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Abstract. Medical image repositories contain very large amounts of
computer tomography (CT) scans. When querying a particular CT scan,
the user is often not interested in the complete scan but in a certain
region of interest (ROI). Unfortunately, specifying the ROI in terms of
scan coordinates is usually not an option because an ROI is usually
specified w.r.t. the scan content, e.g. an example region in another scan.
Thus, the system usually retrieves the complete scan and the user has
to navigate to the ROI manually. In addition to the time to navigate,
there is a large overhead for loading and transferring the irrelevant parts
of the scan.
In this paper, we propose a method for answering ROI queries which are
specified by an example ROI in another scan. An important feature of
our new approach is that it is not necessary to annotate the query or the
result scan before query processing. Since our method is based on image
similarity, it is very flexible w.r.t. the size and the position of the scanned
region. To answer ROI queries, our new method employs instance-based
regression in combination with interpolation techniques for mapping the
slices of a scan to a height model of the human body. Furthermore, we
propose an efficient search algorithm on the result scan for retrieving the
ROI with high accuracy. In the experimental evaluation, we examine the
prediction accuracy and the saved I/O costs of our new method on a
repository of 2 526 CT scans.

1 Introduction

Radiology centers all over the world currently collect large amounts of 3D body
images being generated by various scanners like PET-CT, MRT, x-ray or sono-
graphy. Each of these methods generates a three dimensional image of the human
body by transforming the echo of a different type of signal allowing a radiologist
to examine the inner parts of a human body. In the following, we will particularly
focus on CT body scans. However, the methods proposed in this paper are
generally applicable to other types of scans as well.
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Technically, the result of a CT scan is stored as a stack of 2D images rep-
resenting 3D slices of the human body, i.e. each slice is considered to have a
certain thickness. The scans in a radiology center are stored in a centralized
picture archiving and communication system (PACS) and they are transferred
via LAN to the workstation of a physician. In commercial PACS, querying CT
scans is currently restricted to retrieving complete scans being annotated with
certain meta information like patient name, date and type of the examination.
Therefore, each time a CT scan is queried, the complete scan, potentially com-
prising several thousand high-resolution images, has to be loaded from the image
repository. For example, the data volume of a thorax scan being generated by a
modern scanner comprises around 1GB of data. Considering that several physi-
cians will simultaneously query a PACS, the loading time of a single CT scan is
up to several minutes depending on network and server traffic.

However, in many cases it is not necessary to display the complete scan. For
example, if a physician wants to see whether a certain liver lesion has improved
between two scans, the user primarily requires the portion of both scans con-
taining the liver. Therefore, the physician loses up to several minutes by loading
unnecessary information and searching for the liver within both scans. Thus, a
system retrieving the parts of both scans containing the liver, would save valu-
able time and network bandwidth.

Parts of a CT scan can be efficiently loaded by raster databases [2] as long
as the coordinates of the ROI are specified. However, in the given context, the
ROI is rather defined by the image content. In other words, the coordinates of
organs and other anatomical regions may strongly vary because of differences
in the patients’ heights or in the scanned body region. Thus, raster coordinates
cannot be used to align to CT scans w.r.t. the image content.

In this paper, we focus on a query-by-example setting. Therefore, the query
is posed by selecting a certain body region in a scan. The result contains the
part of the scan showing the corresponding body region in one or multiple result
scans. For example, a radiologist could select a certain area in the scan being
currently under examination. He or she might want to see the corresponding
regions in scans of patients having the same disease or earlier examinations of
the same patient.

The most established approach to answer this type of queries is based on
landmark detection. [14] A landmark is an anatomically unique location in the
human body which is well-detectable by pattern recognition methods. To use
landmarks for query processing, it is first of all necessary to detect as many
landmarks as possible in the example scan and all result scans. Let us note that
landmark detection employs pattern recognition methods and thus, there is a
classification error, i.e. some of the predicted landmark positions are error prone.
Furthermore, it can happen that some of the landmarks are not detectable due to
disturbances while recording the scan. However, having detected a sufficiently
large number of landmarks, it is possible to align both scans and afterwards
select the area from the target scan corresponding to the query.
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An important aspect of this approach is that landmark detection should be
done as a preprocessing step. Thus, the example scan and the target scans need
to be annotated with the landmark position to allow efficient query processing.
However, this causes a problem when allowing example scans not being stored
in the same PACS. In this case, the query might not have any landmarks or
it is not labelled with the same set of landmarks. If the example scan and the
result scan are taken by CT scanners from different companies, the positioning
systems might not be compatible. Another drawback of the landmark approach
is the size of the scan. CT scans are often recorded for only a small part of the
body. Thus, it cannot be guaranteed that the scanned body region contains a
sufficiently large set of alignable landmarks. To conclude, a fixed and comparably
small set of landmarks is often not flexible enough to align arbitrary scans.

In this paper, we propose a more flexible approach being based on similarity
search on the particular slices of a CT scan. Our new method does not rely
on any time-consuming preproccesing step, but it can be directly applied on
any query and result scan. Whereas landmark-based approaches can only align
scans with respect to a limited amount of fixed points to be matched, our new
approach can generate the positions in the scan to be matched on the fly. Thus,
we can even align scans being labelled with different types of landmarks or scans
not having any detectable landmarks at all.

The key idea behind our method is to map single slices of a CT scan to
a generalized height model describing the relative distances between concepts
w.r.t. the height axis of the human body. The height model is independent of
the individual size and proportions of a particular patient. Let us note that it
is possible to use width and depth axes as well. However, the height axis is the
predominantly used navigation axis for CT scans.

By mapping single slices to the model, we can better adjust to limited in-
formation about the scan and we are independent from the distribution of pre-
defined landmark positions. Our prediction algorithm employs instance-based
regression based on Relevant Component Analysis [1] and the X-Tree [3] for
efficiently answering kNN queries.

ROI queries are answered as follows: In the first step, the user selects a certain
region of interest in the example scan. Afterwards, we employ instance-based
regression to determine the query position in the generalized height model. In
the next step, we need to determine the part in each target scan corresponding
to the query interval in the height model. Let us note that this second step
is more complicated, since we cannot directly determine the slice belonging to
a particular height value. One solution to this problem would be to label all
available slices with the height value in the model. However, labelling all DICOM
images in an average PACS would cause an enormous overhead in preprocessing.
Since the majority of images will never be involved in answering an ROI query,
we follow a different strategy. Instead of preprocessing each image in the PACS,
determining height values for a given slice is done on the fly. To make this type
of processing efficient, we propose a query algorithm that alternates regression
and interpolation steps until the queried ROI is found in the result scan.
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Let us note that although the solutions proposed in this paper are very
problem-oriented, the solution principle can be extended to other data as well.
For example, a similar processing scheme can be applied to video streams (e.g.
procedure timing in surveillance videos) or text mining (e.g. news tickers, twitter
streams, age classification in Internet forums).

The rest of the paper is organized as follows. Sect. 2 surveys methods that
are related to our approach or parts of it. In Sect. 3, we formalize ROI queries
and give an overview of our system. Afterwards, Sect. 4 introduces our method
for predicting height values for particular CT slices. Sect. 5 first describes inter-
polation methods for aligning CT scans to a generalized height model and then
presents our new query algorithm. The results of our experimental evaluation
are shown in Sect. 6. The paper concludes with a brief summary and ideas for
future work in Sect. 7.

2 Related Work

In medical imaging, there are various localization or registration approaches.
Most of them are very domain specific, like the Talairach space brain atlas [15]
or the MNI space [5]. Nevertheless, as these atlases are very specific to their
domain, they were not designed to cover the entire body and they can thus
hardly be used for general ROI queries.

Position mapping via landmark-detector-based approaches like the Theseus
Medico system presented in [14] are more appropriate for our purpose. This
prototype provides an image parsing system which automatically detects 22
anatomically relevant landmarks, i.e. invariant points, and 9 organs. [13] It is
thus possible to query the database directly for ROIs which are equivalent to
these automatically-annotated image regions. However, general queries for arbi-
trarily defined ROIs are not yet supported.

A more general, landmark-based interpolation approach for mapping a vol-
ume into a standardized height space has been proposed by [7]. However, it is
very patient-specific and dependent on the used landmarks. Another approach
that uses partial volumes as query is described in [6]. It localizes query volumes
with sizes ranging from 4 cm to more than 20 cm by comparing the partial volume
with an implicit height atlas based on Haar-like features. In [4], we presented
an alternative method such that only a single query slice is needed in order to
achieve comparable results.

In Sect. 5.2, we introduce an iterative interpolation and regression approach.
In contrast to established regression methods, [9, 11] we enhance our model with
newly generated information after each iteration in order to refine the final model
until convergence is reached.

We experimented with several regression methods from the Weka machine
learning package [8]. However, simple approaches like linear regression did not
yield a sufficient prediction accuracy and more complicated approaches like sup-
port vector regression using non-linear kernel functions could not cope with the
enormous amount of training data. Therefore, we decided to employ instance-
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lbĥ ubĥ

lbî,s ubî,s
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Fig. 1. Workflow of ROI retrieval and two example queries. The first query is specified
by a ROI of only one slice, the second is given by a 3D ROI.

based regression which is robust and sufficiently fast when employing techniques
of efficiently computing the k-nearest neighbors (k-NN). In particular, we em-
ploy k-NN queries being based on the X-Tree [3]. Let us note that there are
multiple other index structures [12] for speeding up the same type of query. We
decided to employ the X-Tree because it represents an extension of the standard
R*-Tree [10] which is better suited for higher dimensionalities.

Current database systems like RasDaMan [2] already support conventional
region of interest queries in raster data like CT scans. Nevertheless, the system
needs to know the coordinate system in which the query is applied in order to
navigate to the requested region. As we do not know the complete coordinate
systems of the patients’ CT scans in advance and since patients differ in height
and body proportions, and thus, locations along the z-axis are not standardized,
a globally fixed coordinate system will not be available in our setting. Therefore,
our new approach represents a way to bridge the gap between the coordinates
in the example scan and the coordinate system of the result scan.

3 Example-Based ROI Queries

In this section, we specify the proposed query process and give an overview of the
proposed system. Formally, a dataset consists of n volumes vi ∈ INx(i)×y(i)×z(i)

with i ∈ {1, . . . , n} and varying voxel dimensions x, y, z. The height model H is
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an interval [hmin, hmax] ∈ IR+
o representing the extension of the human body in

the z-axis. A mapping function hi : IN → H maps slices of volume vi to a height
value h ∈ H. Correspondingly, the reverse mapping function si : H → IN maps
a position h in the height model to a slice number s in vi. A matching point
p = (sp,hp,wp) ∈ IN × H × IR is a triple of a slice number, its corresponding
height value in H and a reliability weight w. We use pi,j for naming the jth

matching point in scan vi.
In our system, a region of interest (ROI) query is specified by a set of consec-

utive slices (ŝe,lb, . . . , ŝe,ub) ⊆ {0, . . . , z(e) − 1} from an example scan ve and it
retrieves a consecutive sequence of CT slices (ŝi,lb, . . . , ŝi,ub) ⊆ {0, . . . , z(i)− 1}
from the result scan vi.

Fig. 1 illustrates the complete workflow of query processing for example-based
ROI queries. A user specifies the ROI query on the client computer by marking a
region in an example scan ve. Additionally, the queried scan vi has to be identified
for the server. Let us note that it is not necessary to transfer the complete marked
subset of the example scan. Instead it is sufficient to transfer a scale-reduced
version of the first and the last slice of the subset. After receiving the slices,
the server performs a feature extraction step generating image descriptors for
both slices. As an alternative, the client computer might directly compute the
required image descriptors and only transfer the descriptors.

In the next step, the server employs a mapping function to predict height
values ĥlb and ĥub to describe the borders of the query interval in the height
model H. In our system, hreg

e (s) is implemented by instance-based regression
(cf. Sect. 4). Afterwards, our algorithm starts with aligning the result scan vi to
the height model H by employing the algorithm described in Sect. 5.2. In par-
ticular, the algorithm employs hreg

i (s) for generating matching points Pi which
are required for the reverse mapping function si(h)Pi

, an interpolation function
described in Sect. 5.1. Once the quality of si(h)Pi

is satisfying, the server selects
the sequence of slices (ŝi,lb, . . . , ŝi,ub) ⊆ {0, . . . , z(vi) − 1} from vi correspond-

ing to the height interval [ĥlb, ĥub] and returns them to the client as the query
result. Let us note that (ŝi,lb, . . . , ŝi,ub) is extended by the amount of slices cor-
responding to 90% of the expected prediction error in order to compensate for
the inaccuracy of hreg

i (s).
Table 1 displays an overview of the defined parameters including some addi-

tional annotations that will be introduced in the next sections.

4 Efficient Instance-Based Regression

In this section, we introduce our method for mapping a single slice into the
standardized height scale H. We already mentioned that there exist methods for
landmark and organ detection which mark slices in the scan with the detected
landmarks or organs. [13] Using multiple landmarks detected at slices si,j , which
can be mapped to anatomical concepts with known standardized height positions
hj and reliabilities wj , we can infer the standardized height of our queried
slice. The landmark detector of [13] being used in our experiments was not
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Table 1. Notation of frequently used parameters.

vi ∈ INx(i)×y(i)×z(i) one volume (i ∈ {1, . . . , n})
H ∈ IR+

o standardized height space / height model
hj one height value in H

si,j one slice number of vi in {0, . . . , z(i)− 1}
p = (si,p,hp,wp) matching point with reliability weight wj

Pi set of matching points of vi
hregi (s) regression function of IN→ H

si(h)Pi
interpolation function of H → IN using a set Pi

(ŝi,lb, . . . , ŝi,ub) slice range in vi
[hlb, hub] interval in H

F (si,j) : IN→ F = IRd image feature transformation of slice j of vi with d ∈ IN
TR training set for regression

Fig. 2. Overview of content-based matching point generation using instance-
based regression on HoGs. (Human model visualization taken from Patrick
J. Lynch, medical illustrator and C. Carl Jaffe, MD, cardiologist at
http://commons.wikimedia.org/wiki/File:Skeleton whole body ant lat views.svg)

able to detect landmarks for all available scans, though. The reason why the
detector failed to find landmarks were the following: The image quality is too
fuzzy for the detector, the body region covered by the scan is not big enough
or only a single slice is available. Further drawbacks of employing landmark
detection for generating matching points are the complexity and availability of
reliable detectors and that their runtimes are not suitable for interactive query

to be published at SSTD 2011 -- the original paper will be made available at www.springerlink.com

Cavallaro et al. Region of Interest Queries in CT Scans



8

processing. In order to allow instant query processing on arbitrary scans, a faster
and more flexible method should be employed that can efficiently generate a
matching point for any given slice in the queried scan.

The idea behind our method is to represent the slice of interest si,j of the
scan vi by an image descriptor and to employ regression techniques to predict its
height value in H. To train the regression function, we employ a training set of
height annotated CT scans where each slice is labelled by a height value h ∈ H.
An overview of this approach can be see in Fig. 2.

We use a 7 bins histogram of oriented gradients (HoG) which is applied
on the cells of a 5x5 grid of the image’s sub-regions. In contrast to the image
descriptor introduced in [4], we omit the additional global extraction cell. Thus,
the concatenated HoGs form a descriptor of size d = (5 · 5) · 7 = 175. Since our
query algorithm requires multiple online feature extraction steps per query, we
down-scale the images to a 100x100 pixels resolution before feature extraction
for speeding up feature generation. We denote by F (si,j) : IN → IRd the feature
transformation of the sthi,j slice of volume vi to the final, d-dimensional feature
space.

A d-dimensional feature vector fi,j corresponding to the jth slice of the scan
vi can be mapped to the height model H with any given regression function.
However, in our experiments the majority of standard regression methods ei-
ther required extensive training times on our large training datasets of up to
900 000 training examples or they did not yield the required prediction qual-
ity. Therefore, we employ an instance-based approach to regression determining
the k-nearest neighbors (k−NN) of the given feature vector fi,j in the training
set TR, consisting of image features r with existing labels h(r) ∈ H, w.r.t. Eu-
clidean distance. Afterwards, the height of slice si,j in scan vi is predicted using
the following decision function:

hreg
i (si,j) = median{r∈TR| r∈k-NN of F (si,j)} {h(r)} . (1)

Although instance-based regression does not suffer from extensive training
times, the cost for large example datasets has to be spent at prediction time.
However, the prediction rule does only require to process a single kNN query
and thus, allows us to use optimization methods for this well-examined problem.

In order to allow efficient query processing, we transform the high-dimensional
feature space of the proposed image features into a lower-dimensional space
which can be indexed by suitable spatial index structures. For this paper, we
use an X-Tree [3], which is well-suited for data of medium dimension.

We reduce dimensionality d in a supervised way employing Relevant Compo-
nent Analysis (RCA) [1] with the goal of maintaining the principal information
of the original feature vectors r ∈ IRd. RCA transforms the data into a space
minimizing the co-variances within subsets of the data, which are supposed to be
similar, the so-called chunklets. Chunklets can be defined by matching a set of
class labels or by using clusters. In our setting, we sort the data points used for
training the feature transformation according to their height labels and retrieve
a pre-defined number (150 chunklets performed well) of equally-sized data sub-
sets. For our datasets, using a 10-dimensional feature representation turned out

to be published at SSTD 2011 -- the original paper will be made available at www.springerlink.com

Cavallaro et al. Region of Interest Queries in CT Scans



9

to be a viable trade-off between prediction time and accuracy. On the average,
a query took 22ms while yielding an average prediction error of only 1.88 cm.

When using positions ĥreg
i,j computed with hreg

i (si,j) as matching points for
answering ROI queries, we are also interested in how reliable they are. One
way to determine a position’s reliability is to use the variance of the k-nearest
neighbors, with a low variance indicating a reliable prediction. [4] However, in
our setting, the best predictions could be observerd with k = 1 or k = 2. Since
building a deviation on 1 or 2 samples does not make any sense, we had to
develop an alternative approach for approximating the prediction quality.

We thus perform an additional pre-processing step assigning weights to all
instances r in the training database TR. The weight w(r) of instance r is deter-

mined in a leave-one-out run of hreg
i (r) on TR. The predicted height value ĥreg

r

is compared to the true position h(r), resulting in the weight w(r):

w(r) = 0.1/
(

0.1 +
∣

∣

∣
ĥreg
r − h(r)

∣

∣

∣

)

. (2)

The reliability of a predicted value ĥreg
i,j is now approximated by the average

weight w(x) over all k-nearest neighbors x of the queried instance r.

5 Answering ROI Queries

In the following, we define a method for retrieving an ROI in a volume vi for
which no matching points are yet available. As mentioned before, the first step
of an ROI query is to determine the query interval [hlb, hub] in the standardized
space H corresponding to the ROI in the example scan ve. We employ instance-
based regression as proposed in the previous section for predicting the height of
the lower and upper bound of the marked ROI of the example scan.

Once such a query interval is defined, we need to collect a set of matching
points p ∈ Pi for being able to interpolate from the standardized height space
H to the volume space of a slice si,j ∈ IN of volume vi. We will now introduce
the interpolation approach used for this purpose.

5.1 Interpolation using Matching Points

For mapping model positions hj ∈ H to slices si,j ∈ IN, we use an interpolation
approach based on a linear function. However, due to varying body proportions,
the patient’s position on the scanner table and the imperfect reliability of the
used matching points Pi, a strictly linear model is not sufficient. Therefore, we
additionally consider a non-linear component in our function which adds an
instance-based off-set, comparable to an approach introduced in [7].

The mapping function si(hq)Pi
for mapping the height value hq to a slice

number si,q ∈ IN is dependent on the scan vi and the set of matching points
Pi. We approximate the slice spacing δi describing the thickness of a slice in the
target space H as the median slice spacing over all pairs of matching points in
Pi as δ̂i = medianp,p′∈Pi,si,p 6=si,p′

|hp −hp′ | / |si,p − si,p′ |.
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Let us note that the median is used to achieve a higher stability against
outliers caused by unreliable matching points. We define si : H → IN as:

si(hq)Pi
=

hq

δi
−

∑

p∈Pi

wp · min
(

1, |hq −hp|
−1

)

·
(

hp

δi
− si,p

)

∑

p∈Pi

wp · min
(

1, |hq −hp|
−1

) . (3)

In order to avoid the case of hp = hq, we limit the maximal contribution of a
matching point p with the minimum terms. Other, more complex interpolation
models usually performed less stable and are thus omitted from this paper.

5.2 Retrieval Algorithm

The quality of the mapping si(h)Pi
directly depends on the quality of the match-

ing points p ∈ Pi. Having a large set of matching points increases the map-
ping quality because it increases the likelihood that reliable matching points be-
ing close to [hlb, hub] are available. Furthermore, having more matching points
decreases the impact of low-quality matching points. However, increasing the
amount of matching points is connected with generating costs for feature trans-
formation, dimension reduction and regression.

Thus, we want to employ a minimal number of matching points while achiev-
ing high interpolation quality. The core idea of our method is to start with a
minimal set of matching points and to measure the quality of the induced map-
ping function. As long as this quality is significantly increasing, we select slices
in the queried scan and induce additional matching points using the regression
method proposed in Sect. 4. This process is illustrated in Fig. 3.

height space H

CT scan vi (in PACS)

CT scan vi (ID only)[hlb, hub]

1 1

2 2

3 3

ubî,slbî,s

REG

0,
ˆ
ih

REG

1)(
ˆ

 ii,zh

Fig. 3. First steps of Algorithm 1: a query range [hlb, hub] is to be found in a scan
vi. In the initial step (1), the seed slices forming the matching points Pi are selected
and mapped to H with hregi . In step (2), Pi is used for interpolating a result range
(ŝlb, . . . , ŝub) in vi. Step (3) validates this result range using hregi and decides whether
a new range should be tested.
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Algorithm 1 ROI Query

Input: vi: Query volume, [hlb, hub]: query interval in H, hregi : height regression func-
tion IN→ H, si: interpolation function H → IN, ǫ: tolerated result range deviation

1: function ROI Query(vi, [hlb, hub], h
reg
i , si, ǫ)

2: Pi = (si,h,w)← init(vi, h
reg
i ) ⊲ Initialize Pi

3: {errlb, errub} ← {∞,∞} ⊲ Errors for lb and ub
4: {ŝlb, ŝub} ← null ⊲ Resulting slice numbers
5: while errlb > ǫ or errub > ǫ do

6: {ŝ∗lb, ŝ
∗

ub} ← {si(hlb), si(hub)} ⊲ Interpolation

7: {ĥreglb , ĥregub } ←
{

hregi (ŝ∗lb), h
reg
i (ŝ∗ub)

}

⊲ Regression

8: {err∗lb, err
∗

ub} ←
{
∣

∣

∣
ĥreglb − hlb

∣

∣

∣
,

∣

∣

∣
ĥregub − hub

∣

∣

∣

}

9: if errlb > err∗lb then ⊲ New lower bound
10: ŝlb ← ŝ∗lb; errlb ← err∗lb
11: if errub > err∗ub then ⊲ New upper bound
12: ŝub ← ŝ∗ub; errub ← err∗ub
13: Get weights ŵreg

lb , ŵreg
ub of new matching points

14: Pi.append
(

(ŝ∗lb, ĥ
reg
lb , ŵreg

lb ), (ŝ∗ub, ĥ
reg
ub , ŵreg

ub )
)

⊲ Extend Pi

15: return (ŝlb, . . . , ŝub)

Output: Result range (ŝlb, . . . , ŝub)

We use the mechanism of manually generating matching points via regression
hreg
i (s) for measuring the quality of a predicted result range (ŝlb, . . . , ŝub). The

error of a prediction ŝc for a value hc is thus defined as: |hreg
i (ŝc)− hc|.

Since hreg
i (ŝc) is fixed during query processing, the only possible way to re-

duce the error is to improve the quality of the matching points. This can happen
by either updating their weights wj or by adding further matching points. Even
though it is sensible to update weights in special cases, the core component of
our algorithm involves the second improvement variant.

For a given query interval [hlb,hub] our method proceeds as follows (see
also Algorithm 1): We select g equally-spaced seed slices si ⊂ {0, . . . , z(i) − 1}
to generate an initial set of matching points by predicting their positions as
ĥ ∈ Hg using instance-based regression hreg

i (si). Using the weights obtained in
the regression procedure we can induce an initial set of matching points Pi =
(si, ĥ,w). We are now free to make our first prediction of the result range.

We interpolate ŝ∗lb = si(hlb)Pi
and ŝ∗ub = si(hub)Pi

in the queried scan using
the current set of matching points Pi. Next, we employ hreg

i (s) on (ŝ∗lb, . . . , ŝ
∗
ub)

and determine the prediction error estimate. If the lower or upper bound (ŝ∗lb or
ŝ∗ub) has been improved compared to the minimal error observed so far, we update
the corresponding lower or upper bound (ŝlb or ŝub). Finally, we augment the
set of matching points Pi by the regression prediction hreg

i (s) for the boundaries
of the target range ŝ∗lb and ŝ∗ub . The algorithm terminates if the improvement
on both sides of the target range is less than ǫ.
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For simplicity reasons, this algorithm omits a number of special cases. Since
the derivation of matching points via regression is expensive due to the overhead
of feature generation, the algorithm has to ensure that no slice number of vi is
tested multiple times. The search procedure should stop, once there is no more
change to the set of matching points Pi because this usually means that the
volume is not well enough resolved for perfectly matching the target range. It is
also beneficial to test for both bounds whether a new matching point generated
for the opposite bound is better suited. Additionally, if only one bound has
been established in an acceptable quality, but it remains stable over a couple
of iterations, one should refrain from trying to further improve this bound by
costly regression calls and only update the opposite bound.

Furthermore, a number of exceptions should be handled: both si and hreg
i

can be mapped outside of their allowed ranges. In the case of si, this may be
an indication that the query range is not contained in the volume. Repeated
range violations should thus terminate the algorithm with an indication of a
mismatch or a partial match. If hreg

i (s) goes astray, this can either be noise in
the regression function or it can be a reason for down-weighting the current set
Pi and for seeking further matching points.

6 Experimental Validation

In the following, we present the results of our experimental evaluation by mea-
suring the quality of the retrieval system and by demonstrating the improved
query time of our complete system. All of our experiments were performed on
subsets of a repository of 4 479 CT scans provided by the Imaging Science In-
stitute of the University Hospital Erlangen for the Theseus Medico project. The
scans display various subregions of the human body, starting with the coccyx
and ending with the top of the head.

For generating a ground truth of height labels, we used the landmark detec-
tor of [13] annotating each scan with up to 22 landmarks. This restricted the
dataset to 2 526 scans where landmarks could be detected. The complete repos-
itory contains more than a million single CT slices comprising a data volume of
520GB.

We implemented our prototype in JAVA 1.6 and stored the scans and their
annotations in a MySQL database. To simulate the distributed environment of a
radiology center, we employed the LAN and the workstations in our lab consist-
ing of common workstations of varying type and configuration being connected
by a 100Mb Ethernet.

6.1 Prediction via Regression

In the following section, we first examine the used image features on their suit-
ability for k-NN regression. Afterwards, we describe the beneficial effects of re-
ducing the original image feature space using RCA.
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Regression Quality For these experiments, we have to provide height labels
h(r) as ground truth for all entries of the required regression database, i.e. for
each scan in the training dataset TR. Basically, there are two methods for gen-
erating these labels. The first is to manually mark the highest and the lowest
point in all scans of a database and to linearly interpolate the height values. [4]
We refer to this method as manual labelling.

Since instance-based regression profits from a larger database, we also use an
automatic labelling method. It assigns height labels to the slices of a volume with
the inverse interpolation approach introduced in Sect. 5.1, using standardized
landmark positions as matching points. In our experiments, we use the 22 land-
marks of [13], marking meaningful anatomical points, which could be detected
in 2 526 of our CT scans. These landmarks are time-expensive to compute and
their computation fails in the remaining 1 953 scans of our dataset. We will refer
to the height labels generated with this interpolation procedure as automatic
labelling.

In our first test, we measure the regression performance of the original image
descriptors, which have not yet been transformed by RCA. We first examine a
manually annotated dataset of 33 CT scans with a total of 18 654 slices. The
average leave-one-out prediction errors are displayed in the first row of Table 2.
Let us note that leave-one-out in these experiments means that only slices from
other scans than the current query scan are accepted as k-nearest neighbors
in order to exclude distorting effects of within-scan similarities. When testing
k parameters between 1 and 5, we found k = 1 to be the best setting for all
experiments using the original slice descriptors.

Table 2. Leave-one-out validation (LOO) errors [in cm] of k-NN slice mapping
hregi (si,j) for two database sizes of n CT scans with m slices.

Ground Truth n m Error [cm] Time / Query [ms]

manual 33 18 654 4.285 18
automatic 33 18 654 3.584 18

automatic 376 172 318 1.465 200

The next row of Table 2 displays the error of the same dataset, which has
been labelled automatically. Our experiments show that the average registration
error of 4.3 cm of the manual labelling is even lowered to 3.6 cm when using the
automatic labelling. Thus, we can safely test our regression method on larger
datasets, which have been automatically annotated. This allows to fully exploit
the strength of the proposed instance-based regression approach. For smaller
databases, alternative regression approaches should be considered, however, with
the wealth of information available, our lazy learner is very hard to beat.

We observe a steady improvement of the empirical errors for increasing
database sizes, however, this comes at the price of longer runtimes. For a dataset
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of 376 volumes consisting of 172 318 slices, a single query performed as sequen-
tial scan in main memory requires 200ms. The additional cost of keeping the
complete training database in main memory poses an additional drawback. The
following section evaluates our method of runtime optimization, by using an
efficient indexing scheme.

Speed-up via RCA and Indexing In order to speed up regression, we index
the training data in an X-Tree [3] after reducing the dimensionality via RCA.
We tested the target dimensions 5, 10, 25 and 50. Using an index, we could now
employ the complete dataset of 2 526 scans. We used a subset of 697 scans
(= 163 525 slices) as training set for the RCA and tested the performance on the
remaining 2 104 scans (901 326 instances). Table 3 shows the average leave-one-
out (LOO) errors and query runtimes (excluding the time for feature generation)
for the indexes generated from the test set.

Table 3. LOO regression errors [in cm] for RCA-transformed data with query times
[in ms] in an X-Tree representing 2104 scans.

Dimension Error [cm] Time / Query [ms]

5 2.764 4
10 1.881 22
25 1.343 440
50 1.209 2966

As can be been seen in Table 3, the curse of dimensionality causes the X-Tree
to lose much of its effectiveness for increasing dimensions. Additionally, the error
does only moderately increase for smaller dimensions. Based on these observa-
tions, we consider the 10 dimensional data set as the best trade-off, having a
prediction error of 1.88 cm and a query time of 22ms. We use this dataset for all
following experiments. The total runtime required for feature generation is com-
bined from the actual feature generation for a down-scaled version of the query
slice (20ms) and the time required for RCA transformation (0.1ms). Thus, our
selected query configuration results in a total prediction time of 42ms.

Next, in order to validate the performance of the proposed ROI query work-
flow we will first analyze the accuracy of the retrieved ROIs and then proceed
with an examination of retrieval times.

6.2 Precision of ROI Queries

We could again use automatically detected landmarks for defining a ground truth
of lower and upper bounds, however, we cannot guarantee for the correctness of
these matching points.

Therefore, we generated a new set of annotation points with five new land-
mark types: “lower plate of the twelfth thoracic vertebra”, “lower bound of

to be published at SSTD 2011 -- the original paper will be made available at www.springerlink.com

Cavallaro et al. Region of Interest Queries in CT Scans



15

coccyx”, “sacral promontory”, “cranial sternum” and “lower xiphoid process”.
These landmarks were hand-annotated by a medical expert for providing a set
of markers which have been verified visually.

In Table 4, we show the results of predicting all visible intervals with ROI
queries formed by pairs of these landmarks in the dataset of 33 manually an-
notated volumes. As not all landmarks were visible in all volumes, only 158
intervals could be tested. Since the annotation error – the deviation of these
markers from their expected positions – is at 2.579 cm, we cannot expect the
queries to produce more reliable predictions.

Using Algorithm 1 with varying grid sizes g for the initial matching points Pi

provides good predictions. We observe, however, that using a larger number of
seed points only mildly improves the accuracy of the predictions, but it greatly
increases the number of matching points being generated by regression (q). We
conclude that two seed points are sufficient for our simple optimization scheme.
Any more sophisticated optimization procedures should rather involve an intel-
ligent screening of the proposed result range (ŝlb, . . . , ŝub) than use more seed
points.

Table 4. Average deviation [in cm] of the result ROI of Algorithm 1 from the manually
marked ROIs with the number of regression queries q and the runtime per query.

Error Measure [cm]:
err(ŝlb) + err(ŝub)

Annotation Error:
2.579 cm

ROI prediction with Algorithm 1

g Error [cm] q Time / Query [ms]

2 2.655 6.8 1 273
5 2.549 9.2 1 951
10 2.430 15.2 3 032
25 2.573 30.0 5 946
50 2.385 55.5 10 081

In Fig. 4 we see the cumulative distribution function F (error ≤ x cm) for
the analyzed query intervals. The ‘Annotation’ bars show the performance of
the annotated ground truth landmarks, and the ‘Algorithm 1’ bars represent
our ROI query algorithm using two seed points. There is almost no difference
between the quality of the ground truth and our algorithm. The probability that
the total prediction error (err(ŝlb) + err(ŝub)) is at most 2 cm lies at 50%. Again,
with a height spacing of 5mm, this means that in half of the cases, the retrieved
range deviates by only two slices for each the lower and upper bound. When
thus extending the returned query range by our pre-defined safety range, most
returned subvolumes will completely contain the requested ROI.

We thus conclude that ROI queries can be efficiently answered by using
Algorithm 1 with two initial matching points. The query time for grid size 2 is
1.5 seconds. Thus, our final experiments will show that the benefit of reducing
volume queries to a region of interest strongly outweighs this cost.
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Fig. 4. Cumulative distribution function: F (error ≤ x cm) (the steeper the better). It
compares the error of Algorithm 1 with the quality of the used annotation points.

6.3 Runtime of ROI Queries

For our last experiment, we chose a random set of 20 volumes from the database
and tested them against four ROI queries defined in an example scan. Two
queries are aimed at organs (“Left kidney” and “Urinary bladder”), one query
ranges from the top of the hip bone to the bottom of Vertebra L5 and the
final query is only interested in the view of the arch of aorta. The four hereby
defined query ranges have heights of 16.8, 9.6, 4.7 and 0.9 centimeters In Fig. 5,
we display the retrieval times of the resulting ROIs and their fraction of the
complete dataset of 12 240 slices. Loading the complete 20 volumes from the
server takes 1 400 seconds, whereas transferring only the ROIs induced by the
given concepts takes 60 to 400 seconds, including the computation overhead for
finding the ROI.
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Fig. 5. Average runtimes (ten repetitions) and volume size reduction using ROI queries
with Algorithm 1. Each experiment tests 20 volumes with a total of 12 240 slices.
Loading the complete dataset takes 1 400 seconds.
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To conclude, employing our system for answering ROI queries saved between
77 − 99% of the loading time compared to the retrieval of the complete scan.
Thus, in a clinical routine our system is capable to save valuable time as well as
hardware resources.

7 Conclusion

In this paper, we proposed a method for processing region of interest (ROI)
queries on a repository of CT scans. An ROI query is specified by giving an
example ROI in another CT scan. Since CT scans are usually stored as stacks
of 2D images representing a slice in the scan, the answer of an ROI query on a
CT scan is a subset of the slices in the target scan representing an ROI which
is equivalent to the query ROI.

After query specification, the system maps the ROI to a general height model
of the human body. Then, the query region in the height model is mapped to
a subregion of the queried scan containing the ROI. Technically, our system
is based on an interpolation function using so-called matching points linking a
CT scan to the height model. To guarantee the availability of matching points
even for unannotated CT scans, we propose a method using content-based image
descriptors and regression that can generate matching points for arbitrary slices
in a scan. Finally, we propose a query algorithm for finding a stable mapping
while deriving a minimal amount of matching points.

In our experimental evaluation, we validated the accuracy of our approach
on a large database of 2 526 CT scans and displayed experiments for the reduced
transfer volume of ROI queries being processed by our system.

For future work, we plan to extend our system to restrict ROIs in all three
dimensions. We also aim to apply our retrieval solution to other types of 3D
objects being stored in raster databases and to further, more general regression
or interpolation problems.
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