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It is widely believed that comparing discrepancies in the protein-protein interaction

(PPI) networks of individuals will become an important tool in understanding and

preventing diseases. Currently PPI networks for individuals are not available,

but gene expression data is becoming easier to obtain and allows us to represent

individuals by a co-integrated gene expression/protein interaction network. Two

major problems hamper the application of graph kernels – state-of-the-art methods

for whole-graph comparison – to compare PPI networks. First, these methods do

not scale to graphs of the size of a PPI network. Second, missing edges in these

interaction networks are biologically relevant for detecting discrepancies, yet, these

methods do not take this into account. In this article we present graph kernels

for biological network comparison that are fast to compute and take into account

missing interactions. We evaluate their practical performance on two datasets of
co-integrated gene expression/PPI networks.

1. Introduction

An important goal of research on protein interactions is to identify relevant
interactions that are involved in disease outbreak and progression. Mea-
suring discrepancies between protein-protein interaction (PPI) networks of
healthy and ill patients is a promising approach to this problem. Unfor-
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tunately, establishing individual networks is beyond the current scope of
technology. Co-integrated gene expression/PPI networks, however, offer an
attractive alternative to study the impact of protein interactions on dis-
ease. But, researchers in this area are often faced with a computationally
challenging problem: how to measure similarity between large interaction
networks? Moreover, biologically relevant information can be gleaned both
from the presence and absence of interactions. How does one make use of
this domain knowledge? The aim of this paper is to answer both these
questions systematically.

1.1. Interaction Networks are Graphs

We begin our study by observing that interaction networks are graphs,
where each node represents a protein and each edge represents the presence
of an interaction. Conventionally there are two ways of measuring similarity
between graphs.

One approach is to perform a pairwise comparison of the nodes and/or
edges in two networks, and calculate an overall similarity score for the two
networks from the similarity of their components. This approach takes time
quadratic in the number of nodes and edges, and is thus computationally
feasible even for large graphs. However, this strategy is flawed in that it
completely neglects the structure of the networks, treating them as sets of
nodes and edges instead of graphs.

A more principled alternative would be to deem two networks similar if
they share many common substructures, or more technically, if they share
many common subgraphs. To compute this, however, we would have to
solve the so-called subgraph isomorphism problem which is known to be
NP-complete, i.e., the computational cost of this problem increases expo-
nentially with problem size, seriously limiting this approach to very small
networks [1]. Many heuristics have been developed to speed up subgraph
isomorphism by using special canonical labelings of the graphs; none of
them, however, can avoid an exponential worst-case computation time.

Graph kernels as a measure of similarity on graphs offer an attrac-
tive middle ground: they can be computed in polynomial time, yet, they
compare non-trivial substructures of graphs. In spite of these attractive
properties, as they exist, graph kernels neither scale to large interaction
networks nor do they address the issue of missing interactions. In this pa-
per, we present fast algorithms for computing graph kernels which scale to
large networks. Simultaneously, by using a complement graph – a graph
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made up of all the nodes and the missing edges in the original graph – we
address the issue of missing interactions in a principled manner.

Outline The remainder of this article is structured as follows. In Sec-
tion 2, we will review existing graph kernels, and illustrate the problems
encountered when applying graph kernels to large networks. In Section 3,
we will present algorithms for speeding up graph kernel computation, and in
Section 4, we will define graph kernels that take into account missing inter-
actions as well. In our experiments (see Section 5), we employ our fast and
enhanced graph kernels for disease outcome prediction, before concluding
with an outlook and discussion.

2. Review of Existing Graph Kernels

Existing graph kernels can be viewed as a special case of R-Convolution
kernels proposed by Haussler [2]. The basic idea here is to decompose the
graph into smaller substructures, and build the kernel based on similari-
ties between the decomposed substructures. Different kernels mainly differ
in the way they decompose the graph for comparison and the similarity
measure they use to compare the decomposed substructures.

Random walk kernels are based on a simple idea: Given a pair of graphs
decompose them into paths obtained by performing a random walk, and
count the number of matching walks [3–5]. Various incarnations of these
kernels use different methods to compute similarities between walks. For
instance, Gärtner et al. [3] count the number of nodes in the random walk
which have the same label. They also include a decay factor to ensure
convergence. Borgwardt et al. [5] on the other hand, use a kernel defined
on nodes and edges in order to compute similarity between random walks.
Although derived using a completely different motivation, it was recently
shown by Vishwanathan et al. [6] that the marginalized graph kernels of
Kashima et al. [4] are also essentially a random walk kernel. Mahé et al.
[7] extend the marginalized graph kernels in two ways. They enrich the
labels by using the so-called Morgan index, and modify the kernel defini-
tion to prevent tottering, i.e., similar smaller substructures from generating
high similarity scores. Both these extensions are particularly relevant for
chemoinformatics applications. Other decompositions of graphs, which are
well suited for particular application domains, include subtrees [8], molec-
ular fingerprints based on various types of depth first searches [9], and
structural elements like rings, functional groups and so on [10].

While many domain specific variants of graph kernels yield state-of-the-
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art performance, they are plagued by computational issues when used to
compare large graphs like those frequently found in PPI networks. This
is mainly due to the fact that the kernel computation algorithms typically
scale as O(n6) or worse. Practical applications therefore either compute the
kernel approximately or make unrealistic sparsity assumptions on the input
graphs. In contrast, in the next section, we discuss three efficient meth-
ods for computing random walk graph kernels which are both theoretically
sound and practically efficient.

3. Fast Random Walk Kernels

In this section we briefly describe an unifying framework for random walk
kernels, and present fast algorithms for their computation. We warn the
biologically motivated reader that this section is rather technical. But, the
algorithms presented below allow us to efficiently compute kernels on large
graphs, and hence are crucial building blocks of our classifier for disease
outcome prediction.

3.1. Notation

A graph G(V,E) consists of an ordered and finite set of n vertices V denoted
by {v1, v2, . . . , vn}, and a finite set of edges E ⊂ V × V . G is said to be
undirected if (vi, vj) ∈ E ⇐⇒ (vj , vi) ∈ E for all edges. The unnormalized
adjacency matrix of G is an n×n real matrix P with Pij = 1 if (vi, vj) ∈
E, and 0 otherwise. If G is weighted then P can contain non-negative
entries other than zeros and ones, i.e., Pij ∈ (0,∞) if (vi, vj) ∈ E and zero
otherwise.

Let D be an n×n diagonal matrix with entries Dii =
∑

j Pij . The
matrix A := PD−1 is called the normalized adjacency matrix, or simply
adjacency matrix. A walk w on G is a sequence of indices w1, w2, . . . wt+1

where (vwi
, vwi+1) ∈ E for all 1 ≤ i ≤ t. The length of a walk is equal

to the number of edges encountered during the walk (here: t). A random
walk is a walk where P(wi+1|w1, . . . wi) = Awi,wi+1 , i.e., the probability at
wi of picking wi+1 next is directly proportional to the weight of the edge
(vwi

, vwi+1).
Let X be a set of labels which includes the special label ε. An edge

labeled graph G is associated with a label matrix L ∈ Xn×n, such that
Lij = ε iff (vi, vj) /∈ E. In other words, only those edges which are present
in the graph get a non-ε label. Let H be the RKHS endowed with the kernel
κ : X ×X → R, and let φ : X → H denote the corresponding feature map

In Proc. of PSB 2007, Maui, HI



March 9, 2007 14:35 Proceedings Trim Size: 9in x 6in PSB07

which maps ε to the zero element of H. We use Φ(L) to denote the feature
matrix of G. For ease of exposition we do not consider labels on vertices
here, though our results hold for that case as well.

3.2. Product Graphs

Given two graphs G(V,E) and G′(V ′, E′), the product graph G×(V×, E×)
is a graph with nn′ vertices, each representing a pair of vertices from G

and G′, respectively. An edge exists in E× iff the corresponding vertices
are adjacent in both G and G′. Thus

V× = {(vi, v
′
i′) : vi ∈ V ∧ v′i′ ∈ V ′}, (1)

E× = {((vi,v
′
i′), (vj ,v

′
j′)) : (vi, vj)∈E ∧ (v′i′, v

′
j′)∈E′}. (2)

If A and A′ are the adjacency matrices of G and G′, respectively, the
adjacency matrix of the product graph G× is given by A× := A⊗A′, where
⊗ represents the Kronecker product of matrices.

If G and G′ are edge-labeled, we can associate a weight matrix W× ∈
Rnn′×nn′

with G×, defined as W× = Φ(L) ⊗ Φ(L′). Recall that Φ(L) and
Φ(L′) are matrices defined in an RKHS. Hence we use a slightly extended
version of the Kronecker product and define the (in+j, i′n′+j′)-th entry of
W× as κ(Lij , Li′j′). As a consequence of the definition of Φ(L) and Φ(L′),
the entries of W× are non-zero only if the corresponding edges exist in the
product graph.

We assume that H = Rd endowed with the usual dot product, and that
there are d distinct edge labels {1, 2, . . . , d}. Moreover we let κ be a delta
kernel, i.e., its value between any two edges is one iff the labels on the
edges match, and zero otherwise. Let lA denote the adjacency matrix of the
graph filtered by the label l, i.e., lAij = Aij if Lij = l and zero otherwise.
Some simple algebra (omitted for the sake of brevity) shows that the weight
matrix of the product graph can be written as

W× =
d∑

l=1

lA⊗ lA′. (3)

Let p and p′ denote initial probability distributions over vertices of G

and G′. Then the initial probability distribution p× of the product graph
is p× := p ⊗ p′. Likewise, if q and q′ denote stopping probabilities (i.e.,
the probability that a random walk ends at a given vertex), the stopping
probability q× of the product graph is q× := q ⊗ q′.
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3.3. Kernel Definition

An edge exists in the product graph if, and only if, an edge exits in both
G and G′. Therefore, performing a simultaneous random walk on G and
G′ is equivalent to performing a random walk on the product graph [11].
Given the weight matrix W×, initial and stopping probability distributions
p× and q×, and an appropriately chosen discrete measure µ, we can define
a random walk kernel on G and G′ as

k(G, G′) :=
∞∑

k=0

µ(k) q>×W k
×p×. (4)

A popular choice to ensure convergence of (4) is to assume µ(k) = λk for
some λ > 0. If λ is sufficiently smalla then (4) is well defined, and we can
write

k(G, G′) =
∑

k

λkq>×W k
×p× = q>×(I−λW×)−1p×, (5)

where I denotes the identity matrix. It can be shown (see Vishwanathan
et al. [6]) that the marginal graph kernels of Kashima et al. [4] as well as
the geometric graph kernels of Gärtner et al. [3] are special cases of (5).

3.4. Fast Computation

Direct computation of (5) is prohibitively expensive since it involves the
inversion of a nn′ × nn′ matrix, which scales as O(n6). We now outline
three efficient schemes whose worst case computational complexity is lower,
and whose practical performance as measured by our experiments is up to
three orders of magnitude faster. Vishwanathan et al. [6] contains more
technical and algorithmic details.

3.4.1. Sylvester Equation Methods

Consider the following equation, commonly known as the Sylvester or Lya-
punov equation:

X = SXT + X0. (6)

Here, S, T, X0 ∈ Rn×n are given and we need for solve for X ∈ Rn×n.
These equations can be readily solved in O(n3) time with freely available
code [12], e.g. Matlab’s dlyap method.

aThe values of λ which ensure convergence depend on the spectrum of W×.
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It can be shown that if the weight matrix W× can be written as (3)
then the problem of computing the graph kernel (5) can be reduced to the
problem of solving the following generalized Sylvester equation:

X =
∑

i

iA′λ X iA> + X0, (7)

where vec(X0) = p×, with vec(·) being the function that flattens a matrix
by vertically concatenating its columns.

3.4.2. Conjugate Gradient Methods

Given a matrix M and a vector b, conjugate gradient (CG) methods solve
the system of equations Mx = b efficiently [13]. They are particularly
efficient if the matrix is rank deficient, or has a small effective rank, i.e.,
number of distinct eigenvalues. Furthermore, if computing matrix-vector
products is cheap the CG solver can be sped up significantly [13].

The graph kernel (5) can be computed by a two-step procedure: First
we solve the linear system

(I−λW×) x = p×, (8)

for x, then we compute q>×x. By using extensions of tensor calculus rules to
RKHS, one can compute W×r for an arbitrary vector r rather efficiently,
which in turn can be used to speed up the CG solver.

3.4.3. Fixed-Point Iterations

Fixed-point methods begin by rewriting (8) as

x = p× + λW×x. (9)

Now, solving for x is equivalent to finding a fixed point of the above iteration
[13]. Letting xt denote the value of x at iteration t, we set x0 := p×, then
compute

xt+1 = p× + λW×xt (10)

repeatedly until ||xt+1−xt|| < ε, where ||·|| denotes the Euclidean norm and
ε some pre-defined tolerance. Observe that each iteration of (10) involves
computation of the matrix-vector product W×xt, and hence the extensions
of tensor calculus to RKHS mentioned previously can again be used to
speed up the computation.
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4. Composite Graph Kernel

The presence of an edge in a graph signifies interactions between the end
nodes. In many applications these interactions are significant. For instance,
in chemoinformatics the presence of an edge indicates the presence of a
chemical bond between two atoms. In the case of the PPI networks, the
presence of an edge indicates that the corresponding proteins interact. But,
when studying protein interactions in disease, not just the presence but also
the absence of interactions is significant. Existing graph kernels (e.g. (5))
cannot take this into account. We propose to modify the existing kernels
to take this information into account. Key to our exposition is the notion
of a complement graph which we define below.

Suppose G(V,E) is a graph with vertex set V and edge set E. Then,
its complement Ḡ(V, Ē) is a graph with the same vertex set V , but with a
different edge set Ē := V × V \ E. In other words, the complement graph
is made up of all the edges missing from the original graph.

Using the concept of a complement graph we can now define a composite
graph kernel as follows:

kcomp(G, G′) = k(G, G′) + k(Ḡ, Ḡ′). (11)

Although this kernel seems simple minded at first, it is in fact rather use-
ful. To see this consider the product graph Ḡ×(V×, Ē×) of the complement
graphs Ḡ and Ḡ′. An edge exists in this graph if, and only if, the cor-
responding edge is absent in both G and G′. In other words, this graph
characterizes all the missing interactions which are absent in both the PPI
networks. As demonstrated by our experiments, this insight leads to gains
in performance when comparing co-integrated gene expression/protein in-
teraction networks.

5. Experiments

The aim of our experiments is to predict disease outcome (dead or alive) of
cancer patients using a combination of human PPI data and clinical gene
expression data.

Leukemia data For our first experiment, we employed a dataset of 119 mi-
croarrays of leukemia patients from Bullinger et al. [14], and co-integrated
the expression profiles of these patients and known human PPI from Rual
et al. [15]. This approach of co-integrating PPI and gene expression data
is built on the assumption that genes with similar gene expression levels
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are translated into proteins that are more likely to interact. Recent studies
confirm that this assumption holds significantly more often for co-expressed
than for random pairs of proteins [16, 17].

Specifically, we transformed a patient’s gene expression profile into a
graph as follows: A node is created for every protein which participates
in a protein interaction, and whose corresponding gene expression level
was measured on this patient’s microarray. We connect two proteins in
this graph by an edge if Rual et al. [15] list these proteins as interacting,
and both genes are both up or downregulated with respect to a certain
reference measurement. We found 2167 proteins from Rual et al. [15] for
which Bullinger et al. [14] report gene expression levels.

The CPU runtimes of our CG, fixed-point, and Sylvester equation ap-
proaches to graph kernel computation (as described in Section 3) on the
119 patients modeled as graphs is contrasted with that of the direct ap-
proach in Table 1. 50 of the 119 patients survived leukemia. Using the
computed kernel and a support vector machine (SVM) we tried to predict
the survivors, in the first variant by using a vanilla graph kernel (5), and in
the second variant by using the composite graph kernel (11). The average
prediction accuracy obtained by performing 10-fold cross validation (with
10 repetitions) is reported in Table 2 for both approaches.

Table 1. Average time (in seconds) taken by different methods to compute

the graph kernel on protein interaction networks.

Leukemia dataset Breast cancer dataset

Computation approach Vanilla Composite Vanilla Composite

Direct 8,123 18,749 14,476 30,285

Sylvester 723 1,541 1,221 2,751

CG 6 13 13 28

Fixed 4 7 8 17

Breast cancer data This dataset consists of the microarrays of 78 breast
cancer patients, of which 44 survived the disease [18]. When generating
co-integrated graphs, we found 2429 proteins from Rual et al. [15] for
which van ’t Veer et al. [18] measure gene expression. As before, we report
runtimes for kernel computations and accuracy levels for different variants
of graph kernels in Table 1 and Table 2, respectively.
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Table 2. Prediction accuracy (and standard deviation) of vanilla

and composite graph kernels, averaged over 10 repetitions of 10-fold

cross validation.

Graph kernel variant Leukemia dataset Breast cancer dataset

Vanilla 59.17 (2.49) 56.41 (2.12)

Composite 63.33 (1.76) 61.54 (1.54)

Results On both datasets, our approaches to fast graph kernel computa-
tion lead to up to three orders of magnitude gain in speed. The composite
graph kernel outperforms the vanilla graph kernel in accuracy in both ex-
periments, with an increase in prediction accuracy of around 4-5%. The
vanilla random walk kernel suffers from its inability to measure network dis-
crepancies, the simplicity of the graph model employed, and the fact that
only a small minority of genes could be mapped to interacting proteins;
due to these problems, its accuracy is close to that of a random classifier.
But, since the composite kernel also models the missing interactions, even
a simple model is able to capture relevant biological information, which in
turn leads to better classification accuracy on these challenging datasets
[19].

6. Outlook and Discussion

Two major stumbling blocks prevented the analysis of large datasets of
PPI networks by modeling them as graphs. First, the scalability of the
similarity metric to large graphs. Second, the inability to effectively use
biological domain knowledge, viz. the presence or absence of certain protein
interactions. In this article, we addressed both these issues by extending
graph kernels to make them applicable to PPI networks. We sped up the
computation of graph kernels by up to three orders of magnitude, without
resorting to heuristics or approximations, thus making them practical for
large problems. By using a composite kernel, we are able to model both
the presence or absence of interactions between proteins. This leads to
noteworthy improvements in classification accuracies in our experiments
on disease outcome prediction for cancer patients.

With both these features — graph complement comparison and scala-
bility — we have laid the foundation for future application of graph kernels
in research on PPI networks in particular, and proteomics in general. While
we have proposed approaches to overcome general problems, future stud-
ies will look at even more refined graph kernels that will further increase
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prediction accuracy for specific tasks.
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