
- 1 -

Algorithms and Applications for Spatial Data Mining

Martin Ester, Hans-Peter Kriegel, Jörg Sander (University of Munich)

1 Introduction

Due to the computerization and the advances in scientific data collection we are faced with a

large and continuously growing amount of data which makes it impossible to interpret all this data

manually. Therefore, the development of new techniques and tools that support the human in trans-

forming data into useful knowledge has been the focus of the relatively new and interdisciplinary

research area “knowledge discovery in databases”.

Knowledge discovery in databases (KDD) has been defined as the non-trivial process of discov-

ering valid, novel, potentially useful and ultimately understandable patterns from data, a pattern is

an expression in some language describing a subset of the data or a model applicable to that subset

(Fayyad et al., 1996). The process of KDD is interactive and iterative, involving several steps such

as data selection, data reduction, data mining, and the evaluation of the data mining results. The

heart of the process, however, is the data mining step which consists of the application of data anal-

ysis and discovery algorithms that, under acceptable computational efficiency limitations, produce

a particular enumeration of patterns over the data (Fayyad et al., 1996).

While a lot of research has been conducted on knowledge discovery and data mining in rela-

tional databases (see e.g. (Chen et al., 1996) or (Fayyad, 1997) for an overview), only a few works

deal with knowledge discovery in spatial databases (see (Gueting, 1994) for an introduction to spa-

tial databases, (Koperski et al., 1996) for an overview of spatial data mining). Finding implicit reg-

ularities, rules or patterns hidden in spatial databases is an important task, e.g. for geo-marketing,

traffic control or environmental studies.

A spatial database contains objects which are characterized by a spatial location and/or exten-

sion as well as by several non-spatial attributes. Figure 7.1 illustrates a spatial database on Bavaria

as an example. Depicted is the relation Communities containing polygons which represent commu-

nities in a geographic information system. This spatial database on Bavaria - referred to as the BA-

VARIA database - is used in some of the following sections as test database for our algorithms. The

database contains the ATKIS 500 data and the Bavarian part of the statistical data obtained by the

Published in Geographic Data Mining and Knowledge Discovery,
Research Monographs in GIS, Taylor and Francis, 2001.

- 2 -

German census of 1987, i.e. 2043 Bavarian communities with one spatial attribute (polygon) and

52 non-spatial attributes (such as average rent or rate of unemployment). Also included (in a sep-

arate table of the database) are spatial objects representing natural objects like mountains or rivers

and infrastructure such as highways or railroads. The total number of spatial objects in the database

then amounts to 6924.

The discovery process for spatial data is more complex than for relational data. This applies to

both the efficiency of algorithms as well to the complexity of possible patterns that can be found

in a spatial database. The reason is that, in contrast to mining in relational databases, spatial data

mining algorithms have to consider the neighbours of objects in order to extract useful knowledge.

This is necessary because the attributes of the neighbours of some object of interest may have a

significant influence on the object itself.

In this chapter, we will first introduce, in section 7.2, a general framework for spatial data min-

ing which takes into account the mentioned characteristics of spatial data. We also show that this

approach allows a tight and efficient integration of spatial data mining algorithms with spatial da-

tabase systems. In section 3 through 6, we then present algorithms for the tasks of spatial cluster-

ing, spatial characterization, spatial trend detection and spatial classification utilizing the proposed

Figure 7.1. Spatial and non-spatial attributes of communities

Relation Bavarian Communities

name popula-
tion

unem-
ployment

for-
eigners . . . spatial

Munich 1.300.000 0.06 0.15 . . .

.

- 3 -

framework. Furthermore, example applications are discussed for these algorithms. The last section

gives a short summary and shows some directions for future research.

2 A Database-Oriented Framework for Spatial Data Mining

Our framework for spatial data mining is based on spatial neighbourhood relations between ob-

jects and on the induced neighbourhood graphs and neighbourhood paths which can be defined

with respect to these neighbourhood relations. Thus, we introduce a set of database primitives or

basic operations for spatial data mining which are sufficient to express most of the spatial data min-

ing algorithms from the literature. This approach has several advantages. Similar to the relational

standard language SQL, the use of standard primitives will speed-up the development of new data

mining algorithms and will also make them more portable. Second, we can develop techniques to

efficiently support the proposed database primitives (e.g. by specialized index structures) thus

speeding-up all data mining algorithms which are based on our database primitives. Moreover, our

basic operations for spatial data mining can be integrated into commercial database management

systems. This will offer additional benefits for data mining applications such as efficient storage

management, prevention of inconsistencies, index structures to support different types of database

queries which may be part of the data mining algorithms.

2.1 Spatial Neighbourhood Relations, Spatial Neighbourhood Graphs and their Operations

Our database primitives for spatial data mining are based on the concepts of neighbourhood

graphs and neighbourhood paths which in turn are defined with respect to neighbourhood relations

between objects (Ester et al., 1997).

There are three basic types of spatial relations: topological, distance and direction relations

which may be combined by logical operators to express a more complex neighbourhood relation.

Spatial objects such as points, lines, polygons or polyhedrons are all represented by a set of points.

For example, a polygon can be represented by its edges (vector representation) or by the points con-

tained in in its interior, e.g. the pixels of an object in a raster image (raster representation).

Topological relations are based on the boundaries, interiors and complements of the two related

objects and are invariant under transformations which are continuous, one-one, onto and whose in-

verse is continuous. The relations are: A disjoint B, A meets B, A overlaps B, A equals B, A covers

- 4 -

B, A covered-by B, A contains B, A inside B. A formal definition has been given by Egenhofer

(1991).

Distance relations compare the distance of two objects with a given constant using one of the

arithmetic comparison operators. If dist is a distance function, σ is one of the arithmetic predicates

<, > or = , and c is a real number, then a distance relation O1 distanceσ c O2 between the two spatial

objects O1 and O2 holds if distance(O1, O2) σ c.

To define the direction relations, e.g. O2 south O1, we consider one representative point of the

object O1 as the origin of a virtual coordinate system whose quadrants and half-planes define the

directions. To fulfil the direction predicate, all points of O2 have to be located in the respective area

of the plane. Figure 7.2 illustrates the definition of some direction relations using 2D polygons.

Obviously, the directions are not uniquely defined but there is always a smallest direction rela-

tion for two objects A and B, called the exact direction relation of A and B, which is uniquely de-

termined. In figure 7.2, for instance, A and B satisfy the direction relations northeast and east but

the exact direction relation of A and B is northeast.

By combining basic spatial relations via logical operators it is possible to define more complex

spatial relations, e.g. “O1 being north of O2 and no more than 5 km away”. Each such spatial rela-

tion induces a spatial neighbourhood graph as defined in the following definition.

rep(A)

Figure 7.2. Illustration of some topological, some distance and some direction relations

A

B

C north A

CA disjoint B A overlap B

A distance=c B A distance<c B

B northeast A

- 5 -

Definition 1: (neighbourhood graphs and paths)

Let neighbour be a neighbourhood relation and DB be a database of spatial objects. A neighbour-

hood graph is a graph with nodes N = DB and edges where an

edge e = (n1, n2) exists iff neighbour(n1,n2) holds. A neighbourhood path of length k is defined as

a sequence of nodes [n1, n2, . . ., nk], where neighbour(ni, ni+1) holds for all .

We assume the standard operations from relational algebra like selection, union, intersection

and difference to be available for sets of objects and sets of neighbourhood paths (e.g., the opera-

tion selection(set, predicate) returns the set of all elements of a set satisfying the predicate predi-

cate). In addition, we introduce some operations which are specific to neighbourhood graphs and

paths and which are designed to support spatial data mining. The following operations are briefly

described:

• neighbours: Graphs × Objects × Predicates → Sets_of_objects

• paths: Sets_of_objects → Sets_of_paths;

• extensions: Graphs × Sets_of_paths × Integer × Predicates → Sets_of_paths

The operation neighbours(graph, object, predicate) returns the set of all objects connected to

object in graph satisfying the conditions expressed by the predicate predicate.

The operation paths(objects) creates all paths of length 1 formed by a single element of objects

and the operation extensions(graph, paths, length, predicate) returns the set of all paths of the spec-

ified length in graph extending one of the elements of paths. The extended paths must satisfy the

predicate predicate. The elements of paths are not contained in the result implying that an empty

result indicates that none of the elements of paths could be extended.

Because the number of neighbourhood paths may become very large, the argument predicate in

the operations neighbours and extensions acts as a filter to restrict the number of neighbours and

paths to certain types of neighbours or paths. The definition of predicate may use spatial as well as

non-spatial attributes of the objects or paths.

For the purpose of KDD, we are mostly interested in paths “leading away” from the start object.

We conjecture that a spatial KDD algorithm using a set of paths which are crossing the space in

arbitrary ways will not produce useful patterns. The reason is that spatial patterns are most often

the effect of some kind of influence of an object on other objects in its neighbourhood. Further-

more, this influence typically decreases or increases more or less continuously with increasing or

G neighbor
DB N E,()= E N N×⊆

ni N 1 i k<≤,∈

- 6 -

decreasing distance. To create only “relevant” paths, we introduce special filter predicates which

select only particular subsets of all paths, i.e. paths which are “leading away” from the start objects

in a certain sense. This approach also significantly reduces the runtime of the spatial data mining

algorithms operating on neighbourhood paths.

There are different possibilities to define filters for paths “leading away” from start objects. The

filter starlike, e.g., is a very restrictive filter which allows only a small number of “coarse” paths.

This filter is appropriate for many applications, and in terms of runtime it is most efficient. It re-

quires that, when extending a path p = [n1,n2,...,nk] with a node nk+1, the exact “final” direction of

p may not be generalized. For instance, a path with final direction northeast can only be extended by

a node of an edge with the exact direction northeast. The filter variable-starlike allows more “fine-

grained” paths by requiring only that, when extending p the edge (nk, nk+1) has to fulfil at least the

exact “initial” direction of p. For instance, a neighbourhood path with initial direction north can be

extended such that the direction north or the more special direction northeast is satisfied. The filter

variable-starlike allows a more detailed spatial analysis than the filter starlike, but it increases the

runtime of a data mining algorithm because more paths have to be processed by the algorithm.

Figure 7.3 illustrates these filters when extending the paths from a given start object. The figure

also depicts another filter vertical starlike which is less restrictive in vertical than in horizontal di-

rection. This filter is appropriate when the vertical direction should be analyzed in greater detail

than the horizontal direction.

2.2 Efficient DBMS Support

In this section, we present techniques to efficiently support the proposed database primitives by

a DBMS. Thus, our basic operations for spatial data mining can be integrated into commercial

DBMSs and all the benefits of these systems can be exploited for spatial data mining applications.

Figure 7.3. Illustration of some filter predicates

starlike variable starlike vertical starlike

- 7 -

Typically, spatial index structures, e.g. R-trees (Guttman, 1984), are used in an DBMS to speed

up the processing of spatial queries such as region queries or nearest neighbour queries (Gueting,

1994). If the spatial objects are fairly complex, however, retrieving the neighbours of some object

this way is still very time consuming due to the complexity of the evaluation of neighbourhood re-

lations on such objects. Furthermore, when creating all neighbourhood paths with a given source

object, a very large number of neighbours operations have to be performed. Finally, many spa-

tial databases are rather static since there are not many updates on objects such as geographic maps

or proteins. Therefore, materializing the relevant neighbourhood graphs and avoiding access to the

spatial objects themselves may be worthwhile. Our concept of neighbourhood indices is related to

that of the distance associated join indices (Lu and Han, 1992) with the following new contribu-

tions:

• A specified maximum distance restricts the pairs of objects represented in a neighbourhood in-

dex.

• For each of the different types of neighbourhood relations (that is distance, direction, and topo-

logical relations), the concrete relation of the pair of objects is stored.

In the following, we introduce neighbourhood indices more formally.

Definition 2: (neighbourhood index)

Let DB be a set of spatial objects and let max and dist be real numbers. Let D be a direction

relation and T be a topological relation. Then the neighbourhood index for DB with maximum dis-

tance max, denoted by , is defined as follows:

= {(O1,O2,dist,D,T) | O1, O2 ∈ DB, O1 distance=dist O2 ∧ dist ≤ max ∧ O2 D O1 ∧ O1 T O2}.

A simple implementation of a neighbourhood index using a B+-tree on the key attribute Object-

ID is illustrated in figure 7.4.

Imax
DB

Imax
DB

Object-ID Neighbour Distance Direction Topology

o1 o2 2.7 southwest disjoint

o1 o3 0 northwest overlap

.

B+-
tree

Figure 7.4. Sample Neighbourhood Index

- 8 -

A neighbourhood index supports not only one but a set of neighbourhood graphs. We call a

neighbourhood index applicable for a given neighbourhood graph if the index contains an entry for

each of the edges of the graph. To find the neighbourhood indices applicable for some neighbour-

hood graph, we introduce the notion of the critical distance of a neighbourhood relation r. Intuitive-

ly, the critical distance of a neighbourhood relation r is the maximum possible distance for a pair

of objects O1 and O2 satisfying O1 r O2. The following lemma allows us to calculate the critical

distance for any neighbourhood relation. The critical distance is calculated recursively along the

composition of a neighbourhood relation.

Lemma 1: The following equation holds for the critical distance of a neighbourhood relation r:

A neighbourhood index with a maximum distance of max is applicable for a neighbourhood

graph with relation r if the critical distance of r is not larger than max. Obviously, if two neigh-

bourhood indices and with c1 < c2 are available and applicable, using is more efficient

because in general it has less entries than . The smallest applicable neighbourhood index for

some neighbourhood graph is the applicable neighbourhood index with the smallest critical dis-

tance.

In figure 5, we sketch the algorithm for processing the neighbours operation which makes use

of the smallest applicable neighbourhood index. The first step, the index selection, selects a neigh-

bourhood index. If there is no applicable neighbourhood index, then the standard approach of using

some spatial index structure is followed. The filter step returns a set of candidate objects (which

may satisfy the specified neighbourhood relation) with a cardinality significantly smaller than the

database size. In the last step, the refinement step, for all these candidates the neighbourhood rela-

tion as well as the additional predicate pred are evaluated and all objects passing this test are re-

turned as the resulting neighbours.

To implement the extensions operation, we perform a depth-first search. Thus, a path buffer of

size O(max-length) is sufficient to store the intermediate results. On the other hand, a breadth-first

c-distance(r)

0

d

∞
min c-distance r1() c-distance r2(),()
max c-distance r1() c-distance r2(),()

=

if r is a topological relation except disjoint

if r is the relation distance<d or distance=d

if r is a direction relation, the relation distance>d

if r = r1 ∧ r2

if r = r1 ∨ r2

or disjoint

Ic1
DB Ic2

DB Ic1
DB

Ic2
DB

- 9 -

search would require a much larger buffer size since it begins creating all paths before finishing

the first one. To retrieve the nodes for potential extensions of a candidate path, the neighbours op-

erations is used indicating that the efficiency of this operation is crucial.

To create a neighbourhood index , a spatial join on DB with respect to the neighbourhood

relation is performed. A spatial join can be efficiently pro-

cessed by using a spatial index structure. For each pair of objects returned by the spatial join, we

then have to determine the exact distance, the direction relation and the topological relation. The

resulting tuples of the form are stored in a relation

which is indexed by a B-tree on the attribute O1.

Updates of a database, i.e. insertions or deletions of spatial objects, require updates of the de-

rived neighbourhood indices. Fortunately, the update of a neighbourhood index is restricted

to the neighbourhood of the respective object defined by the neighbourhood relation A

distance< max B. This neighbourhood can be efficiently retrieved by using either a neighbourhood

index (in case of a deletion) or by using a spatial index structure (in case of an insertion). That

means, it is not required to re-build a neighbourhood index from scratch when an update occurs.

Instead, entries can “incrementally” be inserted into or deleted from a neighbourhood index.

The database primitives were implemented on top of the commercial DBMS Illustra, Version

3.3, using its 2D spatial data blade which provides R-trees. Neighbourhood indices were realized

in the DBMS by tables and B-trees as described above (see figure 7.4) and the geographic database

neighbours (graph , object o, predicate pred)
select as I the smallest applicable neighbourhood index for ; // Index Selection
if such I exists then // Filter Step

use the neighbourhood index I to retrieve as candidates the set of objects c
having an entry (o,c,dist, D, T) in I

else use the spatial index for DB to retrieve as candidates
the set of objects c satisfying o r c;

initialize an empty set of neighbours; // Refinement Step
for each c in candidates do

if o r c and pred(c) then
add c to neighbours

return neighbours;

Gr
DB

Gr
DB

Figure 7.5. Algorithm neighbours

Imax
DB

O1dis cetan dist= O2 dist max≤∧()

O1 O2 Dis cetan Direction Topo ylog, , , ,()

Imax
DB

- 10 -

of Bavaria was used for an experimental performance evaluation. The results of our performance

evaluation (Ester et al., 2000) demonstrate a significant speed-up for the neighbours operation with

compared to without neighbourhood index. The neighbours operation is crucial to the efficient

DBMS support of our database primitives since the implementation of the operations for extending

neighbourhood paths is based on the neighbours operation.

In particular, a neighbourhood index is very efficient for complex spatial objects (i.e. large num-

bers of vertices per spatial object) and an average number of neighbours per spatial object which

is not too large. This is a typical setting, e.g., for geographic information systems when using in-

tersects as the neighbourhood predicate. If the average number of of neighbours is very large for a

spatial neighbourhood relation, we also have to consider the size of the the neighbourhood index.

In the worst case, depending on the critical distance c-distance(r) and the distribution of the spatial

objects, the storage requirements for the materialization of a neighbourhood index can be of O(n2).

Ester et al. (2000) present a cost model for the neighbours operation. Based on system parameters

(e.g. average execution time for a page access) and information about the neigbhorhood relation

(e.g. average number of neighbours) the model can be used to predict the performance gain of a

neighbourhood index and whether this time gain is worth the additional storage requirements.

3 Spatial Clustering

Clustering is the task of grouping the objects of a database into meaningful subclasses (that is,

clusters) so that the members of a cluster are as similar as possible whereas the members of differ-

ent clusters differ as much as possible from each other. Applications of clustering in spatial data-

bases are, e.g., the detection of seismic faults by grouping the entries of an earthquake catalog or

the creation of thematic maps in geographic information systems by clustering feature vectors. We

can support clustering algorithms by our database primitives if the clustering algorithm is based on

a “local” cluster condition, i.e. if it constructs clusters by analyzing a restricted neighbourhood of

the objects. Examples are the density-based clustering algorithm DBSCAN (Ester et al., 1996) as

well as its generalized version GDBSCAN (Sander et al., 1998) which is discussed in the follow-

ing.

- 11 -

3.1 Generalized Density-Based Clustering

GDBSCAN (Generalized Density Based Spatial Clustering of Applications with Noise) relies on

a density-based notion of clusters. The key idea of a density-based cluster is that for each point of

a cluster its Eps-neighbourhood for some given Eps > 0 has to contain at least a minimum number

of points, i.e. the “density” in the Eps-neighbourhood of points has to exceed some threshold.

“Density-based clusters” can be generalized to density-connected sets in the following way:

First, any notion of a neighbourhood can be used instead of an Eps-neighbourhood if the definition

of the neighbourhood is based on a binary predicate NPred which is symmetric and reflexive. Sec-

ond, instead of simply counting the objects in a neighbourhood of an object, other measures to de-

fine an eqivalent of the “cardinality” of that neighbourhood can be used as well. For that purpose

we assume a predicate MinWeight which is defined for sets of objects and which is true for a neigh-

bourhood if the neighbourhood has the minimum weight (e.g. a minimum cardinality as for densi-

ty-based clusters).

Whereas a distance-based neighbourhood is a natural notion of a neighbourhood for point ob-

jects, it may be more appropriate to use topological relations such as intersects or meets to cluster

spatially extended objects such as a set of polygons of largely differing sizes. There are also spe-

cializations equivalent to simple forms of region growing (Niemann, 1990), i.e. only local criteria

for expanding a region can be defined by the weighted cardinality function. For instance, the neigh-

bourhood may be given simply by the neighbouring cells in a grid and the weighted cardinality

function may be some aggregation of the non-spatial attribute values. While region growing algo-

rithms are highly specialized to pixels, density-connected sets can be defined for any data types.

The neighbourhood predicate NPred and the MinWeight predicate for these specializations are list-

ed below and illustrated in figure 7.6 (see (Sander et al., 1998) for a more detailed discussion of

neighbourhood relations for different applications):

 • Density-based clusters: NPred: “distance≤ Eps”, wCard: cardinality, MinWeight(N): |N|≥ MinPts

 • Clustering of polygons: NPred: “intersects” or “meets”, wCard: sum of areas, MinWeight(N):

sum of areas ≥ MinArea

- 12 -

 • Simple region growing: NPred: “neighbour and similar non-spatial attributes”,

MinWeight(N): aggr(non-spatial values) ≥ threshold.

All instances of density-connected sets can be constructed by the same algorithm which is based

on a neighbourhood graph and which uses the neighbours operation introduced above in

our framework for spatial data mining. To find a density-connected set, GDBSCAN starts with an

arbitrary object p and retrieves all objects density-reachable from p with respect to NPred and

MinWeight. Density-reachable objects are retrieved by performing successive NPred-neighbour-

hood queries and checking the minimum weight of the respective results. If p is a core object, this

procedure yields a density-connected set with respect to NPred and MinWeight. If p is not a core

object, no objects are density-reachable from p and p is assigned to NOISE. This procedure is iter-

atively applied to each object p which has not yet been classified. Thus, a density-based decompo-

sition of a dataset is constructed.

In figure 7.7, we present the basic version of the algorithm GDBSCAN based on a neighbour-

hood graph with respect to the neighbourhood predicate NPred:

Figure 7.6. Different specializations of density-connected sets

Density-based clusters Clustering of polygons Simple region growing

G NPred
DB

Figure 7.7. Algorithm GDBSCAN

GDBSCAN (DB, NPred, MinWeight)
// Precond.: for all objects o in DB: o.ClId = UNCLASSIFIED and o.Processed = FALSE
NPredGraph := createNeighbourhoodGraph(DB, NPred)
ClusterId := nextId(NOISE);
for i from 1 to DB.size do

Object := DB.get(i);
if not Object.Processed then

if ExpandCluster(Object,ClusterId,NPredGraph,MinWeight) then
ClusterId := nextId(ClusterId)

- 13 -

SetOfObjects is either the whole database or a discovered cluster from a previous run. NPred

and MinWeight are the global density parameters. The cluster identifiers are from an ordered and

countable data-type (e.g. implemented by Integers) where UNCLASSIFIED < NOISE < “other

Ids”, and each object will be marked with a cluster-id Object.ClId. The function nextId(clusterId)

returns the successor of clusterId in the ordering of the data-type (e.g. implemented as Id := Id+1).

The function SetOfObjects.get(i) returns the i-th element of SetOfObjects. In figure 7.8, function

ExpandCluster constructing a density-connected set for a core object Object is presented.

A call of neighbours(NPredGraph, Object, true) returns the NPred-neighbourhood of Object

by using the neighbourhood graph NPredGraph. If the NPred-neighbourhood of Object has mini-

mum weight, the objects from this NPred-neighbourhood are inserted into the set Seeds and the

function ExpandCluster successively performs NPred-neighbourhood queries for each object in

Seeds, thus finding all objects that are density-reachable from Object, i.e. constructing the density-

connected set that contains the core object Object.

The class Seeds controls the main loop of ExpandCluster. The method Seeds.next() selects the

next element from the set Seeds and deletes it from Seeds. The method Seeds.update(neighbos,

centreObject) inserts into the class Seeds all objects from the set neighbours which have not yet

been considered, i.e. which have not already been found to belong to the current density-connected

Figure 7.8. Function ExpandCluster

ExpandCluster(Object, ClId, , MinWeight):Boolean
neighbours := neighbours(, Object, true);
Object.Processed := true;
if MinWeight(neighbours) then // object is a core object

Seeds.init(NPred, MinWeight, ClId);
Seeds.update(neighbours, Object);
while not Seeds.empty() do

currentObject := Seeds.next();
neighbours := neighbours(, currentObject, true);
currentObject.Processed := true;
if MinWeight(neighbours) then

Seeds.update(neighbours, currentObject);
return true;

else // Object is NOT a core object
changeClusterId(Object, NOISE);
return false;

G NPred
DB

G NPred
DB

G NPred
DB

- 14 -

set. This method also calls the method to change the cluster-id of the objects to the current clus-

terId.

3.2 Applications

Application 1: Earth Science (5D points)

In this application, we use a 5-dimensional feature space obtained from several satellite images of a

region on the surface of the earth covering California. These images are taken from the raster data

of the SEQUOIA 2000 Storage Benchmark. After some preprocessing, five images containing

1,024,000 intensity values (8 bit pixels) for 5 different spectral channels for the same region were

combined. Each pixel corresponds to an earth surface area of 1,000 by 1,000 meters and a 5-dimen-

sional feature vector is assigned to this area.

Finding clusters in such feature spaces is a common task in remote sensing digital image analysis

(Richards, 1983) for the creation of thematic maps in geographic information systems. The as-

sumption is that feature vectors for areas of the same type of underground on the earth are forming

groups in the high dimensional feature space (see figure 7.9 illustrating the case of 2D raster imag-

es).

We used “dist(X,Y) < 1.42” as NPred(X,Y) and “cardinality(N) ≤ 20” as MinWeight(N). After

some postprocessing we obtained 9 clusters with sizes ranging from 598,863 to 2,016 points. The

postprocessing consisted of two steps: 1. rejecting clusters containing less than 200 points and 2. re-

assigning the points from the rejected clusters and the noise points to the remaining clusters because

a non-noise class label for each raster point is required for this application.

Figure 7.9. Relation between 2D image and feature space

• • • •
• • • •
• • • •
• • • •

• • • •
• • • •
• • • •
• • • •surface of

Channel 1

Channel 216.5 22.020.018.0
8

12

10

•

(12),(17.5)

(8.5),(18.7)

•• •
•

•
•• •

••

••••
1 1 1 2
1 1 2 2
3 2 3 2
3 3 3 3

Cluster 1 Cluster 2

Cluster 3

the earth
feature
space

- 15 -

The result is shown in figure 7.10. Each cluster was coded by a different color. Then each point

in the image of the surface of the earth was colored according to the identificator of the cluster con-

taining the corresponding 5-dimensional vector. A high degree of correspondence between the ob-

tained image and a physical map of California can easily be seen. A detailed discussion of this cor-

respondence is beyond the scope of this chapter.

This is a simplified description of the application. In practice, to obtain high quality results,

there are several pre- and post-processing steps to the clustering of the feature vectors. Especially,

the clustering of the feature vectors should be followed by a spatial smoothing because feature vec-

tors which are close to each other in space are also likely to belong to the same class.

Application 2: Geography (2D polygons)

In the following, we present a simple method for detecting “influence regions” in a geographic da-

tabase. GDBSCAN is used to extract density-connected sets of neighbouring objects having a sim-

ilar value of the non-spatial attribute(s). To define the similarity on an attribute, its domain is parti-

tioned into a number of disjoint classes and values in the same class are considered similar to each

other. The sets with the highest or lowest attribute value(s) are most interesting and are called influ-

ence regions, i.e. the maximal neighbourhood of a centre having a similar value in the non-spatial

attribute(s) as the centre itself. For economic geography, the resulting influence region may be fur-

ther analyzed by comparing them to a circular region representing the expected theoretical shape to

obtain a possible deviation. Different methods may be used for this comparison. A difference-based

method calculates the difference of both, the observed influence region and the theoretical circular

region, thus returning some region indicating the location of a possible deviation. An approxima-

Figure 7.10. Visualization of the clustering result for the SEQUIOA 2000 raster data

- 16 -

tion-based method calculates the optimal approximating ellipsoid of the observed influence region.

If the two main axes of the ellipsoid differ in length significantly, then the longer one is returned in-

dicating the direction of a deviation. Ester et al. (1997) present a detailed description of this appli-

cation.

GDBSCAN can be used to extract the influence regions from a spatial database. We define

NPred(X,Y) as “intersect(X,Y) ∧ attr-class(X) = attr-class(Y)” and use cardinality as wCard func-

tion. Furthermore, we set MinCard to 2 in order to exclude sets of less than 2 objects. Some results

of this approach for the BAVARIA database are illustrated in figure 7.11 .

4 Spatial Characterization

The task of characterization is to find a compact description for a selected subset of the data-

base. In this section, we discuss the task of characterization in the context of spatial databases and

present two relevant methods.

4.1 Algorithms

The task of mining association rules has been introduced by Agrawal and Srikant (1994). An

association rule is a rule I1 ⇒ I2 where I1 and I2 are disjoint sets of items. The support of the rule

is given by the number of database tuples containing all elements of I1 and the confidence is given

by the number of tuples containing all elements of both I1 and I2. For a database DB of transactions

(i.e. records contain sets of items bought by some customer in one transaction), all association rules

should be discovered having a support of at least minsupp and a confidence of at least minconf in

DB.

Figure 7.11. Illustration of the influence regions of Ingolstadt (left) and Munich (right)
and their deviation from the expected shape

- 17 -

Extending the general concept of association rules, Koperski and Han (1995) introduce spatial

association rules which describe associations between objects based on spatial neighbourhood re-

lations. For instance, a user may want to discover the spatial associations of towns in British Co-

lumbia with roads, waters or boundaries having some specified support and confidence.

Figure 7.12 depicts the specification of this spatial data mining task.

Then, the following spatial association rule may be discovered:

∀ X ∈ DB ∃ Y ∈ DB: is-a(X,town) → close-to(X,Y) ∧ is-a(Y,water) (80%)

This rule states that 80% of the selected towns are close to water, i.e. the rule characterizes

towns in British Columbia as generally being close to some lake, river etc.

The input for mining spatial association rules specifies a relation of n tuples with a spatial at-

tribute, a spatial neighbourhood relation, a concept hierarchy for each of the attributes, a selection

of relevant object types, the minimum support, and the mininmum confidence.

The proposed algorithm consists of five steps. Step 2 (coarse spatial computation) and step

4 (refined spatial computation) involve spatial aspects of the objects and thus are examined in

the following. Step 2 computes spatial joins of the object type to be characterized (such as

town) with each of the other specified object types (such as water, road, boundary or mine) us-

ing the neighbourhood relation (such as close-to). For each of the candidates obtained from

step 2 which passed step 3, in step 4 the exact spatial relation, for example overlap, is deter-

mined. Finally, a relation such as the one depicted in figure 7.13 results which is the input for the

final, non-spatial, Apriori-like step of rule generation. To implement this algorithm using our da-

tabase primitives it is sufficient to replace step 2 by the following procedure. The spatial join can

be replaced by calling a neighbours operation for each target object selected in step 1. The under-

discover spatial association rules
inside British_Columbia
from road R, water W, mines M, boundary B
in relevance to town T
where close-to(T.geo, X.geo) and X in {R, W, M, B}
having minsupp = 5 % and minconf = 80 %

Figure 7.12. Example specification for mining spatial association rules

- 18 -

lying neighbourhood graph in this case is defined by the user-specified neighbourhood relation

(e.g. close-to).

As shown by Koperski and Han (1995), the proposed algorithm can be efficiently implemented,

and it is included in the GeoMiner system (Han et al., 1997). A limitation of spatial association

rules is that they do not use the non-spatial attributes to characterize the specified objects.

We define a spatial characterization of a set of target objects with respect to the database con-

taining them as a description of the spatial and non-spatial properties which are typical for the tar-

get objects but not for the whole database. We use the relative frequencies of the non-spatial at-

tribute values and the relative frequencies of the different object types as the interesting properties.

To obtain a spatial characterization, we consider not only the properties of the target objects,

but also the properties of their neighbours up to a given maximum number of edges in the neigh-

bourhood graph. Figure 7.14 illustrates relative frequencies in the database as well as in the target

regions and the ratio of these frequencies in comparison with the specified level of significance.

We define a property of some spatial object by a tuple of one of the two following formats: ei-

ther (attribute, value) or (“type”, type) where “type” denotes the special “attribute” representing

the object type such as community, mountain or river. The task of spatial characterization is to dis-

cover the set of all properties for which the relative frequency in a set targets, extended by its

neighbours, is significantly different from the relative frequency in DB. A very frequent property

present only in the neighbourhood of very few of the targets would create misleading results.

Town Water Road Boundary

Saanich <meet, J.FucaStrait> <overlap,highway1>,
<close-to,highway17>

<close-to,US>

PrinceGeorge <overlap, highway97>

Petincton <meet,OkanaganLake> <overlap, highway97> <close-to,US>

.

Figure 7.13. Input for the step of rule generation

- 19 -

Therefore, we also require that such a property must have a significantly different, either smaller

or larger, relative frequency in the neighbourhood of at least proportion many targets.

Definition 3: (spatial characterization): Let be a neighbourhood graph and targets be

a subset of DB. Let freqs(prop) denote the number of occurrences of the property prop in the set s

and let card(s) denote the cardinality of s. The frequency factor of prop with respect to targets and

DB, denoted by , is defined as follows:

Let significance and proportion be real numbers and let max-neighbours be a natural number.

Let denote the set of all objects reachable from one of the elements of s by travers-

ing at most i of the edges of the neighbourhood graph G. Then, the task of spatial characterization

is to discover each property prop and each natural number n ≤ max-neighbours such that (1) the set

objects = as well as (2) the sets objects = for at least pro-

portion many t ∈ targets satisfy the condition:

In point (1) the union of the neighbourhood of all target objects is considered simultaneously,

whereas in point (2) the neighbourhood of each targets is considered separately. The parameter

proportion specifies the minimum confidence required for the characterization rules and the fre-

quency factors of the properties provide a measure of their interestingness with respect to the target

objects.

Figure 7.15 presents the algorithm for discovering spatial characterizations. The parameter pro-

portion is relevant only for the last step of the algorithm, i.e. for the generation of a rule. Note the

Figure 7.14. Sample frequencies and ratios

G neighbor
DB

f t etsarg
DB prop()

f t etsarg
DB prop() freq

t etsarg
prop()

card t etsarg()
--- freq

DB
prop()

card DB()
----------------------------------⁄=

neighborsG
i s()

neighborsG
n targets() neighborsG

n
t{ }()

f objects
DB prop() significance≥ or f objects

DB 1
significance
--------------------------------≤

- 20 -

importance of the parameter max-neighbours (that is, the maximum number of edges of the neigh-

bourhood graph traversed starting from a target object) in the resulting characterizations. For ex-

ample, a property may be significant when considering all neighbours which are reachable from

one of the target objects via 2 edges of the neighbourhood graph. However, the same property may

not be significant when considering further neighbours if then the target regions are extended by

objects for which the property is not frequent. The generated rule has the following format:

target ⇒ p1 (n1, freq-fac1) ∧ ... ∧ pk (nk, freq- fack).

This rule means that for the set of all targets extended by ni neighbours, the property pi is freq-

faci times more (or less) frequent than in the database.

4.2 Application: Economic Geography

A geographic database may be used, e.g., by economic geographers to discover spatial charac-

terizations of the economic power or other interesting properties of communities. Some non-spatial

attribute such as the unemployment rate is chosen as a relevant indicator.

The BAVARIA database was used for an experimental performance evaluation of the algo-

rithms (Ester et al., 1998).

discover-spatial-characterization(graph ; set of objects targets;
real significance, proportion; integer max-neighbours)

initialize the set of characterizations as empty;
initialize the set of regions to targets;
initialize n to 0;
calculate frequencyDB(prop) for all properties prop = (attribute, value) in DB;
while n≤ max-neighbours do

for each attribute of DB and for the special attribute object type do
for each value of attribute do

calculate frequencyregions(prop) for property prop = (attribute, value);
if ≥ significance or ≤ 1 / significance then

add (prop, n,) to the set characterizations;
if n < max-neighbours then

for each object in regions do
 add neighbours(, object, true) to regions;

increment n by 1;
extract all tuples (prop, n, factor) from characterizations which are significant in at

least proportion of the regions with n extensions;
return the rule generated from these characterizations;

Gr
DB

f regions
DB prop() f regions

DB prop()
f regions

DB prop()

Gr
DB

Figure 7.15. Algorithm discover-spatial-characterization

- 21 -

The characterization algorithm usually starts with a small set of target objects, selected for in-

stance by a condition on some non-spatial attribute(s) such as “proportion of retired persons =

HIGH” (see figure 7.16 (a)). Then, the algorithms expands regions around the target objects, si-

multaneously selecting those attributes of the regions for which the distribution of values differs

significantly from the distribution in the whole database (figure 7.16 (b)).

In the last step of the algorithm, a characterization rule is generated describing the target regions

(figure 7.17). Informally, this rule states that “retirees prefer somewhat rural areas close to the

mountains”. Note that not only some non-spatial attributes but also the neighbourhood of moun-

tains (after three extensions) are significant for the characterization of the target regions.

Figure 7.16. Characterization wrt. high proportion of retired persons

(b) final target regions(a) target objects

Figure 7.17. Rules characterizing the target objects of figure 7.16

community has a high proportion of retired persons ⇒

appartments per building = very low (n = 0, f(prop) = 9.1) ∧
rate of foreigners = very low (n = 0, f(prop) = 8.9) ∧
rate of academics = medium (n = 0, f(prop) = 6.3) ∧
average size of enterprises = very low (n = 0, f(prop) = 5.8) ∧
object type = mountain (n = 3, f(prop) = 4.1)

- 22 -

5 Spatial Trend Detection

We define a spatial trend as a regular change of one or more non-spatial attributes when moving

away from a given start object o. We use neighbourhood paths starting from o to model the move-

ment and we perform a regression analysis on the respective attribute values for the objects of a

neighbourhood path to describe the regularity of change.

5.1 Algorithms

First, we define the task of spatial trend detection for some source object o1 ∈ DB. To detect

regular changes of some non-spatial attributes, we perform a regression analysis as follows. The

independent variable (X) yields the distance between any database object o2 and the source object.

The dependent variable (Y) measures the difference of the values of some non-spatial attribute(s)

for o1 and o2. Then, the sets X and Y contain one observation for each element of a subset S of DB.

If the absolute value of the correlation coefficient is found to be large enough, S identifies a part of

DB showing a significant spatial trend for the specified attributes(s) starting from o1. In the follow-

ing, we will use linear regression, since it is efficient and often the influence of some phenomenon

to its neighbourhood is either linear or may be transformed into a linear model, e.g. exponential

regression. Figure 7.18 illustrates a strong positive (correlation coefficient >> 0) and a strong neg-

ative (correlation coefficient << 0) linear trend as well as a situation where no significant (linear)

trend is observed.

distance

difference

. .
.

.. ...
. ...

(a) positive trend

Figure 7.18. Sample linear trends

.

.. ..
.. .

.
... .

.. ...
..

.
...

(b) negative trend (c) no trend

distance distance

difference difference

- 23 -

In a naive approach, one observation could be made for each element o2 ∈ DB and a regression

analysis would be conducted once for this whole set of observations. This approach, however,

would fail to discover a spatial trend in the following situations:

• a trend is present only locally in the neighbourhood but not globally in the database

• a trend is present not in all directions but only in some directions.

We argue that such situations are very common in real databases. We use the concept of neigh-

bourhood paths to overcome these problems and consider only such objects o2 which are located

on one of the neighbourhood paths starting from o1. We stop extending a neighbourhood path as

soon as no more significant trend can be found and, thus, provide a means to restrict the search to

the neighbourhood of the source object. Furthermore, it is enough that some, not all, neighbour-

hood paths show a spatial trend of the specified type.

Definition 4: (spatial trend detection): Let g be a neighbourhood graph, o an object (node) in g

and a be a subset of all non-spatial attributes. Let t be a type of function, e.g. linear or exponential,

used for the regression and let filter be one of the filters for neighbourhood paths. Let min-conf be

a real number and let min-length as well as max-length be natural numbers. The task of spatial

trend detection is to discover the set of all neighbourhood paths in g starting from o and having a

trend of type t in attributes a with a correlation of at least min-conf. The paths have to satisfy the

filter and their length must be between min-length and max-length.

Definition 7.4 allows different specializations. Either the set of all discovered neighbourhood

paths or each of its elements must have a trend of the specified type. For each of these specializa-

tions, we present an algorithm to discover such spatial trends. Both algorithms require the same

input parameters but they use different methods to search the set of all relevant neighbourhood

paths.

The first algorithm discovers global trends, i.e. trends for the whole set of all neighbourhood

paths with source o having a length in the specified interval. Algorithm detect-global-trends per-

forms a breadth-first search of the set of all neighbourhood paths starting from o and it is outlined

in figure 7.19.

Beginning from o, the algorithm creates all neighbourhood paths of the same length simulta-

neaously - starting with min-length and continuing until max-length. The regression is performed

- 24 -

once for each of these sets of all paths of the same length. If no trend of length l with abs(correla-

tion) ≥ min-conf is detected, then the path extensions of length l+1, l+2, . . ., max-length are not

created due to efficiency reasons. The parameter min-length has to be chosen large enough because

a trend may become significant only at a certain minimum length of a neighbourhood path. The

algorithm returns the set of neighbourhood paths of the maximum length having a trend with

abs(correlation) ≥ min-conf. Furthermore, the slope of the regression function and its correlation

coefficient are returned. The slope describes the degree of change of the specified attribute when

moving away from the source object o: a large slope is found for a quickly changing attribute

whereas a small slope indicates that the attribute changes only slowly in the neighbourhood of o.

The correlation coefficient measures the confidence of the discovered trend - the larger the corre-

lation coefficient the better can the obervations be approximated by the regression function and the

higher is the confidence of the discovered trend.

detect-global-trends(graph ; object o; attribute a; type t; real min-conf,
integer min-length,max-length; filter f)

initialize a list of paths to the set extensions(, {path(o)}, min-length, f);
initialize an empty set of observations;
initialize last-correlation and last-paths as NULL;
initialize first-pos to 1;
initialize last-pos to min-length;
while paths is not empty do

for each path in paths do
for object from first-pos of path to last-pos of path do

calculate diff as a(object) - a(o) and calculate dist as dist(object,o);
insert the tuple (diff, dist) into the set of observations;

perform a regression of type t on the set of observations;
if abs(correlation) of the resulting regression function ≥ min-conf then

set last-paths to paths and last-correlation to correlation;
set last-slope to the slope of the resulting regression function;
if length(paths)< max-length then

replace the paths by the set extensions(, paths, length(paths) + 1, f);
increment last-pos by 1;
set first-pos to last-pos;

else set paths to the empty list;
else return last-paths, last-correlation and last-slope;

return last-paths, last-correlation and last-slope;

Gr
DB

Gr
DB

Gr
DB

Figure 7.19. Algorithm detect-global-trends

- 25 -

The second algorithm discovers local trends, i.e. trends for a single neighbourhood path with

source o having a length in the specified interval. Algorithm detect-local-trends creates the neigh-

bourhood paths starting from o in a depth-first manner which is presented in figure 7.20. A regres-

sion is performed once for each of the neighbourhood paths with max-length ≥ length ≥ min-length

and a path is only extended further if it has a significant trend (i.e. abs(correlation) of the resulting

regression function ≥ min-conf). The algorithm returns two sets of paths showing a significant spa-

tial trend: a first set of positive trends and a second set of negative trends.

5.2 Application: Economic Geography

Economic geographers may be interested in discovering spatial trends of various properties of

communities such as the economic power. In the following, we illustrate the potential of spatial

trend detection on the BAVARIA database which was used for an experimental performance eval-

uation of the algorithms (Ester et al., 1998).

Spatial trends describe a regular change of non-spatial attributes when moving away from a

start object o. The two above algorithms may produce different patterns of change for the same start

object o.

detect-local-trends(graph ; object o; attribute a; type t; real min-conf,
integer min-length,max-length; filter f)

initialize a list of paths to the set extensions(, path(o), min-length, f);
initialize two empty sets of positive-trends and negative-trends;
while paths is not empty do

initialize the set of observations as empty;
remove the next element of paths and take it as path;
for object from min-length-th object of path to last object of path do

calculate diff as a(object) - a(o) and calculate dist as dist(object,o);
insert the tuple (diff,dist) into the set of observations;

perform a regression of type t on the set of observations;
if abs(correlation) of the resulting regression function ≥ min-conf then

if correlation > 0 then
insert the tuple (path, correlation) into the set of positive-trends;

else
insert the tuple (path, correlation) into the set of negative-trends;

if length(path) < max-length then
add the extensions(, path, length(path) + 1, f) to the head of paths;

return positive-trends and negative-trends;

Gr
DB

Gr
DB

Gr
DB

Figure 7.20. Algorithm detect-local-trends

- 26 -

The existence of a global trend for a start object o indicates that if considering all objects on all

paths starting from o the values for the specified attribute(s) in general tend to increase (decrease)

with increasing distance. Figure 7.21 (a) depicts the result of algorithm global-trend for the at-

tribute “average rent” and the city of Regensburg as a start object.

Algorithm local-trends detects single paths starting from an object o and having a certain trend.

The paths starting from o may show different pattern of change, e.g., some trends may be positive

while the others may be negative. Figure 7.21 (b) illustrates this case for the attribute “average

rent” and the city of Regensburg as a start object.

Both algorithms were applied to the Bavaria database varying min-confidence from 0.6 to 0.8

for the attribute “average rent” and linear type of regression. The predicate intersects was used as

the neighbourhood relation to define the graph. The filter vertical starlike for paths was used be-

cause due to our domain knowledge we expected the most significant trends in north-south direc-

tion. The length of the paths was restricted by min-length = 4 and max-length = 7.

The spatial objects within a trend region, i.e. either the start objects or the objects forming the

paths, may be the subject of further analysis. For instance, algorithm global-trend may detect re-

gions showing a certain global trend, and algorithm local-trends then finds within these regions

some paths having the inverse trend (see figure 7.21). Then, we may try to find an explanation for

those “inverse” paths.

Another possibility of further analysis of the discovered trends is as follows:

Figure 7.21. Visualization of trends starting from the city of Regensburg

(a) global-trends (b) local-trends

Regensburg

direction of decreasing values of trend attribute “average rent”

- 27 -

• First, detect “centres” for a given attribute, i.e. communities with a significantly decreasing

spatial trend of this attribute. Algorithm global-trend can be used for this task.

• Second, apply the spatial characterization to these centres to find their common properties.

Ester et al. (1998) report the results of the following experiment. In a first step, centres for

attribute “average rent” were detected: minimum correlation was set to 0.7 and only those commu-

nities were selected where the slope of the trend was less than -10-4 and the path length was not

smaller than 5, i.e. only linear trends that are noticeably decreasing were detected.

With this definition, 24 centres out of the 2043 communities were found. The characterization

rule discovered for these centres contains the following properties:

Note that none of the attributes was significant for n = 0, i.e. without considering the neighbour-

hood of the target object. Only if we extend the target regions by one neighbour, we can see char-

acteristic properties. Thus, this result could not be found by a non-spatial characterization algo-

rithm.

6 Spatial Classification

The task of classification is to assign an object to a class from a given set of classes based on

the attribute values of the object. In spatial classification the attribute values of neighbouring ob-

jects may also be relevant for the membership of objects and therefore have to be considered as

well.

Ester et al. (1997) proposed a spatial classification algorithm based on the well-known ID3 al-

gorithm (Quinlan, 1986) which was designed for relational databases. The extension to spatial at-

tributes is to consider also the attribute of objects on a neighbourhood path starting from the current

object. Thus, we define generalized attributes for a neighbourhood path p = [o1, . . ., ok] as tuples

(attribute-name, index) where index is a valid position in p representing the attribute with attribute-

community is a centre ⇒

rate of academics = high (n = 1, f(prop) = 9.1) ∧
average number of persons per household = low (n = 1, f(prop) = 2.5) ∧
rate of foreigners = low (n = 1, f(prop) = 2.8)

- 28 -

name of object oindex. The generalized attribute (economic-power,2), e.g., represents the attribute

economic-power of some (direct) neighbour of object o1.

Because it is reasonable to assume that the influence of neighbouring objects and their attributes

decreases with increasing distance, we can limit the length of the relevant neighbourhood paths by

an input parameter max-length. Furthermore, the classification algorithm allows the input of a

predicate to focus the search for classification rules on the objects of the database fulfilling this

predicate. Figure 7.22 depicts a sample decision tree and two rules derived from it. Economic

power has been chosen as the class attribute and the focus is on all objects of type city.

In figure 7.23, we present the pseudo code of the algorithm for spatial classification which finds

all paths from the root to one of the leaves of a decision tree, where all attributes yield an informa-

Figure 7.22. Sample decision tree and rules discovered by the classification algorithm

population of city

low medium high

type of neighbour of city

city road airport

type of

 neighbour of neighbour of city

cityroadairport

economic power

of city = high

(95 %)

amount of taxes

of city

very
low low high

very
high

economic power
of city = high

(87 %)

IF population of city = low AND amount of taxes of city = very high

THEN economic power of city = high (87 %)

IF population of city = high AND type of neighbour of city = road

THEN economic power of city = high (95 %)

AND type of neighbour of neighbour of city = airport

. . .

. . .

. . .

- 29 -

tion gain of at least ε. Note that the algorithm uses a predicate larger_distance, i.e.“distance(n1,

ni+1) > distance(n1, ni)” to restrict the creation of neighbourhood paths.

Another algorithm for spatial classification is presented by Koperski et al. (1998). It works as

follows: The relevant attributes are extracted by comparing the attribute values of the target objects

with the attribute values of their nearest neighbours. The determination of relevant attributes is

based on the concept of the nearest hit (the nearest neighbour belonging to the same class) and the

nearest miss (the nearest neighbour belonging to a different class). In the construction of the deci-

sion tree, the neighbours of target objects are not considered individually. Instead, so-called buffers

are created around the target objects and the non-spatial attribute values are aggregated over all ob-

jects contained in the buffer. For instance, in the case of shopping malls a buffer may represent the

spatial_classification_rules(db:Set_of_Objects; class_attr:Attribute;
NPred:NeighbourhoodRelation; max_length:Int)

NPredGraph:= create the neighbourghood graph for db w.r.t. NPred;
paths:=extensions(NPredGraph, {db}, max_length, larger_distance);
classify(class_attr, NPredGraph, EMPTY_RULE, paths, max_length);

classify(class_attr:Attribute; rule:ClassificationRule; paths:set_of_paths; max_length:Int)
max_info_gain:=0.0;
max_attr:=NULL;
for i from 1 to max_length do

for each generalized attribute (Aj,i) not used in rule do
info-gain:=calculate_information_gain(Aj, class_attr, i, paths);
if info_gain > max_info_gain then

max_attr:=Aj;
max_neighbours:=i;
max_info_gain:=info_gain;

if max_attr ≠ NULL and max_info_gain > ε then
for each value of max_attr do

extended_rule:=rule + “max_attr,max_neighbours,value”;
classify(class_attr, extended_rule, paths, max_length);

calculate_information_gain(attr,class_attr: Attribute; index:Int; paths:set_of_paths);
for each path in paths do

consider attr of the index-th object of path and class_attr of the first object of path
for the calculation of the information gain

Figure 7.23. Algorithm spatial_classification_rules

- 30 -

area where its customers live or work. The size of the buffer yielding the maximum information

gain is chosen and this size is applied to compute the aggregates for all relevant attributes.

Whereas the property of being a nearest neighbour cannot be directly expressed by our neigh-

bourhood relations, it is possible to extend our set of neighbourhood relations accordingly. The

proposed database primitives are, however, sufficient to express the creation of buffers for spatial

classification by using a distance-based neigborhood predicate.

7 Conclusions

In this chapter, we introduced a database-oriented framework for spatial data mining which is

based on the concepts of neighbourhood graphs and paths. A small set of basic operations on these

graphs and paths were defined as database primitives for spatial data mining. Furthermore, tech-

niques to efficiently support the database primitives by a commercial DBMS were presented. In

the following sections, we covered the main tasks of spatial data mining: spatial clustering, spatial

characterization, spatial trend detection and spatial classification. For each of these tasks, we pre-

sented algorithms as well as prototypical applications in domains such as the earth sciences and

geography. Thus, we demonstrated the practical impact of these algorithms of spatial data mining.

The following issues indicate interesting directions for future research. The database primitives

were implemented on top of the commercial DBMS Illustra. Since the system overhead imposed

by this DBMS is rather large, techniques of improving the efficiency should be investigated. For

example, techniques for processing sets of related neighbours operations which provide more in-

formation to the DBMS can be used to improve the overall efficiency of mining algorithms using

the database primitives.

In some spatial databases the dimension of time plays an important role: the history of the rel-

evant part of the world is stored for the purpose of analysis, for example raster images of the same

area of the surface of the earth taken at different times. Data mining in such spatio-temporal data-

bases is a promising area of future research. For example, geographers may be interested in learn-

ing spatio-temporal rules describing the process of growth of urban landuse.

- 31 -

References

Agrawal R., Imielinski T., and Swami A. 1993 “Database Mining: A Performance
Perspective”, IEEE Transactions on Knowledge and Data Engineering, Vol. 5, No. 6, pp. 914-
925.

Agrawal R., and Srikant R. 1994 “Fast Algorithms for Mining Association Rules in Large
Databases” Proc. 20th Int. Conf.Very Large Data Bases (VLDB ‘94), pp. 478-499.

Chen M.-S., Han J., and Yu P. S. 1996 “Data Mining: An Overview from a Database
Perspective”, IEEE Trans. on Knowledge and Data Engineering, Vol. 8, No. 6, pp. 866-883.

Egenhofer M. J. 1991 “Reasoning about Binary Topological Relations”, Proc. 2nd Int. Symp.
on Large Spatial Databases, Zurich, Switzerland, pp. 143-160.

Ester M., Frommelt A., Kriegel H.-P., and Sander J. 1998 “Algorithms for Characterization and
Trend Detection in Spatial Databases”, Proc. 4th Int. Conf. on Knowledge Discovery and Data
Mining, New York City, NY, pp. 44-50.

Ester M., Frommelt A., Kriegel H.-P., and Sander J. 2000 “Spatial Data Mining: Database
Primitives, Algorithms and Efficient DBMS Support”, Data Mining and Knowledge
Discovery, an International Journal, Kluwer Academic Publishers, Vol. 4, No. 2/3.

Ester M., Kriegel H.-P., and Sander J. 1997 “Spatial Data Mining: A Database Approach”,
Proc. 5th Int. Symp. on Large Spatial Databases, Berlin, Germany, pp. 47-66.

Ester M., Kriegel H.-P., Sander J., and Xu X. 1996 “A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise”. Proc. 2nd Int. Conf. on
Knowledge Discovery and Data Mining. Portland, Oregon, AAAI Press, Menlo Park,
California, pp. 226-231.

Ester M., Kriegel H.-P., Sander J., and Xu X. 1997: “Density-Connected Sets and their
Application for Trend Detection in Spatial Databases”. Proc. 3nd Int. Conf. on Knowledge
Discovery and Data Mining. Newport Beach, California, AAAI Press, Menlo Park, California.

Fayyad U. M. 1997 “Knowledge Discovery in Databases: An Overview”, ILP 1997, pp. 3-16.

Fayyad U. M., Piatetsky-Shapiro G., and Smyth P. 1996 “Knowledge Discovery and Data
Mining: Towards a Unifying Framework”, Proc. 2nd Int. Conf. on Knowledge Discovery and
Data Mining. Portland, Oregon, AAAI Press, Menlo Park, California, pp. 82 - 88.

Gueting R. H. 1994 “An Introduction to Spatial Database Systems”, Special Issue on Spatial
Database Systems of the VLDB Journal, Vol. 3, No. 4.

Guttman A. 1984 “R-trees: A Dynamic Index Structure for Spatial Searching“, Proc. ACM
SIGMOD Int. Conf. on Management of Data, pp. 47-54.

Han J., Koperski K., and N. Stefanovic 1997 “GeoMiner: A System Prototype for Spatial Data
Mining”, Proc. ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD '97), Tucson,
AR.

- 32 -

Koperski K., Adhikary J., Han J. 1996 “Knowledge Discovery in Spatial Databases: Progress
and Challenges”, Proc. SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, Technical Report 96-08, University of British Columbia, Vancouver,
Canada.

Koperski K., and Han J. 1995 “Discovery of Spatial Association Rules in Geographic
Information Databases”, Proc. 4th Int. Symp. on Large Spatial Databases (SSD ’95), Portland,
ME, pp 47-66.

Koperski K., Han J., and Stefanovic N. 1998 “An Efficient Two-Step Method for Classification
of Spatial Data”, Proc. Symposium on Spatial Data Handling (SDH ‘98), Vancouver, Canada.

Lu W., and Han J. 1992 “Distance-Associated Join Indices for Spatial Range Search”, Proc. 8th
Int. Conf. on Data Engineering, Phoenix, AZ, pp. 284-292.

Ng R. T., and Han J. 1994 “Efficient and Effective Clustering Methods for Spatial Data
Mining”, Proc. 20th Int. Conf. on Very Large Data Bases, Santiago, Chile, 1994, pp. 144-155.

Niemann H. 1990 “Pattern Analysis and Understanding”. Springer-Verlag, Berlin.

Quinlan J.R. 1986 “Induction of Decision Trees”, Machine Learning, Vol.1, pp. 81-106.

Richards A.J. 1983. “Remote Sensing Digital Image Analysis. An Introduction”. Berlin:
Springer Verlag.

Rotem D. 1991 “Spatial Join Indices”, Proc. 7th Int. Conf. on Data Engineering, Kobe, Japan,
pp. 500-509.

Sander J., Ester M., Kriegel H.-P., and Xu X. 1998 “Density-Based Clustering in Spatial
Databases: A New Algorithm and its Applications”, Data Mining and Knowledge Discovery,
an International Journal, Kluwer Academic Publishers, Vol.2, No. 2.

Valduriez P. 1987 “Join Indices“, ACM Transactions on Database Systems, Vol. 12, No. 2,
pp. 218-246.

