Indexing Uncertain Spatio–Temporal Data

Tobias Emrich, Hans–Peter Kriegel, Matthias Renz, Andreas Züfle (LMU)
Nikos Mamoulis (HKU)
Agenda

- Spatio–Temporal Data
- Uncertain Spatio–Temporal Data
- Modeling Uncertain Spatio–Temporal Data
- Indexing Uncertain Spatio–Temporal Data
- Probabilistic Pruning
- Experiments
What is (certain) Spatio–Temporal Data?

- Trajectory data from
 - vehicles
 - mobile users
 - animals
 - ...

- Can be represented treating time as an additional spatial dimension
What is (certain) Spatio–Temporal Data?

- A spatio–temporal database stores triples (oid, time, loc)
- In the best case, this allows to look up the location of an object at any time
What is (certain) Spatio–Temporal Data?

- A spatio–temporal database stores triples (oid, time, loc)
- In the best case, this allows to look up the location of an object at any time
- Allows to answer queries such as "Return objects that intersects some spatial window within some time interval".
What is Uncertain Spatio–Temporal Data?

- In most applications, this data is not complete
 - Delays between GPS signals
 - RFID sensors located only in certain locations
 - Wireless sensor nodes sending infrequently to preserve power
 - Geo–application check–ins

![Diagram showing location space and time space with uncertain points marked with ? and Q highlighted]
What is Uncertain Spatio–Temporal Data?

- Existing works
 - Bound the set of possible (location, time) pairs of an object between observations by using spatio–temporal approximations (diamonds)
 - e.g. by modeling knowledge about maximum speed
What is Uncertain Spatio-Temporal Data?

- Existing works
 - Bound the set of possible (location,time) pairs of an object between observations by using spatio-temporal approximations (diamonds)
 - e.g. by modeling knowledge about maximum speed
 - Allows to make statements like „its possible that o intersects some query window Q“
 - But how likely is this event? „What is the probability of the object traveling through Q?“
Modeling Uncertain Spatio-Temporal Data

- Using a more powerful model [1]
- The position of an object o at some time t is a random variable
- The trajectory of o follows a stochastic process, i.e. a family of random variables o(t)
Modeling Uncertain Spatio-Temporal Data

- Using a more powerful model [1]
- The position of an object o at some time t is a random variable
- The trajectory of o follows a stochastic process, i.e. a family of random variables $o(t)$
- Given a predicate φ, the event that o satisfies φ is a random event.
Markov Chain Model for UST data

- Assumes discrete state space S and discrete time space T
- Given the position of an object o at time $t=i$, the position at $t=i+1$ is conditionally independent of $t=i-1$
- Transition probabilities stored in a (sparse) $|S| \times |S|$ matrix $M(o,t)$, called transition matrix
- $M(o,t)[i,j]$ is the probability that object o will transition to state j at time $t+1$, given o is located at state i at time t
Markov Chain Model for UST data

- Incorporation of additional observations possible using Bayesian inference
- Each possible path can be associated with a probability
- Several probabilistic window queries possible
- Use sparse matrix operations for efficient implementation
- Details can be found in [1]
Indexing Uncertain Spatio–Temporal Data

- Large number of objects and observations in a database
- Checking each pair of successive observations requires too much computation
- How to prune as many objects and observations as possible during query evaluation?

“Which objects intersect Q with a probability of at least τ?”
Indexing Uncertain Spatio–Temporal Data

- Large number of objects and observations in a database
- Checking each pair of successive observations requires too much computation
- How to prune as many objects and observations as possible during query evaluation?
- Temporal Pruning?

“Which objects intersect Q with a probability of at least τ?”
Indexing Uncertain Spatio–Temporal Data

- Index possible positions in (location + time) in an R*-Tree
- Apply multistep filter
 - R-Tree Filter

“Which objects intersect Q with a probability of at least τ?”
Indexing Uncertain Spatio–Temporal Data

- Index possible positions in \((\text{location} + \text{time})\) in an R*-Tree
- Apply multistep filter
 - R-Tree Filter
 - Diamond Filter

"Which objects intersect Q with a probability of at least \(\tau\)?"
Indexing Uncertain Spatio–Temporal Data

- Index possible positions in (location + time) in an R*-Tree
- Apply multistep filter
 - R–Tree Filter
 - Diamond Filter
 - True Hit Detection

“Which objects intersect Q with a probability of at least \(\tau \)?”
Indexing Uncertain Spatio–Temporal Data

- Index possible positions in (location + time) in an R*-Tree

- Apply multistep filter
 - R–Tree Filter
 - Diamond Filter
 - True Hit Detection
 - Probabilistic Pruning

“Which objects intersect Q with a probability of at least τ?”
Probabilistic Pruning

- Lower bound the probability of the object \(o \) to move through the gray area only \(P_{LB}(o \text{ in gray}) \)

- Then \(P_{UB}(o \text{ intersects } Q) = 1 - P_{LB}(o \text{ in gray}) \)

- If \(P_{UB}(o \text{ intersects } Q) < \tau \)
 \(\Rightarrow \) \(o \) can be pruned

- How obtain \(P_{LB}(o \text{ in gray}) \) without computing it?

“Which objects intersect \(Q \) with a probability of at least \(\tau \)?”
Probabilistic Pruning

- Offline computation:
 - Precompute probability for o to stay in sub-diamonds
 - Simple variation of the window query for each sub-diamond
Probabilistic Pruning

- **Offline computation:**
 - Precompute probability for \(o \) to stay in sub-diamonds
 - Simple variation of the window query for each sub-diamond
Probabilistic Pruning

- Offline computation:
 - Precompute probability for \(o \) to stay in sub-diamonds
 - Simple variation of the window query for each sub-diamond
Probabilistic Pruning

- Offline computation:
 - Precompute probability for \(o \) to stay in sub-diamonds
 - Simple variation of the window query for each sub-diamond
Probabilistic Pruning

- Offline computation:
 - Precompute probability for \(o \) to stay in sub-diamonds
 - Simple variation of the window query for each sub-diamond
Probabilistic Pruning

- Offline computation:
 - Precompute probability for o to stay in sub-diamonds
 - Simple variation of the window query for each sub-diamond

![Diagram showing location space and time space with points and a shaded area]
Probabilistic Pruning

- Offline computation:
 - Storing all these probabilities is of course memory inefficient
 - Approximation with a linear function using linear programming
Probabilistic Pruning

- During Query Processing:
 - Construct largest possible sub-diamond
 - Lookup of $P_{LB}(o \text{ in sub-diamond})$
Experiments

- Indexing UST data yields orders of magnitude over a scan based method (with temporal pruning)

- Using diamond and probabilistic filtering (UST-Tree) speeds up the R*-Tree by factor 3–4

- Setting: 1000 objects á 100 observations and 10000 possible locations in 2D
Experiments

- All Filters can be computeted efficiently in contrast to the verification step (~500 ms in this example)

- Effectiveness of probabilistic filter is dependent on the threshold τ
Experiments

- Probabilistic spatio-temporal window queries are usually CPU-bound

- I/O-cost of UST-Tree are higher in the filter step since more information is stored in the leaves (=> higher tree)

- I/O-cost of UST-Tree are lower in the refinement step since less candidates have to be loaded from disk
Summary

- Indexing based on the Markov–Chain Model for UST data
 - Yields several orders of magnitudes over scan–based method
 - Yields 3–4 times speedup over straightforward indexing

- Techniques for spatio–temporal and probabilistic pruning are applicable to other models for UST data

- Techniques are extendable to the multi–dimensional case

- More special cases are treated in the paper
 - Other window queries
 - Query window overlapping several diamonds of the same object
Thank you for listening!
Related Work

Index Entries at Leaf Level:

directory levels:

leaf level:

oid