
Pattern Mining in Frequent Dynamic Subgraphs

Karsten M. Borgwardt, Hans-Peter Kriegel, Peter Wackersreuther
Institute of Computer Science

Ludwig-Maximilians-Universität
Munich, Germany

kb|kriegel|wackersr@dbs.ifi.lmu.de

Abstract

Graph-structured data is becoming increasingly abun-
dant in many application domains. Graph mining aims at
finding interesting patterns within this data that represent
novel knowledge. While current data mining deals with
static graphs that do not change over time, coming years
will see the advent of an increasing number of time se-
ries of graphs. In this article, we investigate how pattern
mining on static graphs can be extended to time series of
graphs. In particular, we are considering dynamic graphs
with edge insertions and edge deletions over time. We define
frequency in this setting and provide algorithmic solutions
for finding frequent dynamic subgraph patterns. Existing
subgraph mining algorithms can be easily integrated into
our framework to make them handle dynamic graphs. Ex-
perimental results on real-world data confirm the practical
feasibility of our approach.

1 Introduction

Graphs are the universal data structure to model entities
and their relationships. All common data types, such as
vectors, strings and time series, can be modeled as graphs.
Consequently, it is not surprising that the amount of graph
data is ever increasing in domains of large database man-
agement, from bioinformatics to social network analysis.
Hence pattern recognition algorithms on graphs are of ut-
most importance for increasing our understanding of the
information represented by these large datasets of graphs.
One of the central questions in graph data mining is finding
frequent patterns, i.e. subgraphs that occur frequently in
graph data. Previous research in frequent subgraph mining
has focused on two problems: first, finding frequent sub-
graphs across a dataset of graphs [5, 7, 10]; second, finding
frequent subgraphs within one single large graph [1, 9, 8].

From an application-oriented view, both have in com-
mon that they try to find frequent patterns within static re-

lations between objects. However, to study interactions in
real-world systems it is more adequate to look at tempo-
ral interactions, as relations between objects in many real-
world systems usually occur for a certain period of time
only. For example, proteins interact temporally, emails are
sent at a certain point of time, people communicate at cer-
tain times. To make one of these examples explicit: If you
want to understand the dynamics of email communication
in a group of people, it is much more interesting to study
who wrote whom at which point of time, than just looking
at who wrote whom at all, ignoring the temporal informa-
tion.

For this reason, we want to define and tackle a novel third
problem of frequent graph mining in this paper: frequent
pattern mining on dynamic graphs. We are interested in
subgraphs that are both a) (topologically) frequent within a
large graph and b) that show an identical dynamic behavior
over time. ’Dynamic behavior’ refers to the fact that inser-
tions and deletions of edges between their nodes occur in
the same order over time.

While the evolution of graphs over time has been ad-
dressed before, these studies dealt with topics such as den-
sification and shrinking diameters of real-world graphs over
time and do not define pattern mining algorithms on these
dynamic graphs. Only in the domain of web mining, the
importance of dynamic graph pattern mining has been men-
tioned before [2], yet a theoretical framework has not been
defined so far.

2 Frequency in dynamic graphs

In this section, we will define dynamic graphs and the
type of patterns that we are interested in within these graphs.

2.1 Graph theory and graph mining

Some basic terminology from graph theory is required to
follow our description, which we define in utmost brevity
here. A labeled graph G is a set of vertices V , in which

In Proc. of ICDM 2006, Hong Kong

pairs of vertices can be linked by edges E, and in which
both vertices and edges may bear labels L. A graph S is
a subgraph of G if its vertices and edges are subsets of
those of G. These subsets are then referred to as an embed-
ding of S in G. S is a frequent subgraph of G if G con-
tains more than t embeddings of S, where t is a predefined
threshold. Two graphs G1 and G2 are isomorphic if there
exists a bijection between their nodes and edges. Edges that
are mapped to each other by this bijection will be referred
to as corresponding edges in this article.

2.2 Dynamic Graphs

We are now in a position to define the class of graphs we
want to study, namely dynamic graphs.

Definition 1 (Time Series of Graphs) Given a sequence
Gts of n graphs {G1, . . . , Gn} with Gi = (Vi, Ei) for
1 ≤ i ≤ n. We define Gts to be a time series of graphs if
V1 = Vi for all 1 ≤ i ≤ n. Gi is the i-th state of Gts and
Ai is the adjacency matrix of the i-th state.

Such a time series of graphs can be transformed into a
dynamic graph as follows:

Definition 2 (Dynamic graph) Given a time se-
ries of graphs Gts with n states. Then the dy-
namic graph DG(Gts) of Gts is defined as
DG(Gts) = (VDG, EDG, es), where VDG = Vi for
all 1 ≤ i ≤ n and EDG = ∪n

i=1Ei. The mapping
es : EDG → {0 | 1}n maps each edge e in EDG to a
binary string es(e) of length n. The i-th character of es(e)
is 1 if e exists in state i of Gts, and 0 if e does not exist in
state i of Gts. es(e) is referred to as the existence string of
edge e.

We are interested in subgraphs of such a graph, namely
topological subgraphs and dynamic subgraphs, which we
will define next. We consider graphs with node labels L, but
our results can easily be extended to edge-labeled graphs as
well.

Definition 3 (Topological subgraph) Let DG1 =
(V1, E1, L1, es1) and DG2 = (V2, E2, L2, es2) be
node-labeled dynamic graphs. DG1 is a topological sub-
graph of DG2 (DG1 ⊆ DG2) if the following conditions
hold: V1 ⊆ V2, E1 ⊆ E2, L1 = L2, es1(e1) = es2(e2)
for all corresponding edges e1 in E1 and e2 in E2. If DG1

is a topological subgraph of a dynamic graph DG2, then
DG2 contains DG1 topologically, or in other terms, DG2

is a topological supergraph of DG1.

Hence this definition of topological subgraph is very
close to the classic definition of subgraph for static graphs,

except for the fact that existence strings are now considered
as well. Dynamic subgraphs — which we will define next
— require some terminology on the similarity of strings.

Definition 4 (Substring) Given two strings s1 and s2 of
length k and n, respectively. For 1 ≤ i ≤ n − (k − 1),
we then denote by substr(s2, i, i + (k − 1)) = s1 the fact
that s1 is a substring of s2, starting at the i-th character in
s2 and ending at the i+(k-1)-th character in s2. In short, s1

is a k-length substring of s2, starting at character i.

We can now formalize our notion of a dynamic subgraph:

Definition 5 (Dynamic subgraph of length k) A graph
DSG1 = (V1, E1, L1, es1, start1) is a dynamic subgraph
of length k of a dynamic graph DG2 = (V2, E2, L2, es2)
with n states (DSG1 ⊆k dynamic DG2) if the following
conditions hold: V1 = V2, E1 = E2, L1 = L2, and
for all corresponding edges e1 and e2 from E1 and E2:
es1(e1) = substr(es2(e2), start1, start1 + (k − 1)),
where start1 is the state of DG2 in which DSG1 starts,
with 1 ≤ start1 ≤ n− (k − 1)

Note the difference between a dynamic subgraph and a
topological subgraph of a dynamic graph: A topological
subgraph is a subgraph in the classic sense, it contains the
same number of states n as its dynamic supergraph, but a
subset of its nodes. A dynamic subgraph contains the same
set of nodes and edges, but only a sub-interval of k out of
the n states of its dynamic supergraph.

The next two definitions will state under which condi-
tions we consider such a dynamic subgraph to be frequent
within a given dynamic graph.

Definition 6 (Dynamic embedding) A dynamic subgraph
DSG1 = (V1, E1, L1, es1, start1) has a (dynamic) em-
bedding in a dynamic graph DG2 if there exists a topo-
logical subgraph S of the dynamic graph DG2 such that
DSG1 ⊆k dynamic S.

To illustrate this definition: DSG1 is dynamically em-
bedded in DG2 if it is a dynamic subgraph of a topological
subgraph of DG2.

Definition 7 (Frequent dynamic subgraph) A dynamic
subgraph DSG1 = (V1, E1, L1, es1, start1) is a frequent
dynamic subgraph (FDS)1 of a dynamic graph DG2 if
DG2 contains at least t identical embeddings of DSG1,
where t is a user-defined frequency threshold parameter.

One part of the above definition has not been specified so
far, namely when we deem two dynamic subgraphs identi-
cal. Depending on how we define this identity, we can study
different types of FDS.

1FDS is short for frequent dynamic subgraph(s) in this article.

In Proc. of ICDM 2006, Hong Kong

2.3 Types of frequent dynamic subgraphs

We define two alternative versions of identity among dy-
namic subgraphs next. The first is based on the idea that
all embeddings of a dynamic subgraph in a dynamic graph
DG must occur synchronously, i.e. start and end at identical
states of DG. The second is based on the idea that embed-
dings of the same dynamic subgraph can be asynchronous,
i.e. the dynamic subgraphs must be identical, but they can
start at different states of the dynamic graph DG. These two
types of FDS are formalized in the following definitions.

Definition 8 (Equivalence of dynamic subgraphs)
Two dynamic subgraphs are equivalent if
DSG1 = (V1, E1, L1, es1, start1) is isomorphic to
DSG2 = (V2, E2, L2, es2, start2), and es1 = es2. If
e1 and e2 are corresponding edges from E1 and E2,
respectively, then es1(e1) = es2(e2) is referred to as the
(common) edge pattern of e1 and e2.

Definition 9 (Pairwise identity of dynamic subgraphs)
Two dynamic subgraphs DSG1 and DSG2 are inter-
synchronous identical, if DSG1 and DSG2 are equivalent
and start1 = start2.

Two dynamic subgraphs DSG1 and DSG2 are inter-
asynchronous identical, if DSG1 and DSG2 are equiva-
lent and start1 6= start2.

Within these classes of FDS, we can further distinguish
between fixed patterns and changing patterns. Fixed pat-
terns contain existence strings consisting of all 1‘s only,
whereas changing patterns allow for existence strings that
contain at least one 1 and an arbitrary number of 0’s.

2.4 Finding edge patterns via suffix trees

Given a set of corresponding edges from a set of topo-
logical frequent subgraphs, frequent edge patterns can be
detected via suffix trees in a very efficient manner. It is well-
known from [4] that common frequent substrings in a set of
strings can be determined for all arbitrary frequency thresh-
olds in time linear in the total added length of the strings,
i.e. the time it takes to read all strings. We refer to this algo-
rithm as the Common Frequent Substring (CFS) algorithm
in the following (see [3] for further details).

2.5 Finding single-edge FDS

Using the efficiency of suffix trees, we are now able to
detect frequent dynamic subgraphs consisting of one single
edge.

First of all, edges in dynamic graphs can only be (topo-
logically) frequent if their type is frequent. ’Type’ is refer-
ring to the concatenation of the label of the source node and

that of the target node of this edge. This, however implies
that edges can only be frequent when adjacent to nodes with
frequent type, i.e. frequent node labels. In short, to find fre-
quent edges, the first step is to find all frequent node types
and the second step is to find all frequent edge types.

Up to this point, the edge existence strings are not con-
sidered at all, i.e. we only care about topological frequency.
After determining frequent edge types, the frequent com-
mon edge patterns for those are computed, which means
that we are looking at dynamic frequency next.

Finding asynchronous common edge patterns Asyn-
chronous frequent common edge patterns can be found by
applying the CFS algorithm to the edge existence strings of
a set of edges of the same type.

Finding synchronous common edge patterns Finding
synchronous frequent common edge patterns cannot be per-
formed in exactly the same fashion as for asynchronous
edges, as one has to consider the time interval in which exis-
tence strings occur as well. This problem can be overcome
by a simple trick: a timestamp is added to each character in
the existence strings, which represents the time point each
character is derived from. For example, the existence string
“0 0 1 1 0 1 0 1” is transformed to “(0 1) (0 2) (1 3) (1
4) (0 5) (1 6) (0 7) (1 8)”. If this is done for all existence
strings, then the CFS algorithm — treating terms in brack-
ets as one single character — can be directly applied to find
synchronous common frequent substrings.

2.6 Finding larger FDS

After detecting FDS comprising one edge, one next
wants to search for FDS of more than one edge, i.e. larger
FDS. To find larger frequent dynamic subgraphs in an
apriori-like fashion, one has to construct candidates for
larger frequent dynamic subgraphs by joining smaller fre-
quent dynamic subgraphs already determined. One then has
to evaluate each of the candidates to check if it is a real FDS.

The central step in this iterative process is to evalu-
ate whether the union of an edge with frequent edge type
e and a frequent subgraph S is a frequent dynamic sub-
graph itself. For this purpose, let us denote the set of iso-
morphic adjacent occurrences of S and e by C(S, e) =
{(S1, e1), (S2, e2), . . . , (Sl, el)}, the set of all edges of type
e in C(S, e) by eC = {e1. . . . , el} and the set of all sub-
graphs of type S in C(S, e) by SC = {S1. . . . , Sl}. We
now define algorithms to detect our 2 types of FDS, namely
inter-synchronous and inter-asynchronous FDS.

Inter-synchronous FDS These FDS appear synchro-
nously. Consequently, all edge patterns have a common
start and end time point i and i+(k−1), respectively. If SC

In Proc. of ICDM 2006, Hong Kong

is such an inter-synchronous FDS, then the union of SC and
eC can only be such an FDS, if eC contains an edge pattern
that is synchronous to the edge patterns in SC . To detect
these edge patterns, one considers all substrings of existence
strings of edges in eC for the interval [i; i + (k − 1)] of SC

only. Via CFS, one determines whether these substrings are
frequent in eC . In detail, one computes the longest common
frequent substring and checks whether its length is k. If not,
then there is no frequent substring pattern in eC and hence
C(S, e) is evaluated not to be an FDS.

Inter-asynchronous FDS These FDS appear asynchro-
nously. For each pair (Sj , ej) in C(S, e), consisting of an
embedding of the FDS S and a frequent edge e, one deter-
mines the start point i and the end point i + (k − 1) of Sj .
One then extracts the substring for the interval [i; i+(k−1)]
from the existence string of ej . CFS can afterwards be ap-
plied to these substrings. If a frequent substring of length k
is encountered, the candidate C(S, e) is a real FDS.

Fixed and changing FDS To detect fixed and changing
edge patterns, one first prunes edge patterns that do not con-
tain at least one 1; these are the changing edge patterns. To
find fixed FDS within those, one prunes frequent edge pat-
terns that contain 0’s.

2.7 Dynamic GREW

Based on our definitions from the previous sections, the
extension of frequent subgraph mining (FSM) algorithms
to dynamic graphs is straightforward. One has two options:
Either one first uses an FSM algorithm to detect all frequent
topological subgraphs and then searches for dynamic pat-
terns within those, or one selects dynamic patterns from
frequent subgraphs in each iteration of an FSM algorithm.
We exemplify the latter approach for the FSM algorithm
GREW [9]. We explain this extension of GREW to dynamic
graphs (”Dynamic GREW”) following the pseudo-code in
Table 1.

In the first step (1) of Dynamic GREW, we search for
edges whose edge type is frequent within the dynamic graph
(neglecting edge existence strings). Among these, we first
make sure that embeddings of candidates do not overlap by
applying a greedy maximal independent set algorithm (2).
Then we count non-overlapping occurrences of each candi-
date (3). Finally, we check if these embeddings constitute a
FDS (4), and if so, we mark these embeddings and rewrite
the graph such that each marked embedding of this FDS is
represented by one super-node (5). These five steps are iter-
ated (6), as long as at least one candidate is marked in each
iteration.

Table 1. Dynamic GREW
INPUT:
o Dynamic graph DG
o t = frequency threshold
o k = length of patterns

1) Candidate Generation:
find edges that occur more than
t times in DG
2) Employ Greedy Maximal Independent
set algorithm on overlap graph
for candidates -> DG*
3) Candidate Evaluation 1:
Check if there are more than t
occurrences of each candidate in DG*
4) Candidate Evaluation 2:
Check if candidate fulfills criterion
to be an FDS:
if yes, mark embeddings of this candidate
5) Rewrite DG such that each embedding
of each marked candidate
is represented by one super-node
6) if no candidates were marked : end;
otherwise go to 1

OUTPUT: super-nodes = FDS discovered

3 Experiments

To check the practical feasibility of our approach, we ran
experiments on real-world data. Due to space restrictions,
we only present results on one of those, the ENRON email
traffic graph.

ENRON email traffic graph The ENRON dataset com-
prises records of the email traffic between employees of the
ENRON company [6]. For each email, the dataset provides
information about a) the sender, b) the recipient(s), and c)
the time point of sending.

We turned this dataset into a time series of graphs. Nodes
in these graphs are employees of ENRON. Nodes are la-
beled by the rank of the corresponding person within the
company. The time interval in which email traffic was
recorded is split into 15 equal-sized bins. For each bin, we
create one graph, with the i-th bin representing the i-th state
of our graph time series. Nodes in the i-th state of the time
series are connected if an email was sent between these two
persons in this time interval. As a result, we obtain a dy-
namic graph with 130 nodes and approx. 273 edges per
time step. Within this dynamic graph, we tried to detect
FDS in ENRON’s email traffic.

In Proc. of ICDM 2006, Hong Kong

Table 2. Frequency of FDS in ENRON
Class Number of FDS Size of these FDS

fixed synchr. 22 21(1), 1(2)
fixed asynchr. 24 21(1), 2(2), 1(3)

changing synchr. 18 16(1), 1(2), 1(3)
changing asynchr. 21 16(1), 4(2), 1(3)

Parameters: fixed t=10, k=3; changing t=20, k=12;
(synchr. = synchronous, asynchr. = asynchronous; x(y)

means that x FDS with y edges were discovered)

Figure 1. Number of FDS vs. length of edge
patterns k (t = 20, changing patterns)

Results First, we searched for both types of fixed FDS
using Dynamic GREW with default parameters of t=10 and
k=3; we also searched for changing patterns with default
parameters of t=20 and k=12. Note that — enhanced by the
extreme sparsity of the ENRON graph — fixed patterns are
quite rare, requiring a lower threshold and length parameter
than the changing patterns. The number of changing and
fixed FDS discovered for these parameters are reported in
Table 2.

Next, we examined the impact of the threshold parame-
ter t and the edge pattern length k on the number of pat-
terns detected. We tested values for k in {2, 5, 10, 15}
with t constant as t = 20 for changing FDS, and for t in
{10, 20, 30, 40} with k constant as k = 12 for changing
FDS. Results are illustrated in Figures 1 and 2. As ex-
pected, shorter edge patterns and lower thresholds lead to
Dynamic GREW detecting more FDS.

This experiment confirms that asynchronous patterns are
more frequent than synchronous patterns, as they are not
’attached’ to one common starting point. Hence one should
search for asynchronous FDS with higher choices of t than
those selected for synchronous patterns. Unsurprisingly,
frequent shorter edge patterns are more abundant than long
edge patterns. The shorter k is chosen, the higher the fre-
quency threshold should be set.

Figure 2. Number of FDS vs. frequency
threshold t (k = 12, changing patterns)

4 Discussion and Conclusions

In this paper, we have extended frequent subgraph min-
ing algorithms to time series of graphs. In particular, we are
looking for subgraphs that are topologically frequent within
a large graph and that show insertions and deletions of edges
in the same temporal order.

Our technique might be used to study frequent motifs in
protein-protein interaction dynamics, as well as in social or
telecommunication networks.

References

[1] D. J. Cook and L. B. Holder. Substructure discovery using
minimum description length and background knowledge. J.
Artif. Intell. Res. (JAIR), 1:231–255, 1994.

[2] P. Desikan and J. Srivastava. Mining temporally evolving
graphs. In WebKDD Workshop, 2004.

[3] D. Gusfield. Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, June 1997. ISBN 0–521–58519–8.

[4] L. Hui. Color set size problem with applications to string
matching. In Proc. 3rd Symp. on Combinatorial Pattern
Matching, volume 664, pages 227–40, 1992.

[5] A. Inokuchi, T. Washio, and H. Motoda. Complete mining of
frequent patterns from graphs: Mining graph data. Machine
Learning, 50(3):321–354, 2003.

[6] B. Klimt and Y. Yang. The enron corpus: A new dataset
for email classification research. In ECML, pages 217–226,
2004.

[7] M. Kuramochi and G. Karypis. Frequent subgraph discov-
ery. In ICDM, pages 313–320, 2001.

[8] M. Kuramochi and G. Karypis. Finding frequent patterns in
a large sparse graph. In SDM, 2004.

[9] M. Kuramochi and G. Karypis. Grew-a scalable frequent
subgraph discovery algorithm. In ICDM, pages 439–442,
2004.

[10] X. Yan and J. Han. gspan: Graph-based substructure pattern
mining. In ICDM, pages 721–724, 2002.

In Proc. of ICDM 2006, Hong Kong

