a given query. The re-
lational access method can be any custom index structure mapped to a fine granular re-
lational schema which is organized by built-in access methods, as for instance the
B+-tree. All statistic-based optimizations presented in this section can also be applied
to variants of the basic relational index structures. For instance, there exist index struc-
tures which were especially tuned for coping efficiently with sequences. One example
is the RI-tree as introduced in [8]. It supports the efficient detection of intersecting spa-
tial objects, which are represented by interval sequences. The main idea of this index
structure is to neglect such nodes as join partners which are already handled by the pre-
vious query interval or which will be handled by the following one. The main disadvan-
tage of this approach is that only specific predicates are supported by this kind of index
structures. For instance the RI-tree according to [8] only supports boolean intersection
queries, but already fails to compute the intersection volume. Similar optimizations are
possible for the RQ-tree by eliminating duplicates from the upper hulls resulting from
different query tiles of a given query sequence.

In this section, we first look at very comprised statistic values, which can already be
very useful for accelerating spatial relational index structures. Then we show how we
can benefit from the statistics, used by the cost-models belonging to a relational access
method. Finally, in Section 2.3 we introduce a new statistic-based decomposition ap-
proach in addition to the existing error- and size-bound decomposition approaches. In all
three sections, we first introduce our ideas in general and then show how to adapt them
to specific relational index structures.

2.1 Statistics Related to the Relational Access Method

We start with a definition common to all relational access methods:

Definition 1 (Relational Access Method) [6]
An access method is called a relational access method, iff any index-related data is

exclusively stored in and retrieved from relational tables. An instance of a relational
access method is called a relational index. The following tables comprise the persistent
data of a relational index:

(i) User table: a single table, storing the original user data being indexed.
(ii) Index tables: n tables, n ≥ 0, storing index data derived from the user table.
(iii) Meta table: a single table for each database and each relational access method,

storing O(1) rows for each instance of an index.
The stored data is called user data, index data, and meta data.

As already indicated in the above definition, the metadata table is a single table for
each database and each relational access method, storing O(1) rows for each instance of
an index. All schema objects belonging to the relational index, in particular the name of
the index table, and other index parameters are stored in this global meta table.

Especially in the case of space partitioning index structures, often a few values,
describing the actual data distribution, help to reduce the I/O cost dramatically. If we
assume for instance that one half of the data space is completely empty, and we carry out
a box volume query in this area, we can omit a lot of unnecessary I/O accesses if we take
the actual data distribution into consideration. Consequently, it is beneficial if we store
the variable data extension along with the fixed data space extension in the metadata
table.

In Table 1, we summarized some optimizations which are suitable for the RI-tree and
the RQ-tree. These simple statistics are especially useful for indexing extended spatial

objects. If we use the RI-tree or the RQ-tree for indexing extended objects, very often
only the lower levels of the virtual primary structure are engaged, as spatial objects tend
to decompose into numerous small tiles or intervals [5] (cf. Section 3).

2.2 Statistics Related to the Built-in Index Structure

In [4], it was shown that using quantiles (‘equi-count histograms’) is more suitable for
estimating the selectivity and the corresponding I/O cost than using histograms
(‘equi-width histograms’). In addition, the runtime required for the histogram compu-
tation is increased by the cost of barrier-crossings between the declarative environment
of the SQL layer and our stored procedure. Fortunately, most ORDBMS comprise effi-
cient built-in functions to compute single-column statistics, particularly for cost-based

Table 1. Simple Statistics for the RI-tree and the RQ-tree

denotation explanation

MaxNodeLevel
MinNodeLevel
(RI-tree)

These two parameters reflect the highest and lowest level of the
fork-nodes of the intervals in the database. If we arithmetically
traverse the primary structure for a given query interval q = (l,u),
we only have to collect those nodes n as join partners, for which
MinNodeLevel ≤ Level (n) ≤ MaxNodeLevel holds.

MaxLeftDist
MaxRightDist
(RI-tree)

These two parameters reflect the maximum distance of the bound-
ary values of any database interval to its corresponding fork-node.
If we arithmetically traverse the primary structure for a given
query interval q = (l,u), we only have to collect those nodes n as
join partners, for which n-MaxLeftDist ≤ u and n+MaxRightDist ≥ l
holds.

MaxTileLevel
MinTileLevel
(RQ-tree)

These two parameters reflect the highest and lowest level of stored
tiles within the database. If we compute the upper hull of a given
query tile q, we only have to consider those tiles t as join partners,
for which MinTileLevel ≤ Level (t) ≤ MaxTileLevel holds.

query optimization. Available optimizer statistics are accessible to the user by the rela-
tional data dictionary. The basic idea of our quantile-based selectivity estimation is to
exploit these built-in index statistics rather than to add and maintain user-defined histo-
grams. We start with the definition of a quantile vector, the typical statistics type sup-
ported by relational database kernels.

Definition 2 (Quantile Vector).

Let (M, ≤) be a totally ordered multi-set. Without loss of generality, let
M = {m1, m2, …, mN} with mj ≤ mj+1, 1 ≤ j < N. Then, Q(M, ν) = (q0, …, qν) ∈ Mν is
called a quantile vector for M and a resolution ν ∈ IN, iff the following conditions hold:

(i) q0 = m1

(ii) ∀ i ∈ 1, …, ν: ∃ j ∈ 1, …, N: qi = mj ∧ < ≤
We will now discuss how we can use this information to accelerate the query process
itself. Any query for a relational index structure, e.g. RI-tree or RQ-tree, leads to several
index range scans on the built-in index structures, e.g. B+-tree. The general idea of our
approach is to minimize the overall navigational cost of the built-in index by applying
extended index range scans. Thereby, we read false hits from the index, which are fil-
tered out by a subsequent refinement step. Our approach closes the gaps between the
index scan ranges if and only if the number of additional read data is comparably small,
more precisely the cost related to these false hits is smaller than the navigational cost
related to an additional range scan. This decision whether to close a gap is based on the
built-in statistics. We will now formally introduce this idea.

Index Range Scan Sequences. For spatial intersection queries, the query object Q
leads to many disjoint range queries si = (li, ui) on the built-in index I, e.g. the B+-tree.
We consider them as a sequence SeqQ,I = (〈s1,..., sn〉) of index range scans (cf. Figure
1a) for which the following assumptions hold:

 • The elements ri stored in the index are of the same type as li, ui. Furthermore, we
assume that the elements ri can be regarded as a linear ordered list L(I) = 〈r1,...,rN〉
for which r1 ≤ ... ≤ rN holds.

 • We assume that the data pages pi of the index obey a linear ordering ≤ and fulfill the
following property: r’≤ r’’⇔ p(r’) ≤ p(r’’), where p(r) denotes the disk page of the
index I, which contains the entry r.

I/0 cost. The I/O cost CI/O(s) associated with one index range scan s = (l, u) of SeqQ,I
= (〈s1,..., sn〉) are composed from two parts: Cn

I/O(s) the navigational I/O cost for find-
ing the first page of the result set, and Cs

I/O(s) the cost for scanning the remaining pages
containing the complete result set. Formally, CI/O(s) = Cn

I/O(s) + Cs
I/O(s), with the fol-

lowing two properties:

(i) Cn
I/O(s) = Cn

I/O(p(r’)) (navigational cost)

(ii) Cs
I/O(s) = Cs

I/O(〈p(r’),...,p(r’’)〉) (scan cost)

where r’, r’’ ∈ L(I) and ∀ r ∈ L(I) : (r’ ≤ r ≤ r’’) ⇔ (l ≤ r ≤ u) holds.

The I/O cost CI/O(SeqQ,I) associated with SeqQ,I = (〈s1,..., sn〉) are determined by

CI/O(SeqQ,I) = .

j 1–
N

---------- i
ν
--- j

N

C
I O⁄

si()
i 1=

n
∑

Extended Index Range Scan Sequences. The main purpose of our approach is to min-
imize the overall cost for the navigational part of the built-in index. Therefore, we try
to reduce the number of generated range queries on the index I, while only allowing a
small increase in the output cost. This can be achieved by merging two suitable adjacent
range scans s’ = (l’, u’) and s’’ = (l’’, u’’) together to one extended range scan
xs = (l’, u’’).

Intuitively, an extended range scan xs = 〈sr, ..., ss〉 is an ordered list of index range
scans. When carrying it out, we traverse the index directory only once and perform a
range scan (lr, us), as for example (l3, u4) in Figure 1b. Performing the extended range
scan we read false hits from the index I, which have to be filtered out in a subsequent
refinement step. The overall cost C(xs) of an extended range scan xs are composed from
the sum of the I/O cost of the extended range scan and the CPU cost related to the
refinement step: C(xs) = CI/O(xs) + CCPU(xs).

I/O cost. The I/O cost CI/O(xs) associated with one extended range scan xs = 〈sr, ..., ss〉
are composed from two parts CI/O(xs) = Cn

I/O(xs) + Cs
I/O(xs), with the following prop-

erties:

(i) Cn
I/O(xs) = Cn

I/O(sr) (navigational cost)

(ii) Cs
I/O(xs) = Cs

I/O(lr ,us) (scan cost)

Cs
I/O(〈s1, s2〉) = 1

s3

pb

Figure 1. Accelerated query processing
a) Index range scan sequence b) Extended index range scan sequence

query object Q

query object Q yields to an
index range scan sequence SeqQ,I = (〈s1, s2, s3, s4〉)

s1 s2 s4

l1 u1 l2 u2 l3 u3 l4 u4

p1

Cn
I/O(s1) Cn

I/O(s2) Cn
I/O(s3) Cn

I/O(s4)

extended index range scan sequence
XSeqQ,I = (〈〈s1, s2〉, 〈s3, s4〉〉)

〈s3, s4〉

pb

〈s1, s2〉

l1 u2 l3 u4

p1

Cn
I/O(〈s1, s2〉) = Cn

I/O(s1)

Cs
I/O(〈s3, s4〉) = 7

Cn
I/O(〈s3, s4〉) = Cn

I/O(s3)

blocks of index data I

blocks of index data I
Cs

I/O(s4) = 2Cs
I/O(s3) = 4Cs

I/O(s1) = Cs
I/O(s2) = 1

a)

b)

CPU cost. The CPU cost CCPU(xs) associated with one extended range scan xs =
〈sr, ..., ss〉 denote the cost which are required to perform the filter operation for all tuples
resulting from the extended range scan: CCPU(xs) = CCPU(〈r’,..,r’’〉), where ∀ r ∈ L(I) :
(r’ ≤ r ≤ r’’) ⇔ (lr ≤ r ≤ us).

The total cost C(XSeqQ,I) associated with an extended index range scan sequence

XSeqQ,I = (〈xs1,.., xsm〉) can be computed as follows: C(XSeqQ,I) = .

Obviously, there might exist extended index range scan sequences XSeqQ,I for which
C(XSeqQ,I) << C(SeqQ,I) holds. For each gap g between two adjacent range queries s’
and s’’ we decide, whether the cost of scanning over the gap g are lower than the naviga-
tional I/O cost related to s’’. The decision whether to merge range scan s’ and s’’ to one
extended range scan and apply an additional refinement step afterwards in order to filter
out false hits is based on statistics, which are necessary for the cost models anyway.

The multi-set M of our quantile vector (q0, …, qν) (cf. Definition 2) is formed by the
values of the first attribute A1 of the domain values of our index I. By means of these
statistics we can estimate the I/O cost Cs

I/O(s) associated with one range scan s = (l, u).
In the following formula, b denotes the number of disk blocks at the leaf level of I, v
denotes the resolution of the quantile vector, N denotes the overall number of entries
stored in the index I and overlap returns the intersection length of two intersecting inter-
vals.

We can also apply the above formula to estimate the total cost Cs(g) = Cs
I/O(g) +

CCPU(g) related to scanning over a gap g =]u’, l’’[between two adjacent range queries
s’ and s’’. The CPU cost can be estimated by CCPU(g) = , with a parameter
k > 0, since both the I/O cost and the CPU cost are directly proportional to the size of the
result set of the range scan. If Cs(g) are lower than Cn(s’’), we close the gap g.

We can find the extended range scan sequence XSeqQ,I, trying to minimize
C(XSeqQ,I), by deciding for each of the n-1 gaps between the index range scans s1,..., sn
of the index range scan sequence SeqQ,I = (〈s1,..., sn〉), whether we close this gap or skip
it. Thus we obtain an extended index range scan sequence XSeqQ,I = (〈 ,...,

〉), which satisfies the following property:

Usually, the actual navigational cost Cn
I/O are independent of the actual range scan

and can easily be estimated by Cn
est, e.g. by the height of the B+-directory.

In the following, we will show how our approach can be applied to the intersect
predicate for specific index structures.

Adoption to the RQ-tree. The classical example for a space partitioning relational ac-
cess method is the Relational Quadtree [10]. In this section, we shortly introduce our
approach based on the basic idea of the Linear Quadtree according to the in-depth dis-
cussion of Freytag, Flasza and Stillger [1].

C xsj()
j 1=

m

∑

Cs
I O/ l u,()() Cs

est
l u,()()≈

overlap l u,() qi 1– qi,(),()

qi qi 1––
--- N

v
----⋅

i 1=

v
∑

N b⁄()
--=

k Cs
I O/

g()⋅

si0 1+ ,..,si1
〈 〉

sim 1– 1+ ,..,sim
〈 〉

i 1... n 1–∈∀ : i i1...im 1– Cn
est

si 1+() Cs
est

ui li 1+,()()<⇔∈

Assume object Q in Figure 2 is used as query object. Then there are multiple exact
match and range scan queries which have to be performed in order to detect all intersect-
ing database objects. We can reduce the cost by closing small gaps on the leaf-level of
the underlying B+-tree. By using the information stored in the statistics, i.e. using the tile
quantiles, the number of join partners, which correspond directly to the navigational cost
Cn

I/O, can be reduced drastically. The quantile vector is built over the values stored in
the leaf-level of the B+-tree.

We investigate all gaps included in the sequence of our generated join partners and
decide whether it is beneficial to close this gap. Assume the height of our B+-directory
is n. If we close the gap, we reduce the navigational cost as follows: Cn

I/O = Cn
I/O - n.

On the other hand, we estimate the cost Cs(g) required to read the leaf blocks on our
index (zval), which are covered by the database tiles of the actual investigated gap g. If
these estimated cost are lower than n, we close this gap. Thus we reduce the join cost
Cn

I/O by n, while not increasing the output cost Cs by more than n. This procedure is
depicted in Figure 2.

The above mentioned cost-based grouping step can be carried out in a procedural
preparation step JoinPartGen by using bind variables, leading to one single SQL-state-
ment (cf. Figure 3). This approach reduces the overhead of barrier crossings between the
declarative and procedural environments to a minimum. The resulting table tiles con-
tains entries of a type which consists of three attributes ZvalLow, ZvalHigh and ExactZ-
valList. The attribute ExactZvalList is a collection of tile ranges, representing the accu-
rate query information. It is needed for an additional refinement step to filter out false
index hits, by calling TestZval().

Adoption to the RI-tree. Similarly to the RQ-tree, we can integrate the cost-based
grouping algorithm into the procedural query preparation step of the RI-tree. This

12 15 27
3 6 18 21

10 25 28

4 7 19 22
20 23

11 14 26 29
30

8 20 23

13

1 16

2 17

9 24

0

0 8 24 30 16

0 8 24 30 16

0 8 24 30 16

Quadtree tiles

Quadtree tiles

30
25

2320

13

8

30
25

2320

13

8

Figure 2. Cost-Based Tile Grouping

Tile

cost-based
Quantiles

grouping

B

302513

8 20 23

Q

Corresponding Join Partners =Query Object

Quadtree tiles

Recursive partitioning of the query object Q

index range scan sequence

extended index range scan sequence
5

SELECT DISTINCT idx.id
FROM DBTiles idx, TABLE(JoinPartGen(BOX((0,0),(10,10)))) tiles,
WHERE (idx.zval BETWEEN tiles.ZvalLow AND tiles.ZvalHigh) AND

TestZval(idx.zval, tiles.ExactZvalList);

Figure 3. Accelerated window query on a Relational Quadtree

grouping algorithm is independent of the high-level relational index-structure. It is only
based on a B+-tree and on a quantile vector. The quantile vector in the case of the
RI-tree, is formed by the fork-nodes of the intervals stored in the database. This node
quantile was also used for an effective and efficient cost-model for intersection queries
on RI-trees [4].

2.3 Statistics Related to the Object Decomposition

Both the error- and size-bound decomposition approach for spatially extended objects
lead to a sequence of simple query objects, e.g. a sequence of tiles, intervals or boxes.
In this section, we introduce an additional decomposition approach which decomposes
the object based on the expected I/O cost. The expected I/O cost can be estimated in the
same way the optimizer estimates the cost for a given query. Like the approach of the
last section, the decomposition of the query object is controlled by the statistics which
are available for free and maintained by the cost model.

Figure 4 depicts this top down grouping algorithm which is beneficial for all of the
discussed index structures. The algorithm starts with a query object comprising the com-
plete object. In each step, we determine the maximum included gap and split along this
gap resulting in a sequence of query objects. Then we estimate the I/O cost related to the
original query object and the cost related to the sequence. If the cost of the original query
object is smaller than the cost of the sequence, we terminate the algorithm. The query
object now consists of a sequence of query objects. In an additional refinement step, we
eliminate the false hits, which result from the fact that we have not decomposed the
spatial object with the maximum possible accuracy.

Box Volume queries. The introduced approach is especially useful for highly selective
box volume queries on the RI-tree or the RQ-tree. The traditional error-and size bound
decomposition approaches [9] decompose a large query object into smaller query ob-
jects optimizing the trade off between accuracy and redundancy. In contrast, the idea of

Figure 4. Grouping Algorithm Decompose

QV: quantile vector
Q: query object

Decompose(Q, QV)
{ query_sequence_list := split_at_maximum_gap(Q);
cost0 := statistic_look_up(Q, QV);
costdec := 0;
for each q in query_sequence_list do
costdec := costdec + statistic_look_up(q, QV);

if cost0 > costdec then
for each q in query_sequence_list do
Decompose(q, QV);

else
report(Q); }

taking the actual data distribution into account in order to decompose the query object,
leads to a new selectivity-bound decomposition approach, which tries to minimize the
overall number of logical reads. We decompose a query box dependent on the stored
data. If there are not many data stored in the query area, the box is decomposed into
comparable few simple query objects, i.e. tiles or intervals. On the other hand, if the
query returns a lot of results, we decompose the query into comparably many simple
query objects.

A box can be described by a few parameters, e.g. by two points. The few parameters
which are necessary to describe the box are attached to each incompletely decomposed
interval or tile. In the refinement step, we further decompose the query intervals or tiles
on demand from the compact geometric information.

3 Experimental Evaluation

The tests are based on two test data sets CAR and PLANE. These test data sets were pro-
vided by our industrial partners, a German car manufacturer and an American plane
producer, in form of high-resolution voxelized three-dimensional CAD parts. The CAR
dataset consists of approximate 14 million voxels and 200 parts, whereas the PLANE
dataset consists of about 18 million voxels and 10,000 parts. The CAR data space is of
size 233 and the PLANE data space is of size 242. In both cases, the Z-curve was used
as a space filling curve to enumerate the voxels.

We have implemented our approach for the RI-tree and the RQ-tree on top of the
Oracle9i Server using PL/SQL for the computational main memory based program-
ming. All experiments were performed on a Pentium III/700 machine with IDE hard
drives. The database block cache was set to 500 disk blocks with a block size of 8 KB
and was used exclusively by one active session.

3.1 Histograms of the Test Data Sets

Figure 5 depicts the interval and gap histograms for our two test data sets. Both test data
sets consist of many short intervals and short gaps and only a few longer ones. Conse-
quently, mainly the lowest levels of the RQ-tree and RI-tree contain index entries. Fig-
ure 6a shows that in the case of the RQ-tree on the CAR data set only the seven lowest

1

100

10000

1000000

1 65536 4294967296
gap length

n
u

m
b

er
 o

f
g

ap
s

CAR
PLANE

1

100

10000

1000000

1 1024 1048576
Interval-Length

n
u

m
b

er
 o

f
in

te
rv

al
s

CAR
PLANE

a) b)

Figure 5. RI-tree histograms a) Intervals b) Gaps

of 33 levels are occupied. Similar observations hold for the RI-tree (cf. Figure 6b)
where most intervals are registered at very low fork-node levels. The observation that
spatial objects are decomposed into many small intervals and tiles are not confined to
our two test data sets but hold for spatial objects in general [2] [5]. Therefore, the sta-
tistics presented in Section 2.1 are very beneficial for efficient query processing on spa-
tially extended objects in general.

3.2 Query Processing

In this section, we examine the benefits of using extended index range scans. For the
RI-tree and the RQ-tree, we used 10% of the database objects as query objects and re-
port the average results from these queries.

Extended range scans without statistics. In a first experiment, which does not use
any statistical information, we point out the benefits of using our extended index range
scans (cf. Section). For a given query object, we did not collect all possible join part-
ners, but omitted the last levels and used an extended index range scan instead. Figure
7a shows that the number of join partners decreases with an increasing number of
scanned tree levels. At the beginning, the number of logical reads also decreases, but if
we neglect too many tree levels of the RI-tree the number of logical reads increases
again along with the increasing number of physical reads. The number of physical reads
stays almost constant if we scan over only a small number of levels. On the other hand,
the number of physical reads dramatically increases if the number of scanned tree levels

1

100

10000

1000000

1 4 7 10 13 16 19 22 25
tree-leveln

r.
 f

o
rk

 n
o

d
es

CAR

PLANE

60%27%

12%

0.16%

0%

0%

0.03%
1.12%

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Figure 6. Used index levels
a) tile levels (RQ-tree (CAR)) b) fork-node levels ((RI-tree) (CAR & PLANE))

a) b)

0

400

800

1200

1600

0 5 10 15 20
scanned tree-levels

n
u

m
b

er
 o

f

logical reads / 1000
physical reads
join partners / 1000

1

10

100

0 5 10 15 20
scanned tree-levels

ru
n

ti
m

e

runtime
preperation
query

Figure 7. RI-tree optimizations without using statistics

b)a)

exceeds 18 because of the increasing number of false hits which are filtered out in a con-
secutive filter step. In Figure 7b it is shown that the preparation time decreases with an
increasing number of scanned tree levels. Due to the reduced number of join partners
and the decreasing preparation time, the overall runtime reaches a minimum if we ne-
glect the last 10 levels of the RI-tree and apply an extended range scan instead. By using
a fixed scan level, we can already improve the query response time by 30%. In the fol-
lowing sections, we will see that if we use statistics to form our extended range scans,
we can further improve the overall query response behavior.

Extended range scans with statistics. In Figure 8, it is shown in detail that our new
statistic-based approach accelerates both the basic variant of the RI-tree [7] and the vari-
ant which is optimized for efficient handling of sequences [8]. Figure 8 depicts that we
can reduce the number of logical reads approximately by an order of magnitude if we
exploit the available statistics. This reduction is achieved without increasing the number
of physical reads so that the overall runtime decreases. If we use the statistics we out-
perform the simple scanning approach even for the optimum scanning level (cf. Figure
7). In all our tests, we accelerate the query process by 20% to 150% if we form the ex-
tended range scans according to the available statistics.

In the next experiments, we applied the statistic based approach to the RQ-tree (cf.
Figure 9). Figure 9a shows that the use of our quantile statistics (cf. Section 2.2) accel-
erates the RQ-tree by about 200%. A further improvement can be achieved by using the
information of the highest and lowest level of stored tiles within the database (cf. Sec-
tion 2.1), leading to a speed-up of almost 300%. Figure 9b depicts the acceleration of the

0

1

2

3

ti
m

e
[s

ec
.]

query time
preparation time

Figure 8. Acceleration for two variants of the RI-tree ([7]*, [8]**)
a) CAR dataset b) PLANE dataset

100

10000

1000000

n
u

m
b

er
 o

f
re

ad
s

logical reads
phys ical reads

a)

RI-tree*
statistic driven

0

20

40

60

80

ti
m

e
[s

ec
.]

query time
preparation time

RI-tree* RI-tree**

RI-tree**
statistic driven

10

1000

100000

10000000

n
u

m
b

er
 o

f
re

ad
s

logical reads
physical reads

b)

RI-tree*
statistic drivenRI-tree* RI-tree**

RI-tree**
statistic driven

RI-tree*
statistic drivenRI-tree* RI-tree**

RI-tree**
statistic driven

RI-tree*
statistic drivenRI-tree* RI-tree**

RI-tree**
statistic driven

sequence optimized RQ-tree, where we compare the variant without incorporating the
CPU-cost of the refinement step with the variant including the CPU-cost (cf. Section 3).
The first variant considers only the I/O-cost and neglects the CPU-cost for forming the
extended range scan sequences: Figure 9b shows that this approach leads only to an
acceleration in the preparation step, but the overall query time increases due to the ex-
pensive refinement process. On the other hand, if we incorporate the CPU-cost for the
cost estimation, we can achieve an overall speed-up of approximately 30%, even for this
highly specialized index structure.

To sum up, similar to the experiments related to the RI-tree, we achieve an accelera-
tion of the query process by 30% to 300%, if we form the extended range scans accord-
ing to the available statistics considering both expected I/O-cost and expected
CPU-cost.

Statistic based decomposition. In a last experiment, we carried out different box vol-
ume queries on the RI-tree for the PLANE database. Figure 10 depicts the average runt-
ime for three different boxes, where we moved each box to 10 different locations. As
shown in Figure 10, our statistic-based decomposition approach can improve the query
response behavior up to 10,000%, i.e. by two orders of magnitude, compared to the
granularity-bound approach. This speed up is mainly due to the reduced decomposition
time. On the other hand, the query response time does not suffer from the fact that we
did not decompose the boxes with the maximum possible accuracy. The time we need
for the additional refinement step to filter out false hits is compensated by the much
smaller number of query intervals resulting from a coarser decomposition of the query
box. To sum up, our statistic-based decomposition approach is especially useful for
commonly used box volume queries.

4 Conclusion

In this paper, we have shown how we can accelerate spatial query processing by means
of statistics which are available for free, as they are maintained by the cost models be-
longing to the corresponding spatial index structures. We have implemented our ap-

Figure 9. Statistic based accelerated RQ-tree on the CAR dataset
a) Runtime for the basic RQ-tree, the RQ-tree optimized according to Section 3.2,

and the RQ-tree optimized according to Section 3.1 and 3.2
b) Runtime for the RQ-tree optimized for sequences (similar to [8])

0

10

20

30

40

50

ti
m

e
[s

ec
.]

query time
preparation time

b)

cost estimation
with I/O-cost

RQ-tree with
sequence optimization

(similar to [8])

cost estimation
with CPU- + I/O-cost

0

100

200

300

400

500

ti
m

e
[s

ec
.]

query time
preparation time

a)

basic RQ-tree
(Sec. 3.1 + 3.2)

statistic drivenbasic RQ-tree
basic RQ-tree

(Sec. 3.2)

statistic driven

proach for the Relational Interval Tree as well as for the Relational Quadtree on top of
the Oracle9i database system. According to our experiments, we achieved speed-up fac-
tors of up to two orders of magnitude. Our new statistic-driven approach accelerates the
query processing considerably. This acceleration is due to the fact, that we can dynam-
ically switch between a further use of the index structure and a linear scan. Our statis-
tic-driven approach adapts the access method continuously variable to the best of these
two worlds.

In our future work, we want to show that our statistic-based acceleration approach
can fruitfully be applied to time critical applications as for instance Virtual Reality ap-
plications with haptic and visual rendering of complex spatial environments. Further-
more, we plan to apply our statistic driven query processing for dynamic queries.

5 References

1. Freytag J.-C., Flasza M., Stillger M.: Implementing Geospatial Operations in an
Object-Relational Database System. Proc. 12th Int. Conf. on Scientific and Statisti-
cal Database Management (SSDBM): 209-219, 2000.

2. Gaede V.: Optimal Redundancy in Spatial Database Systems. Proc. 4th Int. Symp. on
Large Spatial Databases (SSD), LNCS 951: 96-116, 1995.

3. Kriegel H.-P., Kunath P., Pfeifle M., Renz M.: Acceleration of Relational Index
Structures Based on Statistics, Proc. 15th Int. Conf. on Scientific and Statistical
Database Management (SSDBM), Cambridge, Massachusetts, USA, pp. 258-260,
2003.

4. Kriegel H.-P., Pfeifle M., Pötke M., Seidl T.: A Cost Model for Interval Intersection
Queries on RI-Trees, Proc. 14th Int. Conf. on Scientific and Statistical Database
Management (SSDBM), Edinburgh, Scotland, pp. 131-141, 2002.

Figure 10. Box queries on the PLANE data (decomposition and response time)
a) box size equals 0.00002% of data space yielding 0.03% selectivity

b) box size equals 0.003% of data space yielding 0.1% selectivity
c) box size equals 0.008% of data space yielding 1.0% selectivity

1

10

100

1000

10000

ti
m

e
[s

ec
]

response time
decomposition time

1

10

100

1000

10000

ti
m

e
[s

ec
]

response time
decomposition time

1

10

100

1000

10000

ti
m

e
[s

ec
]

response time
decompos ition time

a) b) c)

granularity-
bound
decomposition

selectivity-
bound
decomposition

granularity-
bound
decomposition

selectivity-
bound
decomposition

granularity-
bound
decomposition

selectivity-
bound
decomposition

5. Kriegel H.-P., Pfeifle M., Pötke M., Seidl S.: Spatial Query Processing for High Res-
olutions, Proc. 8th Int. Conf. on Database Systems for Advanced Applications
(DASFAA'03), Kyoto, Japan, pp. 17-26, 2003.

6. Kriegel H.-P., Pfeifle M., Pötke M., Seidl T.: The Paradigm of Relational Indexing:
A Survey. 10. GI-Fachtagung Datenbanksysteme für Business, Technologie und
Web, 2003.

7. Kriegel H.-P., Pötke M., Seidl T.: Managing Intervals Efficiently in Object-Rela-
tional Databases. Proc. 26th Int. Conf. on Very Large Databases (VLDB): 407-418,
2000.

8. Kriegel H.-P., Pötke M., Seidl T.: Interval Sequences: An Object-Relational
Approach to Manage Spatial Data. Proc. 7th Int. Symposium on Spatial and Tempo-
ral Databases (SSTD), LNCS 2121: 481-501, 2001.

9. Orenstein J. A.: Redundancy in Spatial Databases. Proc. ACM SIGMOD Int. Conf.
on Management of Data, 294-305, 1989.

10. Samet H.: Applications of Spatial Data Structures. Addison Wesley Longman, Bos-
ton, MA, 1990.

11. Seeger B., Larson P., McFadyen R.: Reading a Set of Disk Pages. Proc. 19th Int.
Conf. on Very Large Databases (VLDB): 592-603, 1993.

