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Chapter 14

ADAPTABLE SIMILARITY SEARCH
IN LARGE IMAGE DATABASES

Thomas Seidl, Hans-Peter Kriegel
University of Munich, Institute for Computer Science
Oettingenstr. 67, 80538 Munich, Germany
{seidl, kriegel}@dbs.informatik.uni-muenchen.de

Abstract Similarity has highly application dependent and even subjective characteristics.
Similarity models therefore have to be adaptable to application specific require-
ments and individual user preferences. We focus on two aspects of adaptable
similarity search: (1) Adaptable Similarity Models. Examples include pixel-
based shape similarity as well as 2D and 3D shape histograms, applied to bio-
molecular and image databases. (2) Efficient Similarity Query Processing. Sim-
ilarity models based on quadratic forms result in ellipsoid queries on high-
dimensional data spaces. We present algorithms to efficiently process ellipsoid
queries on index structures, and improve the performance by introducing vari-
ous approximation techniques that guarantee no false dismissals for both simi-
larity range queries and k-nearest neighbor queries.

Keywords: User-adaptable similarity search, quadratic forms, similarity matrix, ellipsoid
query, efficient query processing, index structures

14.1 Introduction

A wide range of image databases has established its relevance in areas like
medicine, journalism, fashion, art, and industry. For a long time, retrieving im-
ages has been restricted to queries by filename, captions, or keywords. Recent-
ly, a variety of concepts and systems support querying image databases by
characteristics of the content such as color, texture, and shape. Most approach-
es, however, are based on predefined similarity models which neglect the fact
that similarity often is highly subjective and may vary from user to user or,
moreover, from query to query.

Two aspects need to be addressed in order to support user-adaptable simi-
larity search. First, appropriate flexible similarity models have to be provided
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Content-Based Image and Video Retrieval. Kluwer publishers, 2001.
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that may be modified by the user. These similarity models include representa-
tions that reflect the relevant features of complex in multimedia, image, or spa-
tial objects. By introducing 2D and 3D shape histograms, we give an example
for illustrative feature vectors. Similarity is often measured by the Euclidean
distance that particularly lacks flexibility and disregards local neighborhoods
in histogram spaces, see for instance [9, 27]. In contrast, quadratic form dis-
tance functions are particularly well suited to be adapted to application require-
ments and individual user requirements.

Second, efficient query processing is a crucial task due to the large and still
increasing size of image databases. For high-dimensional data including digital
images or complex feature vectors, several techniques to reduce the dimension-
ality have been proposed. We extend these techniques that previously were
used for the Euclidean distance only and apply them to quadratic forms. In ad-
dition, conservative approximations are used for similarity range queries as an-
other approach to reduce the complexity of quadratic form-based similarity
query processing. For k-nearest neighbor queries, the approximations are gen-
eralized to filter distance functions. When used in the filter step of a multistep
similarity query processing architecture, all the methods yield an optimal filter
selectivity and minimize the number of expensive exact evaluations.

This chapter is organized as follows: In Section 2, we introduce flexible
models for user-adaptable similarity search in image and spatial databases. In
Section 3, we present efficient algorithms for similarity query processing and
give particular attention to high-dimensional data spaces and approximation
techniques. The experiments in Section 4 demonstrate the good performance,
and Section 5 concludes the paper.

14.2 Adaptable Similarity Models

In this section, we present some similarity models that are particularly
adaptable to varying application requirements or to individual user preferenc-
es. The basic idea is to provide parameters for similarity distance functions that
are specified by the user to the system at query time. A class of similarity dis-
tance functions that particularly well meets these requirements are quadratic
forms which are well known from their application to color histograms, e.g. in
IBM’s QBIC project [11, 16, 21, 22]. They were already successfully used for
a variety of similarity models [3, 4, 19, 23].

14.2.1 Pixel-based Shape Similarity

Image databases used for marketing purposes or in patent agencies may
contain trade marks, clip arts, or pictograms that contain single objects or small
groups of objects. Since errors by scanning, sampling, or segmentation may in-
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duce slight displacements including minor shifts or rotations, similarity search
faces new challenges which are not conquered by classic methods such as the
Euclidean distance of digital images. An example is provided in Figure 4.1
where the bar in the image is shifted horizontally by a +1, –2, or +10 pixels to
the right. The Euclidean distance to the original image cannot distinguish be-
tween slight and far translations. 

We approach the problem of slightly displaced objects by taking the neigh-
borhood of each pixel into account when computing the distance pixel by pixel.
Similar images are recognized even if parts of the images are shifted by some
pixels within the considered neighborhood. By specifying appropriate neigh-
borhood influence weights w: dom(w) → [0, 1], the similarity model is adapted
to varying application requirements or individual user preferences (Fig. 4.2). 

DEFINITION (ADAPTABLE IMAGE SIMILARITY DISTANCE).
Given neighborhood influence weights w, the local similarity distance d’w

of two images F and G at a pixel p is defined as:

d’w(F, G, p)  =  Σpixel p’ w(p – p’) · (F(p’) – G(p’))

and the adaptable image similarity distance dw of F and G is defined as:

dw(F, G)  =  (Σpixel p (F(p) – G(p)) · d’w(F, G, p))1/2

A straightforward algebraic transformation of the formula reveals that dw(F,
G) =  is a quadratic form, thereby considering the imag-
es F and G as highdimensional vectors. The neighborhood influence weights

Figure 4.1. Given a reference image containing a vertical bar and a bullet (left), the Euclidean
distance d does not distinguish between minor or major changes of the bar location.

d = 28d = 28d = 28

Figure 4.2. Neighborhood weights for the adaptable image similarity model.
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determine the matrix W by Wp,p’ = w(p – p’) for each pair of pixels p and p’.
The Euclidean distance function is generated by this schema simply by regard-
ing no neighborhood influences, i.e. w(p – p’) = 0 if p ≠ p’ and w(0) = 1. The
matrix W then is the identity.

To illustrate the desired effect for image retrieval, we consider a sample da-
tabase containing 10,000 images taken from a commercially available CD-
ROM. Figure 4.3 illustrates the sample image violin. The aim is to rank the
original violin from the database at a top position even for shifted violins in que-
ry images. Whereas for a slight shift by one pixel to the right, the Euclidean
distance (no neighborhood influence area) ranks the original violin at top, it
fails in ranking the original violin at position 328 for a query violin shifted three
pixels to the right. A neighborhood influence area of ‘12-1’ (12 pixels to the
right), ranks the violin among the top ten most similar images in the database. 

14.2.2 2D and 3D Shape Histograms

Applications in molecular biology, mechanical engineering, or medical im-
aging are faced with objects that are larger and more complex than small pixel
images. For searching similar spatial objects in large medical, biomolecular, or
CAD databases, new models are required to represent and query the contours
of 2D or 3D shapes [9, 19]. A successful approach is the concept of shape his-
tograms. Having partitioned the 2D or 3D space into disjoint cells, the occu-
pancy of each cell by the object of interest is measured. Figure 4.4 provides ex-
amples for 3D shape histograms, based on a partitioning of the 3D space into
shells (a), into sectors (b), or into a combination of shells and sectors (c). Pro-
vided with the original representation of a molecule by a set of surface points,
the fraction of points in each cell is measured and stored in the respective his-
togram bin. Figure 4.4d illustrates the application to X-ray images by partition-
ing the 2D space into a cell structure of shells and sectors. Rather than the dis-
tribution of surface points, the distribution of gray values over the cells is
encoded by the histogram in this case. 

Figure 4.3. Results of similarity ranking for the adaptable pixel-based model. The difference
images in the bottom row illustrate the shifts of the original violin (left) to the right by +1, +2, or
+3 pixels, respectively. The table indicates the position at which the original violin ranks for
different neighborhood weights if querying with the shifted images +1, +2, or +3.

‘+1’ ‘+2’ ‘+3’
Neighborhood Rank of violin for query
influence area ‘+1’ ‘+2’ ‘+3’
–––––––––––––––––––––––––––––––

None 1 9 328
‘5-1’ 1 3 92

‘12-1’ 1 3 10

violin



Adaptable similarity search in large image databases 301

For similarity search, histograms are simply considered to be high-dimen-
sional feature vectors encoding relevant properties of complex objects, the geo-
metric shape in our case. What needs to be complemented is the definition of a
similarity distance measuring the dissimilarity of two objects by their distance
values. Figure 4.5 demonstrates the limitations of the Euclidean distance when
applied to shape histograms. Similar distributions in adjacent cells are not rec-
ognized since the Euclidean distance neglects any correlations between the di-
mensions. In order to take these cross-relationships into account, we encode the
relationship of every two cells i and j by entries aij in a similarity matrix A and
use quadratic forms dA(p, q) =  as appropriate distance
functions. 

We applied our 3D shape histogram models to nearest neighbor classifica-
tion for a 3D protein database containing molecules from the Protein Data Bank
[1] that are classified in the FSSP database [17]. Taking care that for every
class, at least two molecules are available, we have got 3,422 proteins which in
total were assigned to 281 classes containing some 2 to 185 molecules. In order
to measure the classification accuracy as the ratio of correctly predicted classes
to the overall number of predictions, we performed leave-one-out experiments,
thereby assigning the class label of the nearest neighbor to the query molecule.

Figure 4.4. Shape histograms based on a shell model (a), a sector model (b) and a combined
model (c) for a 3D molecule (top row: schematical illustrations, bottom row: actual histograms
for 120 shells, 122 sectors, and 6x20 cells, resp.). d) A histogram model for 2D X-ray images.
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Figure 4.5. The Euclidean distance of 2D shape histograms does not reflect local neighborhoods
of spatially adjacent bins. Objects a) and c) may count for being more similar than a) and b).
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The entries in the similarity matrix A are computed by the formula aij =
exp(–σ · d(i, j)) with σ = 10 in our experiments. As distance d(i, j) of two cells i
and j, we use the difference of the corresponding shell radii or the angle between
sectors, respectively. Figure 4.6 illustrates the results for various shape histo-
gram models. As analyzed in [3] in more detail, the sector model yields a better
classification accuracy than our shell model since there is more variation in the
occupancy of the cells in space. The observed accuracy of about 90% is compa-
rable to competing biomolecular approaches based on expert knowledge and
manual verification. The advantage of our system is the high efficiency in addi-
tion to the high accuracy, and single queries are processed in less than a second. 

14.3 Efficient Similarity Query Processing

Focusing to quadratic form distance functions as particularly adaptable
similarity models, the problem of efficient query processing emerges. The
evaluation of a quadratic form, dA(p, q) = , of dimension
n requires O(n2) floating point operations. For databases containing hundreds
of thousands to millions of objects, sequentially scanning the database is pro-
hibitive. Two ways help to improve the efficiency of similarity search in large
databases. First, the use of multidimensional index structures and, second, the
introduction of conservative approximation techniques.

14.3.1 Ellipsoid Queries on Indexes

Due to the geometric shape of its iso-surfaces, quadratic form-based queries
are called Ellipsoid Queries [23]. These ellipsoids may have an arbitrary orien-
tation in space. For weighted Euclidean distances which are represented by di-
agonal matrices, the ellipsoids are iso-oriented, i.e. the principal axes coincide
with the coordinate axes of the data space. The isosurface of the most basic
case, the Euclidean distance, represented by the identity matrix, is a sphere. For
the Euclidean distance, several solutions employing multidimensional index
structures are available [14]. These techniques are easily extended to weighted
Euclidean distance functions simply by weighing the individual dimensions in-

Figure 4.6. Classification accuracy of various histogram models on a database of 3,422 proteins.
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dependent of each other. For the general case of arbitrary positive definite sim-
ilarity matrices, new solutions are required.

In IBM’s QBIC project, a technique to efficiently support quadratic form-
based distance functions was developed [11, 16, 22]. By an affine transforma-
tion of the data space obtained from a diagonalization of the similarity matrix,
A = VWVT with W being a diagonal matrix and V being orthogonal, the original
quadratic form translates to a weighted Euclidean distance in the transformed
space, dA(p, q) =  = dW(pV, qV). The rich variety of
multidimensional index structures may then be used for efficient query pro-
cessing. The major limitation of this technique is the lack of flexibility and
adaptivity to varying similarity matrices. The matrix has to be available at in-
dex creation time when the transformation of the data takes place. Later modi-
fications of the similarity matrix, e.g. at query time, are not supported.

A quite more flexible approach is provided by the concept of ellipsoid que-
ries in index structures [23, 24]. Rather than relying on a single similarity ma-
trix and transforming the data depending on it, the matrix becomes a query pa-
rameter. The user may now specify any arbitrary similarity matrix for each
individual query. The index does not have to be rebuilt when changing or mod-
ifying the matrix, and it immediately supports query processing for any simi-
larity matrices given by the user at query time.

Any arbitrary multidimensional index structure which hierarchically orga-
nizes the data by rectilinear hyperrectangles may be employed. In our imple-
mentation, we focused on R-trees [15], R+-trees [26], R*-trees [5] and X-trees
[6, 8]. The algorithm recursively descends from the root node down to the leaf
nodes while pruning subtrees whose bounding box does not intersect with the
query ellipsoid in case of a similarity range query. Figure 4.7 illustrates the in-
tersection test of a query ellipsoid with the bounding boxes of some subtrees
and the containment test for some points from leaf nodes of the index. For
k-nearest neighbor queries, the minimum distances of the query point and the
bounding boxes are used as the best available heuristics to guide a best-first
search without loosing completeness. 

pV qV–( ) W pV qV–( )T⋅ ⋅

Figure 4.7. Intersection test for a query ellipsoid and some bounding boxes from a directory
node of the index (a) and containment test for some data points from a leaf node of the index (b).
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14.3.2 Approximations and Multistep Query Processing

Though the basic algorithm for ellipsoid queries on multidimensional index
structures has shown its high efficiency in many cases, it performs very poor in
high- and ultra-highdimensional data spaces. An effect known as the curse of
dimensionality is that the performance of index structures generally degrades
with increasing dimension [7, 8, 13]. A solution to overcome this severe prob-
lem is to employ approximation methods that reduce the complexity either of
the data space or of the query. The complexity of a highdimensional data space
is decreased by reducing the dimensionality. Addressing the complexity of el-
lipsoid queries, approximations for which a single evaluation takes O(n) time
in n dimensions help to avoid expensive O(n2) quadratic form evaluations.

In general, approximations introduce a trade-off between accuracy and ef-
ficiency, and completeness as well as soundness are important criteria. We ad-
dress these aspects by following the paradigm of multistep query processing.
A filter step that is supported by a multidimensional index structure is based on
an appropriate approximation and produces a set of candidate answers. In a
subsequent refinement step, the candidate answers are evaluated according to
the exact complex query criterion. Whereas the soundness of the result is guar-
anteed by the exact evaluation in the refinement step, additional assumptions
have to be fulfilled to ensure completeness as well. The illustration in
Figure 4.8 sketches our multistep architecture for similarity query processing.

For similarity range queries, conservative approximations which complete-
ly enclose the original object guarantee no false dismissals in the result set. The
approximation error in the filter step is thus constrained to false answers due to
some surplus approximation space, but no deficit space may cause the loss of
any true result. For k-nearest neighbor search, the geometric approximations
have to be extended to distance functions since there is no query geometry that
has a finite extension. Available algorithms guarantee completeness if the dis-
tance function in the filter step fulfills the lower-bounding property. For any
two objects p and q, a lower-bounding distance function dlb in the filter step has
to return a value that is not greater than the exact distance de of p and q, i.e.
dlb(p, q) ≤ de(p, q). 

The complete algorithm of [18] first retrieves the k-nearest neighbors ac-
cording to the filter distance dlb from the index, determines the maximum ob-
ject distance de

max for the answers and, then, reports all objects p whose filter
distance dlb(p, q) to the query object q is less or equal de

max by a range query.
Our new solution [25] is optimal in the sense that it produces the minimal num-
ber of candidates in the filter step and, therefore, the number of exact evalua-
tions in the refinement step is minimal. The key to this optimization is that the
filter step reports new candidates in ascending dlb-order, and termination is
controlled by a feedback from the refinement step.
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14.3.3 Ellipsoid Queries in High Dimensions

In high-dimensional data spaces, the mentioned curse of dimensionality
causes a serious degradation of multidimensional index structures. In addition,
the O(n2) evaluation time for a quadratic form of dimension n yields unaccept-
able runtimes for high dimensional ellipsoid queries. Reduction of dimension-
ality helps to overcome these problems. The objects are projected from their
high-dimensional data space to a space having less dimensions and for which
index structures and ellipsoid distance evaluation show a significantly better
efficiency. A variety of reduction techniques has been developed including
Karhunen-Loève Transform (KLT), Discrete Fourier or Cosine Transform
(DFT, DCT), Wavelet Transforms, Multidimensional Scaling [20], or FastMap
[12]. Any linear reduction from n down to r dimensions is represented by a
n × r-dimensional reduction matrix R. Nevertheless, the reduction may be eval-
uated more efficiently e.g. by FFT algorithms. Conceptually, an n-dimensional
point p is first rotated by a (complemented) n × n-matrix R’ and, afterwards, the
last (n – r) dimensions are cut from pR’, resulting in an r-dimensional point pR.
The complemented n × n-matrix R’ is obtained by extending the n × r-matrix
R with (n – r) base vectors of the nullspace of R.

For quadratic forms, the question emerges which filter distance functions
guarantee completeness by fulfilling the lower-bounding property and, in ad-
dition, which minimize the number of candidates to be evaluated in the refine-
ment step. From a geometric point of view, the solution is a projection of the
high-dimensional ellipsoid to the low-dimensional data space. This projection
is obtained from a transformation of the n-dimensional similarity matrix A to
an r-dimensional similarity matrix A’. Obviously, the projection has to respect
the reduction matrix R in order to produce correct results.

The algorithm proceeds in two steps [23, 24]. First, the n × n-matrix A is
transformed by a multiplication with the complemented n × n-matrix R’, re-
sulting in R’TAR’. Second, performing a step by step reduction from n dimen-

Figure 4.8. Multi-step similarity query processing.
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sions down to r dimensions, the scaled outer product of the last column and the
last row of the matrix is added to the remaining part of the matrix in each step.

As desired, the resulting quadratic form dA’(p, q) =  is
a lower bound of the original quadratic form dA(p, q). On top of it, dA’(p, q) is
the greatest of all lower-bounding distance functions in the reduced space and,
therefore, is optimal since no other complete filter distance function in the re-
duced space produces less candidates.

14.3.4 Geometric Approximations of Ellipsoids

A variety of conservative approximation techniques has been developed for
2D spatial database systems and Geographic Information Systems [10]. From
these methods, we found the Minimum Bounding Box (MBB) and the Minimum
Bounding Sphere (MBS) to be best suited for ellipsoid queries [2, 23]. Both ap-
proximations, the MBB and the MBS, require only O(n) time for testing inter-
sections and containments. In addition, combining the methods exploits the ad-
vantages of both.

All approximations are applied to both query types, similarity range queries
and k-nearest neighbor queries. For this purpose, we have to provide two in-
stances for each model: First, a conservative approximate query region which
completely encloses the original query ellipsoid. Whereas the orientation and
the location of the original query ellipsoid is specified by the similarity matrix
A and the center point q, the extension is derived from the range query param-
eter ε. For convenient reference of ellipsoid range queries, let us introduce the
following symbol:

ellip(A, q, ε)  =  {p ∈ ℜd: dA(p, q) ≤ ε}

Second, an approximate distance function is required for each of the ap-
proximation types. Due to their close relationship to the corresponding solids,
we call the respective distance functions box distance function and sphere dis-
tance function. In order to guarantee the completeness of the filter step as well
as the minimality of the produced candidate sets, our particular filter distance
functions are designed to be the greatest lower bounds within their class of box
or sphere distance functions.

14.3.4.1 Minimum Bounding Box Approximation

The Minimum Bounding Box (MBB) of a spatial object is the smallest rec-
tilinear hyperrectangle totally enclosing the object. The MBB is a favorite ap-
proximation technique due to its compact representation which requires only
2 ·n parameters in an n-dimensional space since it suffices to store the lower
and upper bound in each dimension. It is highly compatible to rectilinearly or-

p q–( ) A’ p q–( )T⋅ ⋅
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ganized multidimensional access methods and, typically, easy to determine.
Figure 4.9 provides an example for the MBB of a 2D ellipsoid. Since the ge-
ometry of the MBB can be derived from the corresponding lower bounding dis-
tance function, we first introduce the more general MBB distance function. 

Lower-Bounding Box Distance Function. The generalization of a box to a
distance function yields a weighted maximum norm L∞ whose isosurfaces are
rectilinear hyperrectangles. The weighting factors for individual dimensions
represent non-square rectangles. What we get in analogy to the minimum
bounding box of an ellipsoid is the greatest box distance function providing a
lower bound of the corresponding ellipsoid distance function.

DEFINITION AND THEOREM (MBB DISTANCE FUNCTION).
Let A be a similarity matrix, and A–1 its inverse. The weighted maximum

norm distance function

dMBB(A)(p, q)  =  max {| pi – qi | /  : i = 1, …, d}

is called the minimum bounding box distance function of A. It is a lower bound
of the ellipsoid distance function dA:

dMBB(A)(p, q)  ≤  dA(p, q)  for all p, q ∈ ℜd

PROOF.
First, dMBB(A) is well-defined since A–1 exists for every positive definite

matrix A, and all diagonal elements, A–1
ii, are positive. Second, we show that

for every p, q ∈ ℜd, an auxiliary point pt exists such that the following formula
is true which immediately implies the proposition:

dMBB(A)(p, q)  =  dA(pt, q)  ≤  dA(p, q)

Consider the box on which p is located and the largest ellipsoid enclosed in
this box. The tangential point pt of the box and the ellipsoid shares its box dis-

Figure 4.9. Minimum Bounding Box MBB(A,q,ε) of a 2D ellipsoid of level ε and greatest lower-
bounding box distance function dMBB(A,q).
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tance with p, dMBB(A)(pt, q) = dMBB(A)(p, q), whereas the ellipsoid of pt is
smaller than the ellipsoid on which p is located, i.e. dA(pt, q) ≤ dA(p, q). As
shown in [2], the box distance and the ellipsoid distance of pt to q are equal,
dMBB(A)(pt, q) = dA(pt, q), and the proposition holds. ◊ 

The equality of the distance values at pt, i.e. dMBB(A)(pt, q) = dA(pt, q), in-
dicates that dMBB(A) represents the greatest of all box-shaped lower-bounding
distance functions. As a consequence, dMBB(A) guarantees the best filtering
quality that can be achieved for lower-bounding distance functions that are
based on a weighted maximum norm.

Geometry of the Minimum Bounding Box. The minimum bounding box
MBB(A, q, ε) for a given ellipsoid ellip(A, q, ε) can be computed by determin-
ing the tangential hyperplanes whose normal vectors are parallel to the coordi-
nate axes. A simpler way is to derive the geometry from the MBB distance
function dMBB(A):

MBB(A, q, ε)  =  {p ∈ ℜd: dMBB(A)(p, q) ≤ ε}  =

=  {p ∈ ℜd:  max {| pi – qi | /  : i = 1, …, d} ≤ ε}  = 

=  {p ∈ ℜd:  ∀i = 1, …, d: | pi – qi | ≤ ε · }

Thus, the i-th dimension of MBB(A, q, ε) covers the following range:

MBB(A, q, ε)i  =  [qi – ε · , qi + ε · ]

14.3.4.2 Minimum Bounding Sphere Approximation

The Minimum Bounding Sphere (MBS) of a spatial object is the smallest
sphere that totally encloses the object. The MBS requires only n + 1 parameters
in n-dimensional spaces to store the radius and the n coordinates of the center

Figure 4.10. The tangential point pt shares its box distance with p but is located on a smaller
ellipsoid than p. At pt, the box and ellipsoid distances are equal: dA(pt, q) = dMBB(A)(pt, q).
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point. For ellipsoids, the center of the MBS coincides with the center of the el-
lipsoid. Figure 4.11 provides an example in 2D. 

Lower-Bounding Sphere Distance Function. Also for the MBS approxima-
tion model, we use a distance function dMBS(A) that lower-bounds the ellipsoid
distance function dA. The generalization of spheres to distance functions yields
a scaled Euclidean distance with a scaling factor corresponding to the radius of
the sphere.

DEFINITION AND THEOREM (MBS DISTANCE FUNCTION).
Let A be a similarity matrix, and wmin the minimum eigenvalue of A. The

scaled Euclidean distance function dMBS(A) =  · | p – q | is called the min-
imum bounding sphere distance function of A. It is a lower bound of dA:

dMBS(A) (p, q)  ≤  dA(p, q)  for all p, q ∈ ℜd

PROOF.
Since the matrix A is positive definite, the diagonalization A = V W VT,

V VT = Id, W = diag(w1, …, wd) exists, and the eigenvalues of A, w1, …, wd, are
positive. If denoting the minimum of these eigenvalues by wmin, we obtain:

dA(p, q) =   =    =

=    ≥    =

=    =   · | p – q |  =  dMBS(A)(p, q). ◊

Note that dMBS(A)(pt, q) is equal to dA(pt, q) for the tangential point pt and,
therefore, dMBS(A) represents the greatest lower-bounding distance function of
the spherical type. This optimality ensures the best approximation quality that
can be achieved for the class of scaled Euclidean distance functions.

Figure 4.11. Minimum Bounding Sphere MBS(A,q,ε) of an ellipsoid ellip(A, q, ε) and greatest
lower-bounding sphere distance function dMBS(A). The radius of the MBS depends on the
smallest eigenvalue wmin of A and on the level ε.
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Geometry of the Minimum Bounding Sphere. Given an arbitrary ellipsoid
ellip(A, q, ε), the center of the MBS obviously coincides with the center q of
the ellipsoid. The radius r = ε /  of MBS(A, q, ε) is derived from the MBS
distance function dMBS(A) as follows:

MBS(A, q, ε) = {p: dMBS(A)(p, q) ≤ ε} = {p ∈ ℜd:  | p – q | ≤ ε / }

Since dMBS(A)(pt, q) = dA(pt, q) for the tangential point pt, we have got the
actual minimum of all bounding spheres of ellip(A, q, ε).

14.3.4.3 Combination of Conservative Approximations

Both the MBB and MBS approximation have specific characteristics with
respect to their approximation quality and their potential of improving query
processing efficiency. In order to exploit the advantages of both techniques, we
demonstrate how to combine conservative approximations for similarity range
queries and how to combine basic lower-bounding distance functions for
k-nearest neighbor search.

Combination of Approximations. Let APP1(A, q, ε) and APP2(A, q, ε) be two
conservative approximations of ellip(A, q, ε), i.e. ellip(A, q, ε) ⊆ APP1(A, q, ε)
and ellip(A, q, ε) ⊆ APP2(A, q, ε). Then the intersection of both approximations
is a conservative approximation of ellip(A, q, ε), too:

ellip(A, q, ε)  ⊆  APP1(A, q, ε) ∩ APP2(A, q, ε).

Figure 4.12 shows a 2D example for a conservative approximation that
combines the minimum bounding box (MBB) and the minimum bounding
sphere (MBS) of an ellipsoid. Obviously, the volume of the intersection is
smaller than the volumes of the individual components which results in an im-
proved approximation quality in comparison with the basic approximations. 

wmin

wmin

Figure 4.12. Combined approximation MBB(A,q,ε) ∩ MBS(A,q,ε) of an ellipsoid of level ε and
lower-bounding combined distance function dC = max {dMBB(A,q), dMBS(A,q)}.

A
q A

q

d{MBB(A,q), MBS(A,q)} = ε3

d{MBS(A,q), MBS(A,q)} = ε2

d{MBS(A,q), MBS(A,q)} = ε1
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Combination of Lower-Bounding Distance Functions. Analogous to the
preceding approximation techniques, a combination of lower-bounding dis-
tance functions that again lower-bounds the exact similarity distance function
is desired. The following derivation shows that the maximum of the component
distance functions fulfills this requirement.

DEFINITION AND THEOREM (COMBINED DISTANCE FUNCTION).
Let A be a similarity matrix and C = {di} be a set of lower-bounding distance

functions for dA, i.e. di(p, q)  ≤  dA(p, q) for all p, q ∈ ℜd. Then, the combined
distance function dC  =  max {di} is a lower bound of dA, too:

dC(p, q)  ≤  dA(p, q)  for all p, q ∈ ℜd

PROOF.
For all p, q ∈ ℜd, the following equivalences hold: dC(p, q)  ≤  dA(p, q) ⇔

max {di(p, q)}  ≤  dA(p, q)  ⇔  ∀di: di(p, q)  ≤  dA(p, q). The final inequality
represents the precondition, and the proposition is true. ◊

In particular, the maximum distance function is the greatest of all lower-
bounding distance functions that can be derived from a set of distance func-
tions. This property guarantees the optimal selectivity and, therefore, yields the
best performance improvement for k-nearest neighbor query processing.

14.4 Performance Evaluation

We evaluated our algorithms on various test databases containing 10,000
grayscale images, 112,000 color images and 1,000,000 synthetic vectors for
different similarity models.

14.4.1 Varying Ellipsoids in High Dimensions

The first experiments ran on a database of 10,000 grayscale clip arts of res-
olution 32 × 32 = 1024 pixels each. The 1024-dimensional image vectors were
reduced to r dimensions for r ∈ {16, 32, 48, 64}, and the r-vectors are managed
by X-trees [8] on an HP 9000/780 machine. We performed a sample of  k-near-
est neighbor queries for different neighborhood influence areas ‘1-1’, ‘3-1’,
‘6-1’, and ‘9-1’ and measured the number of I/O operations as well as the over-
all response time.

We observed that with increasing dimension of the index, the number of
candidates significantly decreases since the index provides more information
to the filter step. On the other hand, the number of accessed index pages in-
creases due to the higher space requirement and the curse of dimensionality. An
optimal dimension for the index yielding a minimum overall runtime therefore
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exists due to this trade-off. The diagram in Figure 4.13 shows that the optimum
dimension for the index depends on the neighborhood influence area. In partic-
ular, for ‘9-1’ and ‘6-1’, the optimum is approximately 48 whereas for ‘3-1’ and
‘1-1’ (Id), the optimum is greater than 64. 

14.4.2 Approximations of Ellipsoids

We applied the approximation techniques to a large image database contain-
ing 8D color histograms of 112,000 images obtained from a reduction of di-
mensionality as well as to a database of 1,000,000 objects that are uniformly
distributed in the 8D. The experiments were performed on an HP735 under HP-
UX 10.20. In the diagrams, we use the symbols BOX for the box approxima-
tion, SPHERE for the sphere approximation, and COMB for the combination
of BOX and SPHERE. The symbol NONE indicates the pure exact ellipsoid
evaluation without using any approximation.

Figure 4.13. For various neighborhood influence areas (‘id’, ‘3-1’, ‘6-1’, ‘9-1’), the number of
candidates and accessed index pages (top diagram) and the overall runtime (bottom diagram) for
index dimensions 16, 32, 48, 64 is depicted for a sample of 10-nn queries (selectivity 0.1%).
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Speed-Up for Different Similarity Matrices. For our next experiments, we
use a sample of different similarity matrices whose components aij are comput-
ed by the formula aij = exp(–σ · (dw(ci, cj) / dmax)2) adapted from [16] where σ
is a positive constant and w = (wr, wg, wb) are relative weights of red, green,
blue in the RGB color space as specified by the user. We distinguish the matri-
ces by their sphericity, i.e. the ratio of the MBS volume to the volume of the
ellipsoid. The ellipsoids in the experiments have a sphericity of 1.035 up to
2,200. On both databases, the uniformly distributed data as well as the image
database, we performed range queries returning between 1 and 10 results on the
average. 

The top diagram in Figure 4.14 indicates the percentage of exact ellipsoid
evaluations that were saved due to the approximations. In case of uniformly
distributed data, 90% of ellipsoid evaluations are avoided for almost spherical
ellipsoids. For less spherical ellipsoids, still 20% to 60% of the exact ellipsoid
evaluations are avoided. Obviously, the combined approximations yield the
most savings. For the image database, more than 90% of the ellipsoid evalua-
tions are avoided in all of our experiments.

Figure 4.14. Percentage of saved evaluations for intersection and containment tests (range
queries) with different matrices (top diagram). The CPU speed-up factors for different ellipsoid
sphericities range from .95 to 7.3 (bottom diagram).
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In the bottom diagram of Figure 4.14, the impact of avoiding exact ellipsoid
evaluations on the elapsed time is illustrated for the same sample of range que-
ries as above. For the uniformly distributed data, we observed improvement
factors up to 7.3. In our example, the speedup factor decreases with increasing
sphericity of the ellipsoids and falls below 1.0 for the last similarity matrix. An
optimizer should detect such a situation and prevent the system from using the
approximation in this case. For the image database, the speed-up factors range
from 2.8 to 6.7. 

Speed-Up for Different Query Parameters. In our next series of experi-
ments, we performed samples of range queries and k-nearest neighbor queries
for various query ranges ε and query parameters k. The similarity matrix corre-
sponds to an ellipsoid with sphericity 1.035. The top diagram in Figure 4.15
depicts the elapsed time for query processing depending on the average number
of results that are returned by the range queries. On average, the used query
ranges return 5.2 to 50.6 results from the uniformly distributed data and 2.8 to
19 results from the image database. In these experiments, the approximations
outperform the pure ellipsoid evaluation by factors of 3.5 to 7.0 (uniform dis-
tribution) and of 2.3 to 2.9 (image database).

Figure 4.15. The speed-up factors for range queries range from 2.3 to 7 (top diagram). The
speed-up factors for k-nearest neighbor queries range from 1.3 to 1.7 (bottom diagram).
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In the bottom diagram of Figure 4.15, we demonstrate the improvement that
we achieved for k-nearest neighbor queries for a varying value of k. For the uni-
form distribution, we achieved a speed-up of 1.3 to 1.5, and for the image da-
tabase a speed-up factor of 1.4 to 1.7.

14.5 Conclusions

Similarity has application-dependent and subjective user-dependent char-
acteristics. Whereas the Euclidean distance of high-dimensional objects and
feature vectors fails to recognize local similarities nor is adaptable to user re-
quirements, quadratic forms demonstrate their support for flexible similarity
search that may be adapted to individual preferences. Several similarity models
based on quadratic forms have been developed and, in this paper, we presented
a pixel-based model for icons and clip arts as well as a shape histogram ap-
proach for 3D spatial databases and 2D medical imaging.

We presented a multi-step architecture for similarity query processing that
supports the adaptable similarity models represented by quadratic form dis-
tance functions. Multidimensional indexing methods as well as techniques to
reduce the dimensionality have been extended to meet the characteristics of el-
lipsoid queries as a new query type in databases. Additionally, various conser-
vative approximations have shown their successful applicability to ellipsoid
queries. For all cases, completeness of the filter step is guaranteed for both,
similarity range queries as well as k-nearest neighbor queries, and no results are
missing in the answer sets. Experimental evaluations demonstrate the efficien-
cy of the query processor even on very large databases.
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