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In this paper, we propose a new multidimensional access 
method, called the buddy-tree, to support point as well as 
spatial data in a dynamic environment. The buddy-tree 
can be seen as a compromise of the R-tree and the grid 
file, but it is fundamentally different from each of them. 
Because grid files loose performance for highly correlated 
data, the buddy-tree is designed to organize such data very 
efficiently, partitioning only such parts of the data space 
which contain data and not partitioning empty data space. 
The directory consists of a very flexible partitioning and 
reorganization scheme based on a generalization of the 
buddy-system. As for B-trees, the buddy-tree fulfills the 
property that insertions and deletions are restricted to 
exactly one path of the directory. Additional important 
properties which are not fulfilled in this combination by 
any other multidimensional tree-based access method are: 
(i) the directory grows linear in the number of records, 
(ii) no overflow pages are allowed, (iii) the data space is 
partitioned into minimum bounding rectangles of the 
actual data and (iv) the performance is basicly 
independent of the sequence of insertions. In this paper, 
we introduce the principles of the buddy-tree, the 
organization of its directory and the most important 
algorithms. Using our standardized testbed, we present a 
performance comparison of the buddy-tree with other 
access methods demonstrating the superiority and 
robustness of the buddy-tree. 
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In non-standard database applications, such as geographic 
information processing or CAD/CAM, access methods 
are required that support efficient manipulation of 
multidimensional geometric objects on secondary 
storage. Moreover, efficient access methods are an 
essential part in knowledge-based systems [HCKW 903. 
We can basicly distinguish between point access methods 
(PAMs) and spatial access methods (SAMs) which are 
designed to handle multidimensional point data, e.g. 
records ordered by a multidimensional key, and spatial 
data, e.g. polygons or rectangles, respectively. 

First of all, these access methods must be dynamic, i.e. 
they should support arbitrary insertions and deletions of 
objects without any global reorganizations and without 
any loss of performance. Moreover they should 
efficiently support a large set of queries, such as range, 
partial match, join and nearest neighbor queries, 

The basic principle of all multidimensional PAMs is to 
partition the data space into page regions, shortly 
regions, such that all records of a data page are taken 
from one region. We classify according to the following 
three properties of regions: the regions are pairwise 
disjoint or not, the regions are rectangular or not and the 
partition into regions is complete or not, i.e. the union 
of all regions spans the complete data space or not, 
Obviously, this classification yields six classes, four of 
which are filled with known PAMs. Without going into 
detail, in table 1 we present well known PAMs according 
to these three criteria. 

All of the PAMs in class (C 1) perform rather efficient 
for uniform and uncorrelated data. However, for highly 
correlateddatatheirperformance degenerates. 
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class 
property 

PAM 
rectangular complete disjoint 

interpolation hashing wur 831. MOLHPE m 861. 
quartile hashing [KS 891. PLOP-hashing [KS 881. 
k-d-B tree [Rob 813. multidimensional extendible 

(Cl) x X X hashing [Tam 82,Oto 841, balanced multidimensional 
extendible hash tree [Oto 861. grid file [NHS 841. 
Zlevel grid file [Hin 851. interpolation-based 
grid file [Ouk 851 

C2) x 

(C3> x 

K4) 

X 

X 

twin grid file [HSW 881 

X buddy tree, multilevel grid file IwK 851 

X 
B+-tree with z-o&z [OM 841, BANG file [Fre 873. 
hB-tree [LS 891 

Table 1 : Classification of multidimensional PAMs. 

Therefore other PAMs like the BANG-file or hB-tree 
have been proposed allowing more general shapes of 
regions which are constructed by difference and union of 
rectangles. 

Quite a different approach for the efficient organization 
of highly correlated data is the buddy-tree. The most 
important characteristic is that the union of all regions 
does not span the complete data space. Thus the buddy- 
tree avoids partitioning empty data space. Instead the 
buddy-tree uses a similar concept as the R-tree [Gut841 
and the R*-tree [BKSS 901 for spatial data, but differs 
from the R-tree variants by avoiding overlap in the tree 
directory. In comparison to previously proposed tree 
structures such as the K-D-B-tree, the buddy-tree guaran- 
tees a more efficient dynamic behavior.Moreover, indirect 
splits which cause low storage utilization and high 
insertion costs in the K-D-B-tree, are completely avoided. 
Therefore, the same properties are fullidled as for B-trees 
[BM 72]:deletions, insertions and exact match queries are 
restricted to one path of the directory. ‘Ibis behavior is 
guaranteed by using a generalization of the buddy system 
which was originally proposed for the grid file. Due to 
this concept, the performance of the buddy-tree is almost 
independent of the sequence in which data is inserted. 

Furthermore, we propose a special implementation 
technique for the buddy-tree which can be generalized to 
other access methods, such as the R-tree variants. From 
this the buddy-tree gains a high fan out of the directory 
nodes. Thus the height of the tree and the retrieval cost 
are reduced. Most SAMs assume that geometric objects 
are approximated by a minimal bounding rectangle 

whose sides are parallel to the axes of the data space. One 
technique to generate such a SAM from a PAM is the 
transformation of d-dimensional rectangles into 2d- 
dimensional points where for example the first d 
components represent the center, the remaining d 
components represent the extension of the rectangle 
([Hin85], [SK88]). These 2d-dimensional points are 
highly correIated and occupy only a small part of the data 
space. In particuhu for such distributions the buddy-tree 
performs very efficiently. 

In the paper we will use the following notations: The 
parameter d, d2 1, specifies the dimension of the data 
space D. The data space D is composed of the domains 
Di, 1 I i I d, of the i-th axis. On these domains an order 
relation should be well defined. Without loss of 
generality we assume that D is given by the d- 
dimensional unit square [O,l)d The parameters b, b > 1, 
and c, c > 1, denote the capacity of a data page and 
directory page, respectively. 

The paper is organized as follows. In section 2 we 
introduce the principles and the properties of the buddy- 
tree on a more informal level. In section 3 we present a 
formal description of the structure of the buddy-tree and 
in section 4 we propose a generally applicable 
implementation technique for increasing the fan out of 
directory nodes. Section 5 contains a description of the 
essential algorithms of the buddy-tree. Finally, in section 
6 we present an experimental performance comparison 
which demonstrates the superiority of the buddy-tree to 
other PAMs, such as the hB-tree, the BANG-file and the 
grid file. 
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of the @J&IV Tra - 
The buddy-tree organizes data using a tree-based directory 
where each axis is treated equally. In contrast to the K-D- 
B-tree Rob811 (one of the first multidimensional trees), 
the buddy-tree performs well in a highly dynamic 
environment, i. e. insertions, deletions and a change of 
the data distribution do not affect performance. This 
property is achieved by applying a modified version of the 
so-called buddy-system which is well-known from the 
grid file [NHS84] to the buddy-tree. Additionally, the 
performance of the buddy-tree is almost independent of the 
sequence of insertions which is an essential drawback of 
previous tree-structures, like the K-D-B-tree or hB-tree 
lLS891. 

Another important feature of the buddy-tree is that it 
does not partition empty data space. Therefore queries, 
such as partial match queries, where the query region 
intersects with empty data space, can be performed much 
faster than by conventional structures partitioning the 
complete data space. This property is very similar to the 
variants of the R-tree, originally designed for spatial data 
Con&u-y to the R-tree, the buddy-tree does not allow 
overlap in the directory nodes and can therefore guarantee 
that insertions, deletions and exact match queries are 
restricted to one path of the directory. Additionally, we 
incorporate an implementation technique in the buddy-tree 
which in-creases the fan out of the directory nodes (see 
section 4). 

The following catalogue summarizes the design 
properties of the buddy-tree: 

l empty data space is not partitioned 
l insertion and deletion of a record is restricted to 

exactly one path 
l no overflow pages 
l directory grows linear in the number of records 
l performance is basicly independent of the sequence of 

insertions 
l efficient behavior for insertions and deletions 
l very high fan out of the directory nodes 

With the following example we intend to visualize the 
basic properties of the buddy-tree: 

Let the dimension be d = 2, the capacity of a directory 
page be c = 5 and the capacity of a data page be b = 4. 
Then the following snapshots depict the growth of the 
buddy-tree starting with the empty file. In the data pages 
the actual points are stored. Minimum bounding 
rectangles of at most 4 points are represented in the 
directory pages indicated by a light fill pattern. The white 
area corresponds to empty data space which is not 
managed by the buddy-tree (important design property). 
The first line in our example shows states of the buddy- 
tree with an overflowing data page depicted by a dark fill 
pattern. In the second line the corresponding subsequent 
state after the page split is depicted. The rightmost 
overflow of a data page implies an overflow of the one 
and only directory page resulting in a buddy-tree of height 
two. 
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Additionally to the above design properties the following 
technical properties can be seen from the above 
snapshots: 
l partitions into minimum bounding rectangles of 

points and subrectangles in directory pages 
l rectangles in directory pages am disjoint 
. pointers are disjoint 

Following these basic ideas the formal description of the 
structure of the buddy-tree and of its algorithms is 
presented in the next three sections. 

. . 
3. Formal of the Ihddy Tree s 
The nodes of the tree-directory consist of a collection of 
entries (El, . . . , Ek),k>2.EachentryEi, 1 <ilk,is 
given by a tuple Ei = (Ri, pi) where Ri is a d-dimensional 
rectangle and pi is a pointer referring to a subtree or to a 
data page containing all the records of the file which are 
in the rectangle Ri. In this paper, a rectangle is always 
assumed to be parallel to the axis of the d-dimensional 
data space. In particular to support the dynamic behavior, 
the set of rectangles in a directory node must be a regular 
B-partition of the data space. An exact description of that 
condition is given by the following definitions. 

Definition 1; 
Given two d-dimensional rectangles R, S with R c S, R 
is called a B-recta& of S, iff it can be generated by 
successive halfing of S. 

9 
t 

Figure 3.1: The rectangles RI and R2 are B-rectangles 
of D and R3 is not a B-rectangle of D. 

In this definition the sequence of axes where halting is 
performed is irrelevant. Notice that S may be the given 
data space D. In figure 3.1 we have depicted three 
rectangles Rl, R2, R3, where RI and R2 are B-rectangles 
of the data space D and R3 does not fulfil the property of 
a B-rectangle. 

of B-rectangl%r 
1. If R, S are B-rectangles of the dam space D and R & 

S, then R is a B-rectangle of S. 
2. If A is a B-rectangle of D and we double D in 

direction of an arbitrary axis (naming the new data 
space D2) then A is also a B-rectangle of l$. 

3. For an arbitrary rectangle R c D, there exists a 
smallest B-rectangle of D such that R 5 B. We call 
such a B-rectangle them of R, short B(R). 
Such a B-region also exists for a union of rectangles 
RIuR2 U...URk,k>l. 

Asetofd-dimensionalrectangles (RI, . . . . Rk), k 2 1, 
iscalleda&pg&iQBofthedataspaceD, 
iff B (Ri)nB @j)= 0 V i, j E (1, . . . . k), i 4 

Let (S, q) be an entry of an inner node of the buddy-tree 
where q refers to the node ((RI, pl) ,.., (Rk, pk)) , k 2 2. 
Then we require that the set of rectangles (R 1, . . . ,Rk) is 
a B-partition of B(S). From definition 2 it follows that if 
(Rl, . . . ,Rk) is a B-partition, all sets (Tl, . . . . Tk) are B- 
partitions where Ri c Ti s B(Ri), 1 < i I k. In 
particular (B&), . . . . B(Rk)) iS a B-partition, also called 
the maximum B-partition. Which B-partition should be 
used in an implementation is discussed in a later section. 

An important feature of a multidimensional access 
method is its efficient dynamic behavior. To obtain that, 
it must be possible to merge without destroying the order 
preservation. The buddy-tree merges two pages, if the 
resulting partition in the father node is again a B- 
partition. For this, the regions of the pages must be 
buddies, which is formalized in definition 3. 

Let V = (R1, . . . . Rk) a B-partition, k > 1, and let 
S, T EV, S#T.Therectangles S,Tarecalled~, 
iffB(S u T) A B(R)= 0 V R E V\ (S, T] 

An important criterion for the efficiency of the dynamic 
behavior is the number of possibilities for a merge. In 
case of the buddy-tree this results in the question how 
many buddies exist. Let us first mention that in case of 
the grid file the maximum number of merge candidates is 
d, whereas for the K-D-B-tree only regions which result 
from a split are allowed to be merged, i. e. there is only 
one candidate for a merge. Before we present a bound for 
the buddy-tree, we need the definition of the level of a B- 
partition. 
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. . 
Let V be a B-partition and lengthi (R) the length of the 
segment ni (B(R)), R E V, 1 I i 5 d, where fli (S) is the 
projection of the rectangle S E D onto the i-th axis. 
The &al level of the i-th axis is given by 

levi := max log2 ( lengthi / lengthi ) 
REV 

Let z denote the axis with the highest local level. 
Then the w L of the B-partition is given by 

L := d ( lev,-l)+z. 

em L . 

Let lev > 0, 1Wi = lev for 1 i i s d, and V be a B- 
partition of level L = lev * d. Then the maximum number 
M of buddies for an arbitrary region R E V is M 2 min 
{IV I - 1, d + (lev - 1) d (d - 1)/2} 

Proof.: see [See 891 

The efficient dynamic behavior of the buddy tree results 
from a considerably higher number of candidates for 
performing a merge operation, as it can be seen from the 
following table 3.2: 

I PAM 
I 

number of candidates 
for a merge I 

hB-me hB-me 0 0 

K-D-B-tree K-D-B-tree 1 1 

grid file grid file d d 

buddy-tree buddy-tree >d >d 

Table 3.2 

Another serious problem of the original K-D-B-trees, also 
occurring in R+-trees [FSR 871, is that a split of a 
directory page may produce an indirect split of subtrees. 
In figure 3.3 we have depicted a B-partition of a directory 
node. If we assume a directory capacity of 4, this node 
must be split into two which is performed by finding an 
axis and a hyperplane perpendicular to this axis dividing 
the directory entries into two disjoint sets of directory 
entries. This could not be achieved without cutting a 
rectangle in the directory page. A first approach suggested 
for the K-D-B-tree is to split all nodes belonging to such 
an intersected region into two, resulting in a possibly low 
storage utilization. Obviously, storage utilization will get 

out of control. Another drawback is that a split and 
therefore an insertion is not anymore restricted to one 
path of the tree. For the buddy-tree we avoided these draw- 
backs by allowing only a special class of B-partitions, 
called regular B-partitions. 

Fig. 3.3: A B-partition is given for which each of the 
hyperplanes cuts a B-region 

Let V = (Rl, . . . , Rk), k 2 2, be a B-partition. V is 
called reeulat. iff all B-rectangles B (Ri), 1 I i I k, can 
be represented in a kd-trie. 

Fig. 3.4: For d=2 and L=5, we have illustrated 
the buddies T1 ,T2 and T3’ of S 

2 

2 

& I 

s 

Fig. 3.5: Two kd-trie representations of the B-partition 
of fig. 3.4 
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A kd-trie [Ore821 is a binary digital tree where the internal 
nodes consist of an axis and two pointers referring to 
subtrees. In the leaves of the tree the rectangles of a B- 
partition are represented. Each internal node represents a 
B-rectangle and the root represents the complete region. In 
the left or right subtree of such a node, all rectangles are 
represented which are in the left or right half of the B- 
rectangle with respect to the corresponding axis, 
respectively. On the left hand side of figure 3.5 we have 
depicted a kd-trie corresponding to the B-partition of 
figure 3.4. Let us mention that there is no unique kd-trie 
representation of a B-partition. For example, the kd-trie 
on the right hand side of figure 3.5 represents also the B- 
partition of figure 3.4. 

Considering regular B-partitions, we can also find a 
split axis which does not intersect with any rectangle of 
the B-partition. This can be done by using one of the axes 
denoted in the root of the kd-tries. The test, whether a B- 
partition is regular, costs quite a bit CPU-time and should 
not be performed often. The buddy-tree uses the test,if and 
only if two pages should be merged. After a split this test 
does not need to be executed, because in such a situation a 
leaf of the corresponding kd-tries is split into two and an 
internal node is added to the tree structure referring to 
these leaves. Let us mention that the grid file uses a very 
similar concept for detecting deadlocks. However, in case 
of the buddy-tree deadlocks cannot occur, because empty 
data space is not represented, i. e. rectangles without 
containing a record are not represented in the directory. 

One shortcoming of the buddy-tree as well as of the R- 
tree is the relatively low fan out of the directory nodes, 
because both structures store sets of d-dimensional 
rectangles in their directory nodes. In this section, we 
suggest a representation of the rectangles which is similar 
to that of the so-called hash-trees ([Oto86], [Ouk85]). The 
basic idea is to use a d-dimensional orthogonal grid with 
a dynamicly varying resolution for each node. Only those 
rectangles are accepted which can be exactly mapped onto 
such a grid. These rectangles are represented by two cells 
matching the lower left and upper right comer of the 
rectangles. The cells are addressed using a hashing 
function. Therefore, instead of two d-dimensional points, 
only two hash values are necessary for the representation 
of the rectangles. Thus the fan out will increase. For the 
representation of rectangles by hash-values we decided to 
use z-values [OM83]. 

Another important characteristic of the buddy-tree is that 
the grid belonging to a directory node does not partition 
the minimal bounding rectangle M into equal sized cells, 
but partitions the B-region of M. The partition of the 
minimum bounding rectangle by a grid would lead to 
severe problems. If we merge two nodes, a completely 
new computation of the new grid must be performed. 
More seriously, we cannot guarantee a unique 
identification of the rectangles in the merged node. 
However, if we partition B-regions, the grids of the two 
merged regions are part of the common grid, which 
follows from the properties of B-regions, see section 3. 
If V and W are B-partions of their B-regions B(V) and 
B(W)with B(V)n B(W)=0, thenVandWamalsoB- 
partitions of B(V u W). For a unique identification of the 
rectangles in a B-partition, it is necessary that the level of 
the z-values must be at least the same as the level of the 
B-partition. 

Obviously, a shortcoming of a grid representation is 
that we do not maintain the minimal property of the 
rectangles in the directory. The rectangles only enclose the 
minimal rectangles. At first glance, we will expect more 
disk accesses for retrieval operations. However, we have 
gained a high fan out in the directory nodes. For 
example, let us assume 2-dimensional keys where each 
component requires 4 bytes. Then for an entry consisting 
of a rectangle and a pointer 4*4+2=18 bytes are necessary 
for the exact representation where 2 bytes are used for the 
pointer referring to the subtree. For a grid representation 
generally two bytes per z-value are sufficient. Therefore 
the fan out increases by the factor 18 : 6. This factor will 
be even better for higher dimensions. The improvement 
of the fan out is more important for the performance of 
the buddy-tree than giving up part of the minimal 
Property. 

Dl Dl 

Fig. 4.1: Representation of the minimal rectangles 
Rl,..,R5 in the buddy-tree (left side) and in the multi 
level grid file.(right side) 
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Our approach for the organization of the directory is 
similar to that of the multi-level grid file [KW85]. One 
difference is that in case of the multi-level grid file (mlgf) 
only B-regions can be represented in the directory, whereas 
the representation of the buddy-tree is more exact by 
using two z-values, see figure 4.1. The buddy-tme comes 
closer to the minimal property than the mlgf. 

. 5. AlgQdms 
In the following we describe the algorithms of the buddy- 
tree for an exact match query, range query and insertion. 
We decided to describe the algorithms in a programming 
language, in our case in Modula-2, because in our 
opinion it is more exact than to use pseudo language. For 
the sake of ease of understanding we have introduced some 
modifications to Modula-2. We have tried to use only 
some special type definitions and avoid the pointer 
concept at all. Therefore the description of types and 
procedures is quite different compared to the real 
implementation. 

TYPE 
Key = ARRAY [ l..d] OF KeyType; (* KeyType is an 
atomar type where the operation ‘>’ is well defined. *) 

DataRec = RECORD’ K: Key; info: ARRAY OF BYTE 
END; (* The info part of the type DataRec is not of 
interest *) 

Rectangle = RECORD lowhigh: Key END; 
(* A rectangle is described by its lower left and right 
upper comer. *) 

DirEntry = RECORD R: Rectangle; next: FilePos END, 
(* next is an address of a block stored on secondary 
storage *) 

BuddyNode = RECORD 
pas : SHORTCARD; 
CASE dir: BOOLEAN OF 

TRUE:dimode: ARRAY OF DirEntry 
FALSE:datanode:ARRAY OF DataRec 

END; 
(* For a node in the tree pos is the number of actually 
stored entries (dii = TRUE) or records. *) 

First of all, we introduce the definitions of types. In our 
types BuddyNo& and DataRec we have not specified the 
size of the arrays, because it will not be of interest for the 
description of the algorithms. In our algorithms we use 

Get-functions to return some derived information from a 
node. More exactly, Get-Position (node, (rectangle or 
key), pos) returns the position (which is larger than the 
input parameter pos) of the first rectangle or data record in 
a node intersecting with the key or rectangle given as 
input. If no such position is found, 0 will be returned. 
The functions Get-Entry (node,pos), Get-Record (node, 
pos) and Get-Node (node, pos) provide for a given node 
and a position the corresponding entry, record and (son) 
node, respectively. Using these functions the algorithms 
Emq and RQ performing exact match and range query are 
completely described in the following. 

PROCEDURE Emq (VAR node: BuddyNode; VAR 
pos: SHORTCARD, K: Key); 
(* returns the last node and the position of the touched 
entry where the search finishes *) 

BEGIN 
pos := Get_Position(node, K, 0); 

(* pos = 0 c=> no entry found *) 
lF(pos#O)ANDnode.dirTHEN 

node := Get-Node(node, pas); 
Emq(nde, pas, K) 

EM); 
END Emq; 

PROCEDURE RQ(nodez BuddyNode; R: Rectangle); 
(* performs a range query, where answers are written on 
output *) 
VAR pas: SHORTCARD; 

BEGIN 
pos := Get_Position(node, R, 0); 
wH.ILEpos#oDo 

IF nodedir THEN 
RQGet_Node(node, pas). R) 

ELSE 
(* Output the record returned by 
Get-Record(node,pos) *) 

END, 
pos := Get_Position(node, R, pos) 

END; 
END RQ; 

Let us mention that an exact match query is restricted to 
one path of the tree which can be easily seen in the 
algorithm Emq. Considering the algorithms, there is not 
much difference between the algorithms Emq and RQ. For 
the Emq algorithm we assume that at most one answer is 
allowed, whereas the RQ algorithm can obviously 
deliver a set of answers. 
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For the Inrert algorithm more explanations are necessary. 
First of all, there are some functions requiring a node as 
input. The function SecAddress returns an address on 
secondary storage for the node and the function Overflow 
checks whether the node contains overflow records or 
entries. An entry or a record is inserted in a given node 
using the procedure Put-Entry or Put-Record, 
respectively. A procedure Mergeable asks a given node, 
whether entry (specified by its position) can be merged 
with an arbitrary other entry in the node. Finally, the 
procedure Merge executes a merge where the modified 
entry is stored at the position newpos (see algorithm 
Insert). 

PROCEDURE Insert (VAR node: BuddyNode; drec: 
DataRec); 
VAR newnode: BuddyNode; 

Pas : SHORTCARD; 
enUy : DirEntry; 

BEGIN 
Emq(node, pos, drec.K); 
WHILE nodedir DO 

entry.R.low := drec.K; entry.R.up := drec.K; 
entry.next := SecAddress(newnode); 
Put-Entry(node, entry); 
(* insertion of an entry in a node *) 
newpos := nodepos; 
IF Mergeable(node, newpos) THEN 

Merge(node, newpos); 
node := Get-Node(node, newpos) 

ELSE 
IF Overflow(node) THEN Split(node) END; 
newnode.dir := FALSE; newnodepos := 0; 
node := newnode 

END (* IF *) 
END (* WHILE *); 
IFpos#OTHEN 

WriteErrorMsg(“Record exists in the file”); 
ELSE 

Put_Record(node,dmc); 
(* insertion of a record in a node *) 
IF Overflow(node) THEN Split(node) END; 

END; 
END Insert: 

The most difficult case for an insertion appears, if the 
exact match query ends in a directory node. In this case, a 
new directory entry is created where the rectangle is 
described by the point which should be inserted. For this 
degenerated rectangle we search for a buddy where the 
corresponding node is not completely filled to accomodate 

an additional entry or rectangle (Mergeable = TRUE). 
Then we try to insert the record into this node, see figure 
5.1. If no mergeable node can be found, a new data page 
is allocated where the record is inserted. 

4 1 

Fig 5.1: Solving the problem of an insertion where the 
record K falls into non-partitioned data space 

In comparison to the multilevel grid file the buddy-tree 
avoids directory nodes with one entry and thus the buddy- 
tree is not balanced. However, we want to emphasize that 
this unbalanced directory reduces the cost for all 
operations in comparison to an artificially balanced 
directory! ‘Ibis is exactly the reason why the buddy-tree 
guarantees a linear growth of the directory in the number 
ofrecords. 

PROCEDURE Split (VARnodez BuddyNode); 
VAR fnode~~wnodez BuddyNode; 

entry : DirEntry; 
axis : [l..dl; 
POS : SHORTCARD; 

BEGIN 
ComputeFather(fnode, node, pos); 
axis := Get-Splitaxis(node); 
DivideEntries(node, axis, newnode); 
entry.R := GetJJBB(node); 
entry.next :=,SecAddress(node); 
Update~Entry(entry fpos); 
entry.R := GetJvIBB(newnode); 
entrynext := SecAddress(newnode); 
Put_Entry(fnode,entry); 
(* insertion of an entry in the node *) 
IF Overflow(fnode) THEN 

Split(fnode) 
ELSE 

Minimize(fnode) 
END; 

END Split; 
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The insertion of a record is restricted to one path of the 
buddy-tree. This will be more clear by considering the 
split algorithms. Similar to B-tree algorithms a split can 
propagate up to the root, but cannot leave the top-down 
search path, 

Since the split is the most complicated algorithm of the 
buddy-tree, we will go through the algorithm step by 
step. At first, the father node is evaluated for a given 
node named split node, by calling the procedure 
ComputeFather. Additionally, in the father node the 
position of the entry referring to the split node is 
computed. This procedure has to handle two exceptions. 
The first occurs if the split node is the root, Then a new 
root is created and filed with one entry referring to the 
split node. The second exception occurs, if the split node 
is a data node not stored on the deepest level of the buddy- 
tree. In this case a new father node is created with one 
entry referring to the original split node. Thus the level of 
the split node is incremented. 

In the second step, the axis is determined in which the 
split should be executed. If we have several possibilities 
for the choice of a split axis, that one is selected where 
the margin of both resulting rectangles is the smallest. 
Then the procedure DivideEntries divides the records or 
entries into two groups corresponding to a hyperplane 
which is perpendicular to the split axis. More exactly, the 
hyperplane is determined by halfing the B-rectangle B(R) 
where R belongs to the entry in the father node which 
refers to the split node. One group of records or entries 
remains in the old node and the other group is stored in a 
new node. There is only the guarantee that the groups 
contain at least one entry or record. Similar to the grid 
file, the split strategy of the buddy-tree depends on the 
data space, but not on the stored data. Thus one of the 
advantages of the buddy-tree is that performance will be 
almost independent of the sequence of insertions. 

The next four statements in the procedure Split describe 
the update of the old and the insertion of the new entry in 
the father node. The procedure Get-MBB computes the 
minimal bounding box of all rectangles in a given node. 
At last, the father node is checked for an overflow record 
and it is possibly split. In the other case the procedure 
Minimize is called which guarantees the minimal 
property of all possibly affected rectangles on the path. 
This is done at most once per level. 

PROCEDURE Minimize (node: BuddyNode); 
VAR mode : BuddyNode; 

entry : DirEntry; 
pas : SHORTCARD; 

BEGIN 
IF IS-Root(node) THEN RETURN END; 
ComputeFather(fnode, node, pos); 
entry := Get-Entry(fnode,pos); 
IF entry.R # Get-MBB(node) THEN 

entry.R := GetMBB(node); 
Update_Entry(fnode,enntry,pos); 
Minimize(fnode); 

END, 
END Minimize; 

We have not yet described one important feature of the 
split algorithm. If the distribution of the entries is rather 
uneven (e.g. one node is filled at most 30 %), then we 
will look for a buddy which can possibly be merged with 
the underfilled node. 

In this paper, we do not present the deletion algorithm. 
But let us emphasize that, as it is true for insertion, 
deletion is restricted to one path of the buddy-tree. 

. Cm 
In the following, we give a brief summary of our 
standardized testbed of PAMs described in detail in 
[KSSS89]. For justifying the choice of PAMs selected 
for our comparison we refer to the classification of 
multidimensional PAMs in table 1. Considering class 
Cl, the most promising structures definitely are the 
interpolation-based grid file and the balanced 
multidimensional extendible hash tree. However, both 
structures can be obtained as a special case of the buddy- 
tree by restricting the properties of the regions. Therefore 
these two PAMs need not to be implemented. We do not 
include the best multidimensional dynamic hashing 
scheme without directory, PLOP hashing, since it is 
efficient only for weakly correlated data, but not for 
strongly correlated data. From class C 1 we selected the 
2-level grid file because its efficient fine-tuned and well 
tested Modula-2 implementation by Klaus Hinrichs [Hin 
851 is generally available which we thankfully 
acknowledge. 

From class C 4 we omitted the B+-tree storing z-values 
from our comparison. Instead, we decided to implement 
the BANG file and the hB-tree, because they are both 
improvements of the basic B+-tree storing z-values. 
Obviously, we decided to implement the buddy-tree (class 
C 3) due to its non-complete partition of the data space 
which results in avoiding to partition empty data space. 
Since the concept of the twin grid file (class C 2) of 
organizing two dependent grid files at the same time is 
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generally applicable to any PAM, we did not include it in 
our comparison. It might be worth investigating the 
application of this principle to the winners of our 
comparison. As a measuring stick we use our buddy-tree. 

We ran our comparisons on SUN workstations (3160) 
using Modula-2 implementations of the selected PAMs. 
We took seven different data files (Fl) - (F7) of 2- 
dimensional records into account where due to space 
limitation the distributions of the data are described by the 
plotted points, see figure 6.1. The 7th data file (M) 
contains uniformly distributed data. Each of the data files 
with the exception .of one contains 100,000 records. The 
file (F6) belonging to the distribution RealData consists 

of 85,549 records of real cartography data representing 
the elevation lines in a “rolling-hill-type” area in the 
Sauerland, West Germany. The points are obtained as 
interpolation points of the elevation lines. Since the data 
is originally stored in a quad-tree, it is inserted in a sorted 
sequence which is due to the partitioning sequence of the 
quad-tree. We thankfully acknowledge receiving this data 
from the Landesvermessungsamt NRW, Bonn, West 
Germany. Let us emphasize that the Bit Distribution (F3) 
bit(z), & z II, was included with the choice of x=0.15, 
because it is the worst case distribution of the buddy-tree 
when z becomes small. 

,’ 
/ 

,’ 
/’ 

,/- /’ I 

,/’ 

(Fl) Diagonal (F2) Sinus Distribution 
(F3) Bit Distribution 

(F4) x - Parallel (F5) Cluster Points (F6) Real Data 

Fig. 6.1: Data distributions 

To demonstrate the performance for range queries we 
generated five groups of 20 range queries. The regions of 
the first three groups are squares varying in size from OJ 
%, 1 % to 10 % relatively to the data space. The 4th and 
5th group are partial match queries where the y- and x- 
value are unspecified, respectively. For all operations, we 
have measured the number of disk accesses per operation. 

In table 6.2 for the parameters star (average storage 
utilization) and insert (average cost for an insertion) we 
computed the unweighted average over all seven data files. 
As an indicator for the average query performance, we 

present the parameter query average which is averaged 
(unweighted) over all five query types for each 
distribution and then averaged over all seven distributions. 
The goal of this indicator is to help make things more 
clear, at fast glance; however, we are aware that such an 
average implies a loss of information. The loss of 
information is considerably less in table 6.3 where the 
parameter query is displayed for each distribution as an 
average over all five types of queries. For the detailed 
description of all experiments and all results the interested 
reader is referred to [KSSS 891. 
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hB-tree 

BANG-file 

grid file 

buddy-tree 

query 
aversge 
164.1 

131.9 

148.5 

100.0 

store Insert 

56.6 2.80 

67.9 2.49 

58.3 2.56 

64.9 2.78 

Table 6.2: unweighted average over all 7 distributions 

h B-tree 

BANG-file 

grid file 

buddy-tree 

Table 6.3: unweighted average over all 5 types of queries depending on the distribution 

In order to keep the performance comparison manageable 
(we already had more than 2.7 million insertions), we 
have chosen the page size for data pages and directory 
pages to be 512 bytes which is at the lower end of 
realistic page sizes. Using small page sizes, we obtain 
similar performance results as for much larger file sizes, 
e.g. a doubling of the page size can accomodate an eight 
times higher file size within the same directory height for 
tree-based directories (BANG file. HB-tree, buddy-tree). 
We want to emphasize that the grid file implementation 
[Hin 853 always keeps the 1st level grid directory in main 
memory whereas for the other PAMs only the root page 
of the directory is main memory resident. Since it was 
crucial to change the grid tile implementation to allowing 
only one root page of the directory in main memory, we 
accepted that the relative ranking of tbegrid file is too 
good in comparison to the other structures. To clarify 
this: for the Diagonal Distribution the 1st level grid 
directory needed 45 directory pages in main memory, 
which is sufficient for BANG file and buddy-tree to keep 
the complete directory in main memory. Thus the rating 
of the grid file in a comparable environment would be 
considerably worse. Due to the main memory-resident 
directory, increasing page size implies that the relative 
performance of the grid file will decrease in comparison to 
the other structures. 

Considering table 6.2 the buddy-tree offers itself to be 
the winner of our comparison. It is interesting to observe 
that the buddy-tree does’ not fulfill the often cited rule 

“best storage utilization - best query performance”. Let us 
take a closer look at the different distributions in table 
6.3. The only distributions where the buddy-tree is not 
the winner are the Uniform Distribution and the Bit 
Distributions. As mentioned before the Bit Distribution 
is the worst case distribution for the buddy-tree. Even for 
its worst case distribution the buddy-tree is better than the 
grid file. This underlines the robustness of our structure. 
For the Uniform Distribution the buddy-tree is within a 
3% margin of the grid file, the winner. This is surprising 
for a scheme designed for nonuniform data incorporating 
the complex structural concept of not partitioning empty 
data space. In all distributions, with the exception of the 
Uniform and Bit Distribution, the buddy-tree is the clear 
winner in the average query performance. Summarizing 
we can state that the buddy tree clearly outperforms its 
competitors if at least one of the following two data 
characteristics occur: (Cl) densely populated and 
unpopulated areas vary over the data space, (C2) sorted 
data is inserted. Sorted insertions frequently occur in real- 
life applications, either sorted by some local ordering 
such as clusters or quadrants or by lexicographical 
ordering. First results in a performance comparison with 
rectangles underlign the superiority of the buddy-tree. 

. 7. Conclaslons Work 
In this paper, we proposed the buddy-tree, a new dynamic 
multidimensional access method. Contrary to previously 
suggested point access methods, the buddy-tree generates 
the rectangular regions in its directory as minimal as 
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possible. Therefore, the data space is not completely 
covered by these regions. In particular empty data space is 
not reflected in the directory. Moreover, the buddy-tree 
avoids overlap in the directory nodes using a 
generalization of the so-called buddy-system. 
Additionally, we propose a general implementation 
technique for the directory increasing the fan out of the 
directory nodes. Using our standardized testbed, we 
present a performance comparison of the buddy-tree with 
other access methods demonstrating the superiority and 
robusmess of the buddy-tree. 

Our current and future work in the area focuses in the 
following tasks: 

We examine whether a controlled overlap in the 
directory (e.g. the twin technique [HSWSS]) can 
improve storage utilization 
A pack algorithm is integrated in our implementation 
avoiding underfilled data nodes 
Different techniques to generate SAMs based on the 
buddy-tree will be implemented and investigated. 
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