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ABSTRACT
Classification of 3D objects remains an important task in many ar-
eas of data management such as engineering, medicine or biology.
As a common preprocessing step in current approaches to classi-
fication of voxelized 3D objects, voxel representations are trans-
formed into a feature vector description.

In this article, we introduce an approach of transforming 3D ob-
jects into feature strings which represent the distribution of voxels
over the voxel grid. Attractively, this feature string extraction can
be performed in linear runtime with respect to the number of vox-
els. We define a similarity measure on these feature strings that
counts common k-mers in two input strings, which is referred to as
the spectrum kernel in the field of kernel methods. We prove that on
our feature strings, this similarity measure can be computed in time
linear to the number of different characters in these strings. This
linear runtime behavior makes our kernel attractive even for large
datasets that occur in many application domains. Furthermore, we
explain that our similarity measure induces a metric which allows
to combine it with an M-tree for handling of large volumes of data.
Classification experiments on two published benchmark datasets
show that our novel approach is competitive with the best state-of-
the-art methods for 3D object classification.

1. INTRODUCTION
Over the last years an ever increasing number of 3D data has

been generated in fields as different as Computer Aided Design
(CAD) applications and biological structural databases like the Pro-
tein Data Bank (PDB) [3]. A huge number of 3D objects can also
be found scattered all over the World Wide Web. In experimental
datasets like the Princeton Shape Benchmark Dataset (PSB) [26] or
the NTU 3D Model Benchmark Dataset [5] such objects from the
WWW have been collected and manually been classified according
to their function or the human perception of geometric similarity.

Due to the ongoing work in the field of structural biology and the
increasing interest in industrial 3D CAD systems, the amount of
available 3D data will keep on growing over the next years. There-
fore, the automatic classification of newly created or newly found
3D data into known classes will continue to be a topic of interest in
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data engineering.
A very wide-spread technique in 3D object classification is to ap-

ply a voxelization preprocessing step to the original 3D data [13],
e.g. provided by means of triangle meshes or in case of proteins by
means of atomic coordinates. The advantage of a voxelized repre-
sentation lies in the ability to level out small differences between
similar models that may be due to the usage of different levels of
detail. Furthermore, voxels are a more elegant way of modeling
solid surfaces than a collection of connected points forming tri-
angle meshes. Voxels can also be used to model filled interiors
of 3D objects while triangle representations merely describe their
surfaces. Finally, voxel representations usually have a lower com-
plexity and thus allow for a more efficient computation of certain
characteristics of 3D data.

Most work on the classification of voxelized data uses a feature-
based approach [14, 8, 1, 15, 20], i.e. a specific number of numer-
ical features is extracted for each voxelized object. These features
form so-called feature vectors and the whole process can be re-
garded as a mapping of a voxelized object to a (potentially) high
dimensional space called the feature space.

Mapping voxelized data to feature vectors is attractive, as it trans-
fers a complex data type into a simpler one, on which a huge fam-
ily of distances, similarity measures and efficient data mining al-
gorithms are available. Unlike vectors, strings are complex data,
providing information about the structure of an object. Thanks to
the suffix tree, string mining can nevertheless be performed very
efficiently, and distances, similarity measures and fast data mining
algorithms have been developed for strings as well. For this rea-
son, we decided to explore a novel approach to 3D voxelized object
classification: Instead of a vector transformation, we examined if a
structured description of 3D objects, namely feature strings, can be
used for fast and accurate classification.

The remainder of the paper is organized as follows: In Section
1.1 we will review current approaches to 3D object classification
that are based on feature vector transformations. After giving a
short introduction to kernel methods in Section 2, we will review
existing kernel methods on strings (Section 2.3). In Section 3, we
will define our 3D feature strings on voxelized data and a similarity
measure for these strings, a special subclass of the so-called spec-
trum kernel. Its performance is then evaluated and compared to
other approaches on benchmark datasets in Section 4. In section 5
we discuss the outcome of the experiments. Section 6 concludes
the paper.

1.1 Approaches to 3D Object Classification
Before we define our novel method, we will review the state-

of-the-art in 3D object classification in the following. First, we
will give a short introduction to voxelization in general and second,
we will present the ideas of the most prominent approaches in 3D
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Figure 1: Voxelized Representations of a Protein and a Bolt

object classification.

Voxelization. Voxels are the three dimensional equivalent of two
dimensional pixels. In order to voxelize a 3D object, at first a min-
imal bounding cube is constructed around the object. According to
the desired voxel resolution r, each side of the surrounding cube
is partitioned into r segments of the same size. This segmentation
partitions the cube into r3 small cubes, the voxels. A single voxel is
considered filled or black if a triangle of the original triangle mesh
intersects the voxel and is considered not filled or white otherwise.
The collection of filled and not filled voxels inside the cube is called
a voxel grid.

In [13] Kaufman introduced an algorithm that yields a conserva-
tive approximation of the surface of a 3D object by means of voxels.
In Figure 1 the voxel grids of a protein and a bolt are depicted.

Shell Model. An intuitive technique to describe 3D shapes was
presented by Ankerst et al. in [1]. At first the balance point M of
an object is determined. Afterwards a number of spheres centered
at M is constructed. The radius of the largest sphere is chosen to
result in a minimum bounding sphere of the 3D object. The radii of
the other spheres to be constructed are equally distributed between
0 and the radius of the largest sphere. The constructed spheres thus
lead to a shell-like spatial partition of each object. Although the
authors originally used surface points to represent the objects this
technique can easily be applied to voxels. For each shell the number
of filled voxels that lie inside this shell is determined. Being a cube
actually, a filled voxel is considered lying inside a certain shell if
the center of the voxel cube lies inside the shell. Thus each filled
voxel is assigned to one shell only. The resulting histogram reflects
the fraction of a 3D object that lies inside a certain shell. For each
object its specific histogram is used as the feature vector.

Spherical Harmonics. In [14] and [8] Kazhdan, Funkhouser
et al. defined a mapping for voxelized objects to feature space
based on spherical harmonics.
According to the theory of spherical harmonics any spherical func-
tion f(θ, φ) can be decomposed as

f(θ, φ) =

∞X
l=0

m=lX
m=−l

almY m
l (θ, φ)

where Y m
l is the so-called spherical harmonic function. The au-

thors define a number of spherical functions by intersecting spheres
of different radii with the voxel grid. The function associated with
a certain sphere yields 1 if the point specified by the radius of the
sphere and the two angles θ and φ lies inside a filled voxel and 0
otherwise.

Each of the spherical functions is subsequently decomposed as

described above. The coefficients alm ∈ C are finally used to
calculate the value sl ∈ IN for a certain choice of l where

sl =

s X
|m|≤l

|alm|2

Thus every sphere intersecting the voxel grid yields several values
sl and the collection of all sl of all spheres constitutes the feature
vector for the current 3D object.

Eigenvalue Model. The authors of [15] use the Principal Com-
ponent Analysis technique [12] to define meaningful numerical fea-
tures for 3D objects. At first the minimum bounding box of an ob-
ject is calculated. The largest extent of this box determines the size
of the minimal bounding cube of the object into which the object is
placed in such a way that the minimum bounding box is centered
inside the minimum bounding cube. The cube is then partitioned
into n3(n ∈ IN) cubical partitions. Obviously n should be smaller
than the voxel resolution r so that more than one voxel is covered
by each spatial partition.

After the object is voxelized, three numerical features are ex-
tracted for each of the n3 cubical partitions. Let V = {v1, . . . , vm}
be a set of filled voxels lying inside the same cubical partition. In
the next step, each vi ∈ V is translated such that the balance point
M of V coincides with the origin, and the covariance matrix C for
V is computed as follows:

C =
1

|V | − 1

mX
j=1

(~vj −M) · (~vj −M)T

The covariance matrix can be decomposed as C = VEVT, where
V is an orthonormal matrix containing the eigenvectors of C and
E is a diagonal matrix containing the eigenvalues of C. The eigen-
vectors are called principal axes of V . They describe the three or-
thogonal axes where the scattering of the elements is greatest. The
three eigenvalues describe the variance along the principal axes and
thus can be used to characterize the shape of the elements of V .

After three eigenvalues have been calculated for each partition,
a feature vector for the complete object can finally be derived.

Grid D2. In [20] Osada et al. presented a technique called D2.
A number of points is distributed randomly on the surface of the
object to be mapped to the feature space. Then all possible pairwise
Euclidean distances are computed. These distances are finally used
to create a histogram for each object reflecting the distribution of
distances between the surface points of a specific object.

This technique was adapted by Shih et al. in [25] for the use with
voxelized data. The method the authors call Grid D2 randomly
chooses two filled voxels and calculates their Euclidean distance.
This is repeated r3 times (again, r is the voxel resolution) so that
a histogram reflecting the voxel distribution can be created. The
entries of the histogram are finally normalized by dividing them
by r3. Again, the histogram for each object can be used as the
corresponding feature vector.

2. PRIMER ON KERNEL METHODS
In the following, we will shortly review the basic concepts of ker-

nel methods, as we will employ kernel functions for 3D voxelized
object comparison in this article. The interested reader is referred
to excellent books [23] and tutorials [4] for a complete introduction
to kernel methods, respectively.

2.1 Kernel Methods
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Kernel methods represent a family of related machine learning
and data mining algorithms. As their core component, they all rely
on a kernel function, which can be thought of as a positive definite
measure of similarity on input data. Based on this kernel function,
tasks such as as classification via Support Vector Machines [29], re-
gression [7], clustering [2] and Principal Component Analysis [24]
or kernel Fisher Discriminant Analysis [19] can be handled.

2.2 Kernel Trick
All kernel methods utilize the so-called ”kernel trick”. Data

points from input space are mapped into a usually higher-dimensional
feature space. Linear hypotheses in this feature space may corre-
spond to non-linear hypotheses in input space, thereby allowing to
use algorithms for linear problems in feature space in order to solve
non-linear ones in input space.

Evaluating a complex mapping from input space to feature space
might be computationally or numerically problematic. Yet a second
“kernel trick” is the fact that all computations in feature space can
be done implicitly by evaluating the so-called “kernel function”.
This kernel function represents a scalar product in feature space and
a measure of similarity in input space. Defining a kernel function
therefore allows us to deal with hypotheses in feature space without
explicitly mapping points from input into feature space.

2.3 Kernels on Structured Objects
As kernel methods were successful in many application areas,

the interest in kernel methods on non-vectorial data grew. As an
essential step, Schölkopf [22] realized that the kernel trick can also
be applied to non-vectorial data, simply by expressing similarity
between structured data via a kernel function. Haussler [9] and
Watkins [31] were the first to define a principled way of designing
kernels on structured objects. Based on this framework, kernels on
structured objects such as strings and trees, transducers, dynamical
systems, on nodes in graphs and on graphs have been defined over
recent years.

2.4 Kernels on Strings
Following [27], kernels for strings can be divided into five cat-

egories: first, polynomial-like kernels (e.g. [32]); second, kernels
derived from probabilistic models (e.g. [10]); third, kernels based
on alignments (e.g. [18]); fourth, spectrum-like kernels that count
common substrings in two input strings ([30, 17, 16]; fifth, kernels
incorporating positional information on substrings (e.g. [21]).

Most interesting for our application is the class of spectrum-like
kernels. These are all built on the fundamental idea to count iden-
tical subsequences, called k-mers, of input strings [16]. More for-
mally, given two strings x and x′ from an alphabet Σ. Then the
exact matching spectrum kernel is defined as:

k(x, x′) :=
X

svx,s′vx′

ωsδs,s′ =
X

s∈Σ∗

nums(x)nums(x
′)ωs.

where s and s′ are substrings of x and x′ respectively, ωs is a
weight assigned to string s and δs,s′ is the delta function that equals
1 if s and s′ are identical, 0 otherwise. nums(x) is the number of
occurrences of substring s in string x.

This class of string kernels comprises the “bag of character ap-
proach” and the “bag of words” kernel which compare all pairs of
characters and words in two strings, respectively [11]. One com-
mon approach to save runtime is to consider strings up to a certain
length only. This method is sometimes referred to as the limited
range correlations string kernel. The alternative approach is to
consider substrings of fixed length k only, usually referred to as
the k-spectrum kernel.

While dynamic programming implementations of the spectrum
kernel computation require quadratic runtime, computation with
runtime linear to the added total length of input strings has been
made possible by [30].

Beside exact matching kernels, string kernels that count gappy
or non-completely identical substrings in two strings have been de-
veloped, often motivated by the problem of aligning biological se-
quences in bioinformatics [17].

3. 3D FEATURE STRINGS

3.1 Derivation of 3D Strings
In this section we will describe the generation of the feature

strings we use to characterize 3D structures. At first we state the
general technique of mapping 3D objects to a voxel grid. Then we
will outline an algorithm that yields the string representations of 3D
objects in linear runtime with respect to the size of a given voxel
grid.

3.1.1 From 3D Objects to Voxel Grids
As mentioned above, a three dimensional object is at first trans-

formed into a voxel grid. Such a three dimensional grid consists of
r3 voxels where r is called the resolution of the voxel grid. A voxel
is considered filled if and only if the original 3D object intersects
the voxel. Each voxel can be addressed by its coordinates (x, y, z),
where 1 ≤ x, y, z ≤ r and x, y, z ∈ N. A voxel grid v can there-
fore be considered as a function
v : N3 → {0, 1}

v (x, y, z) =


1 if (x, y, z) is a filled voxel
0 else

3.1.2 From Voxels to Feature Strings
The straightforward feature extraction step we next describe is a

key step of our application. Our motivation was to generate strings
that describe the distribution of filled voxels along each of the three
axes, x, y and z. For the computation of the 3D feature strings we
iterate through the voxel grid, once for each dimension x, y and z,
and create one feature string for each dimension.

Without loss of generality, let us assume now that we want to
determine the feature string for dimension x. First, we consider
all voxels with x=1 only; these voxels form a y-z-plane. We then
count the number #filled of filled voxels in this y-z-plane. Af-
terwards, we append #filled times the current value of x, which
is ”1”, in the first iteration, to our feature string sx (see Figure 2).
We repeat this procedure for all values of x up to r, i.e. we consider
all y-z-planes defined by x from 1 to r. The following pseudocode
illustrates the feature string generation:

Given: empty strings s_x
voxel grid v with resolution r

for (1<=x<=r)
for (1<=y,z<=r) //iterate through plane

if (v(x,y,z)==1)
s_x=append_character(s_x,’x’)

The strings sy and sz can be constructed analogously. After
three iterations through a given voxel grid, all the required strings
have been constructed in linear time w.r.t. the number of voxels.
Thus the complexity of the string extraction step is equal to O

`
r3

´
.

Note that we append character representations of numbers to the
strings. This is different from adding the single digits a number
consists of. Imagine an empty string s. Let s1 be the result of the
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Figure 2: First Considered Plane for the Construction of sx.

concatenation of s with the numbers 1 and 2, i.e. s1 = s+’1’+’2’.
Similarly the attachment of the number ’12’ to s results in s2. Then
we consider s1 6= s2. This can be implemented by using a spe-
cial character as separator between the numbers or by bijectively
mapping the numbers to an alphabet that is made up of r single-
character elements.

Obviously, the feature strings generated are sorted, as all occur-
rences of the same character appear in one consecutive block. We
will exploit this characteristic of our feature strings for fast string
kernel computation.

Note furthermore that our kernel can handle the strings in a com-
pressed representation, e.g. the string ’AAAAABBBBCCC’ can
also be stored and be processed as ’5A4B3C’.

To conclude this subsection, let us summarize the mapping from
a three dimensional object to a set of strings describing this object:
At first a given object is transformed into a voxel grid. Then this
voxel grid is traversed plane-wise and whenever the voxel func-
tion v equals 1 for a triple of voxel coordinates in this plane, the
string sx is elongated by one character, the x coordinate of this
filled voxel. These strings reflect the distribution of filled voxels
along the three axes of the coordinate system. Finally, after repeat-
ing this procedure for dimension y and z, a three dimensional object
is described by a set of three strings sx, sy , and sz .

3.2 3D String Kernel
We choose to use a basic similarity measure on these feature

strings, namely a so-called spectrum kernel. The spectrum kernel
counts pairs of identical substrings in two input strings as a simi-
larity measure for two strings (see Figure 3).

3.2.1 All k-mers, Limited Range Correlation, and k-
Spectrum

We explore three variants of the spectrum kernel, namely one
version that considers all k-mers in two input strings, and another
version that looks at all k-mers up to a certain length K, and a third
kernel that scans strings for k-mers for one fixed k-mer length K
only. We will refer to the first one as the all k-mer kernel, to the
second one as the limited range correlation (lrc) kernel and the third
one as the k-spectrum kernel. We will present formal definitions of
all three in the following.

Given two strings x1 and x2 from an alphabet Σ. s and s′ are
substrings of x1 and x2 respectively, which is denoted by s v x1

and s′ v x2. |x1| is the length of string x1. δs,s′ is the delta func-
tion that equals 1 if s and s′ are identical, 0 otherwise. nums(x1)
is the number of occurrences of substring s in string x1, throughout

Figure 3: Spectrum kernel computation for 4-mers on two in-
put strings.

the remainder of the paper.

DEFINITION 1 (ALL K-MER KERNEL). Then the all k-mer ker-
nel is defined as

k(x1, x2) :=
X

svx1,s′vx2

ωsδs,s′ =
X

s∈Σ∗

ωs∗nums(x1)∗nums(x2),

where ωs = 1 for all s.

DEFINITION 2 (LRC KERNEL). Under the same conditions,
the lrc kernel with a maximum k-mer length K is defined as

k(x1, x2) :=
X

svx1,s′vx2

ωsδs,s′ =
X

s∈Σ∗

ωs∗nums(x1)∗nums(x2),

where ωs = 1 for |s| ≤ K and ωs = 0 for |s| > K.

DEFINITION 3 (K-SPECTRUM KERNEL). Under the same con-
ditions, the k-spectrum kernel with a fixed k-mer length K is defined
as

k(x1, x2) :=
X

svx1,s′vx2

ωsδs,s′ =
X

s∈Σ∗

ωs∗nums(x1)∗nums(x2),

where ωs = 1 for |s| = K and ωs = 0 for |s| 6= K.

Beside using the all k-mers kernel that considers all k-mers, it
seems attractive to use the lrc kernel as well, because the all k-
mers kernel weighs long k-mers much stronger than short k-mers,
although ωs = 1 for all s. The reason is that every common k-mer
contains two common (k-1)-mers, consequently the total weight of
a k-mer is twice the weight of a (k-1)-mer plus 1. Hence, in our
3D object classification task, the all k-mer kernel would give high
similarity scores to objects that have one long match in their feature
vectors. It therefore seems plausible to explore a second approach,
the lrc kernel, which neglects matches longer than a threshold K.
Thus the lrc kernel is more likely to give high similarity scores to
two objects with many common K-mers. The third approach we
examine, the k-spectrum kernel measures similarity in terms of k-
mers of one fixed length only. Longer and shorter matches are not
considered for determining the match score.

3.2.2 Joint 3D String Kernels
Given two voxel objects v1 and v2, we compute the spectrum

kernel pairwise for the x-strings, y-strings and z-strings of v1 and
v2 and hence obtain three string kernel values for v1 and v2. As
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addition and pointwise multiplication of kernels preserve positive
definiteness, a simple way of fusing these three similarity measures
into one joint kernel is both addition and pointwise multiplication.
We therefore defined two variants of a joint 3D string kernel on all
three x- , y-, z-strings, namely the sum 3D string kernel

ksum(v1, v2) = kx(sx(v1), sx(v2))) +

+ky(sy(v1), sy(v2)) + kz(sz(v1), sz(v2)),

and the pointwise product (pp) 3D string kernel as

kpp(v1, v2) = kx(sx(v1), sx(v2))). ∗
. ∗ ky(sy(v1), sy(v2)). ∗ kz(sz(v1), sz(v2)),

where .* denotes pointwise multiplication, not matrix multipli-
cation. To scale all kernel values to the same range, we normalized
all kernel values beforehand by

Knormalized(x, y) =
K(x, y)p

K(x, x) ∗K(y, y)
.

Our choice of similarity measure has two great advantages: First,
as a positive definite kernel function, the spectrum kernel allows us
to employ kernel methods for classification, such as Support Vector
Machines, regression or PCA on our feature strings.

Second, the special characteristic of our 3D strings, namely that
characters appear ordered only, allows us to compute the spectrum
kernel of two 3D strings extremely fast. Whereas string kernels
in general can be computed in time linear with respect to the total
common length of two input strings (as shown in [30]), the spec-
trum kernel on our feature strings can be computed in time linear
to the number of different characters in both input strings. As the
number of different characters in our strings is upper-bounded by
the voxel grid resolution r, one could also describe the runtime
complexity of the spectrum kernel on our feature strings as linear
with respect to the voxel grid resolution.

We will show in the following that this result holds for all of our
three 3D string kernels, the all k-mers, the lrc and the k-spectrum
3D string kernel.

3.3 Fast 3D String comparison
First, we will explain the linear time computation of the all k-

mers string kernel. Besides showing that this is possible in time
linear to the voxel grid resolution, we will provide the actual algo-
rithm for doing so in the proof of the following theorem.

THEOREM 4. The all k-mers 3D string kernel can be computed
in linear time with respect to the number of distinct characters in
both input strings.

PROOF. Given two input strings x1 and x2. First, we assume
that both strings contain the same character a only. Then the num-
ber of k-mers s in string x of length |x| is obviously nums(x) =
|x| − k + 1. The number of common k-mers in x1 and x2 is then
nums(x1) ∗ nums(x2). If length |x1| = n and |x2| = m and
z = min(n, m), then the number of all common k-mers with
1 ≤ k ≤ z can be computed as

compute k mers one char(x1, x2, a) =

=

zX
i=1

(n− i + 1)(m− i + 1) =

= z(nm + n + m + 1) + (−n−m− 2)

zX
i=1

i +

zX
i=1

i2 =

=
1

3
z3 − 1

2
(n + m + 1)z2 +

1

2
(2 ∗ nm + n + m +

1

3
)z

Second, we assume that both strings contain the same two differ-
ent characters a and b only. Then the number of common k-mers
can be divided into three classes: pure a k-mers (consisting of a’s
only), pure b k-mers (consisting of b’s only), and ab k-mers (con-
sisting of a’s and b’s). The former two can be easily computed as
described above. The number of ab k-mers in x1 and x2 can be
computed as

compute k mers two chars(x1, x2, [a, b]) =

min(numa(x1), numa(x2)) ∗min(numb(x1), numb(x2)).

Third, we assume that both strings consist of three (or more) char-
acters a, b, c each. Common k-mers that consist of three different
characters a, b, c can only occur if the number of b’s in x1 and x2

is identical. After determining all common pure a, pure b and ab
k-mers, we transform all a’s into b’s in both strings (resulting in
x′1and x′2) and then compute all bc k-mers as

min(numb(x
′
1), numb(x

′
2)) ∗min(numc(x

′
1), numc(x

′
2)).

The number of common bc k-mers in x′1 and x′2 is obviously
identical to the added number of common bc and abc k-mers in x1

and x2. This procedure recursively turns all k-mers based on three
or more characters into k-mers of two different characters, which
can be computed efficiently as described above.

This results in the following linear-time algorithm for computing
the all k-mers kernel, where character(i) is the i-th character in the
alphabet Σ (For ease of presentation, we assume that both strings
contain every character in Σ at least once):

function compute 3D string kernel(x1, x2)

Given: strings x_1 and x_2, alphabet Sigma

for i from 1 to size(Sigma)
c = character(i);

if (num_c(x_1)> 0 and num_c(x_2)> 0 )
all_k_mers = all_k_mers +
compute_k_mers_one_char(x_1,x_2,c);

end
end

for i from 2 to size(Sigma)
c = character(i);

if (num_c(x_1)> 0 and num_c(x_2)> 0 )
all_k_mers = all_k_mers +
compute_k_mers_two_chars(x_1,x_2,

[character(i-1),character(i)]);
if num_c(x_1) == num_c(x_2)

turn all character(i-1) in x_1
into character(i) -> x_1’

turn all character(i-1) in x_2
into character(i) -> x_2’

x_1’->x_1
x_2’->x_2

end
end
return all_k_mers;

The fact that we have to iterate over all characters twice only shows
that our algorithm requires linear runtime to calculate the 3D string
kernel.

Second, if we are not interested in all k-mers, but only in k-mers up
to a certain length K only, computation of the string kernel has to
exclude all longer k-mers. We will show that computational effort
remains linear to the voxel grid resolution in the following theorem.
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THEOREM 5. The limited range correlation 3D string kernel
with a maximum k-mer length of K can be computed in linear time
with respect to the number of distinct characters in both input strings.

PROOF. The proof for the lrc kernel is analogous to the proof
for the all k-mer string kernel, except for two definitions: As we
are considering k-mers up to a fixed length K only, the functions
compute k mers one char and compute k mers two chars have to
be redefined.

To compute k-mers from two strings both consisting of a se-
quence of the same character only:

compute k mers one char(x1, x2, a) =

=

zX
i=1

(n− i + 1)(m− i + 1) =

= z(nm + n + m + 1) + (−n−m− 2)

zX
i=1

i +

zX
i=1

i2 =

=
1

3
z3 − 1

2
(n + m + 1)z2 +

1

2
(2 ∗ nm + n + m +

1

3
)z

but z is now set to min(|x1|, |x2|, K)1 because no matching k-mer
may be longer than K, or longer than any of the two strings.

To compute k-mers from two strings both consisting of the same
two characters only, we have to define some notation first: Given
two strings x1 and x2. We define za = min(numa(x1), numa(x2))
and zb = min(numb(x1), numb(x2)). We then have to distin-
guish two cases, namely

Case 1 : za + zb ≤ K

compute k mers two chars(x1, x2, [a, b]) = za ∗ zb, (1)
Case 2 : za + zb > K

compute k mers two chars(x1, x2, [a, b]) =

=

KX
i=2

min(za, zb, i− 1) =

=

min(za,zb)X
i=2

(i− 1) +

KX
i=min(za,zb)+1

min(za, zb) = (2)

=
1

2
∗ (min(za, zb)− 1) ∗min(za, zb)+

+ (K −min(za, zb)) ∗min(za, zb) (3)

This first case can be dealt with as in the all k-mers setting, as no
common k-mer can be longer than K in this setting. In the second
case, we have to compute k-mers from length 2 to K, as the num-
ber of k-mers cannot be larger than za or zb or k − 1, as we are
interested in k-mers that contain at least one a and at least one b.

Since both terms can be computed directly, i.e. in constant time,
the overall runtime of our algorithm does not change, i.e. remains
linear as for the all k-mer kernel.

If as a third alternative, we want to consider k-mers of a fixed length
K only, we have to set kernel values for pairs of longer and shorter
matches to zero. Again, we explain how to achieve this in linear
time in the following theorem and proof.

THEOREM 6. The K-spectrum kernel 3D string kernel with a
fixed k-mer length of K can be computed in linear time with respect
to the number of distinct characters in both input strings.
1If we use min or max operators with more than 2 arguments, this
simply means we are selecting the minimum or maximum element
out of a set of given terms.

PROOF. The argumentation follows the two previous proofs. The
two functions are now redefined as:

compute K mers one char(x1, x2, a) =

max(0, (numa(x1)−K + 1)) ∗max(0, (numa(x2)−K + 1))

The number of common K-mers in x1 and x2 is the product of the
number of K-mers in x1 and x2. Obviously, there cannot be any
K-mers in one string if this string contains less than K characters.

compute K mers two chars(x1, x2, [a, b]) =

= max(0, min(za, zb, K − 1, zb + za −K + 1))

This means that the number of common K-mers of our two strings
is za + zb − K + 1 at maximum. There cannot be more than
K− 1 K-mers, as each K-mers has to contain a and b at least once.
Furthermore, the number of matching K-mers is upper bounded by
za and zb, i.e. the minimum of the number of occurrences of a and
b in x1 and x2.

3.4 Scalability
Apart from a fast theoretical runtime, our feature string kernels

allow handling of larger databases as well. As every kernel function
induces a metric

d(p1, p2) =
p

K(p1, p1) + K(p2, p2)− 2K(p1, p2),

where p1 and p2 are objects in feature space, we can define a met-
ric on voxel objects based on our 3D string kernels. We can then
use this metric to create an M-tree [6] index structure for efficient
storage and access of large datasets of 3D objects that do not fit into
main memory.

4. EXPERIMENTS
In this section, we will present the results of our experimental

evaluation. In particular we compared the feature-based techniques
described in section 1.1 with our new string kernel based approach
presented in this article. We will give a detailed overview of the set-
tings used in our evaluations first. This includes a brief description
of the considered datasets and the parameters used in combination
with the different techniques. We will also describe how we mea-
sured the ability to correctly classify 3D objects, before giving the
actual results in the following subsection.

4.1 Experimental Setting
We will first explain which objects of the NTU [5] and the PSB

[26] dataset we used for the classification experiments and describe
the parameters used for the description of the 3D objects.

4.1.1 Datasets
The NTU dataset consists of 1833 3D models that have been

manually assigned to classes of similar functionality by the pub-
lishers of this dataset. This resulted in 47 classes with in total 549
models. The remaining models were labeled with ‘miscellaneous’.
We discarded those unlabeled objects and made the 549 remaining
objects with corresponding class labels our first benchmark dataset.
It will be referred to as NTUALL in the remainder of this paper. We
chose the elements of the 3 largest classes out of the 47 classes as
our test set based on the NTU dataset. In the following, we will
refer to this reduced dataset as the NTU dataset. In particular this
smaller set consists of 67 objects assigned to the class ‘car’, 52
objects assigned to the class ‘chair’, and 64 objects labeled with
‘plane’. Hence the total number of objects in this NTU subset is
183; it will be denoted as NTU183 in the following.
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The second test set we created is based on the PSB set that con-
tains 1814 3D objects collected from the World Wide Web. Along
with the models, a hierarchical classification system is provided.
We decided to use the leaves of the classification system as class
labels and so the set is partitioned into 161 disjoint classes. For ex-
periments, we employed two datasets derived from PSB. The first
one comprises all objects from PSB, 1814 in total from 161 classes,
and will be called PSBALL from now on.

Additionally, to create a dataset with few classes and many in-
stances per class, we scanned for classes with approximately 50 or
more members. This resulted in a smaller test set with 4 classes
where 100 objects are members of the class ‘fighter-jet-airplane’,
100 models are assigned to the class ‘human-biped’, 51 objects are
marked with ‘potted-plant-plant’, and 51 more objects can be found
in the class ‘rectangular-table’. In total, the second test set based
on the PSB set consequently contains 302 elements. From now on,
this dataset will be referred to as PSB302 set.

4.1.2 Methods and Parameters
In this section, we shortly describe our choice of parameters cru-

cial to the analyzed methods. In order to determine the best possi-
ble parameter settings for each voxel resolution for each method we
performed a number of classification experiments for each method
on the NTUALL dataset. The so derived optimal parameters for
a certain method and a certain voxel resolution were also used for
the classification experiments on the other datasets. In the follow-
ing we describe the exact parameter values for each of the methods
we compared our 3D string kernel method with.

4.1.2.1 Voxelization.
The authors of the different techniques use varying voxel reso-

lutions. At first we set the voxel resolution for all compared ap-
proaches to 15, i.e. 153 black and white voxels are used for the
representation of each three dimensional object. To study the ef-
fect of different voxelizations on classification accuracy, we also
examined voxel resolutions of 20 and 25.

4.1.2.2 Shell Model.
We varied the number of space partitioning shells and learned

that 7 is the best choice for the number of shells for the voxel reso-
lution of 15. Objects represented by 203 voxels are best described
with 9 shells and for a voxel resolution of 25 we used 11 shells. In
the following we use the abbreviations ’SM7’, ’SM9’, and ’SM11’
to denote the Shell Model based on different numbers of shells.

4.1.2.3 Spherical Harmonics.
The most important parameter of this method is the number of

spherical functions defined on the voxel grid. For 153 voxels, 7
spherical functions led to the best classification results on our bench-
mark dataset NTUALL. For both, 203 and 253 voxels the optimal
setting was 9 spherical functions. So we use the notation ’SH7’ and
’SH9’ to refer to this method.

Following the original work, we computed the sl sums for the
first 16 frequencies.

4.1.2.4 Eigenvalue Model.
The classification results of this similarity model differ with the

number of cubical partitions that divide the 3D objects. We found
that 53 partitions is the best suited value for this parameter for all
the considered voxel resolutions. In the following we consequently
refer to this model as ’EM5’.

4.1.2.5 Grid D2.
An important parameter of this feature calculation method is the

number of calculated distances. In the original work this number
equals the number of filled and not-filled voxels, so we randomly
selected 153, 203, and 253 pairs of voxels and calculated their
Euclidean distances. In the following this method is denoted by
’GD2’.

4.1.3 Performance Comparison
We will now outline how we measured the classification ability

of the different approaches.

4.1.3.1 Classification.
The idea of the feature-based methods is to find a suitable map-

ping of voxel grids to the feature space so that the distance between
two points in the feature space reflects the human sense of geomet-
rical or functional dissimilarity of the associated voxel grids.

While distances represent dissimilarity, kernel values are a mea-
sure of similarity. It is, however, unproblematic to turn kernel val-
ues of pairs of input data into distances. For example, this can be
reached via

distance(p1, p2) =
p

K(p1, p1) + K(p2, p2)− 2K(p1, p2)

where K is a kernel function and p1 and p2 are input data.
After defining distances for both feature vector- and kernel-based

approaches, we were able to apply a Nearest Neighbor classifier to
our datasets. Nearest Neighbor classifiers predict the class label of
a test data point t by finding the data point in the training set with
minimum distance to t, i.e. the Nearest Neighbor of t. The class
label of t is then predicted to be the label of its Nearest Neighbor
in the training set.

4.1.3.2 Classification Accuracy.
We performed Leave-One-Out Classification on all datasets. One

object was used a test set, while all other objects belong to the train-
ing set. This is repeated until each object has been part of the test
set exactly once. The classification accuracy we report is the mean
of these iterations.

4.2 Results

4.2.1 Comparison of Three Kernels on NTUALL
First, we tested our three versions of the 3D string kernel on the

NTUALL dataset at a voxel resolution of 15. For the lrc kernel and
the k-spectrum kernel we examined values of
k in {10, 20, 30, . . . , 1200}, where 1200 is the maximum length of
a feature string in NTUALL. We report results of these experiments
in Figure 4 for addition and in Figure 5 for pointwise multiplication
of x-,y-, and z-kernels.
While the lrc kernel and the k-spectrum kernel yield different clas-
sification accuracies for different k values, the all k-mer kernel ob-
viously is independent of the choice for k. Note that we nonethe-
less included the classification results of the all k-mer kernel in the
above mentioned figures so that the results can more easily be com-
pared.

The lrc kernel outperforms both the all k-mer kernel and the k-
spectrum kernel, both for pointwise multiplication and addition.
Note that the lrc kernel converges to the all k-mer kernel as k in-
creases. k-spectrum kernel and lrc kernel reach their best result for
k in 10 to 50, indicating that longer matches are either seldom or
mislead the classifier. In this experiment, the addition of kernels
gave slightly better results than pointwise multiplication, although
differences in accuracy are small, especially for small choices of k.
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Figure 4: The Limited Range Correlation (LRC) Kernel, the k-
Spectrum Kernel (KS), and the all k-mer Kernel (AKM) (Sum
of x-,y-,z-Kernels) .

Figure 5: The Limited Range Correlation (LRC) Kernel, the k-
Spectrum Kernel (KS), and the all k-mer Kernel (AKM) (Point-
wise Product of x-,y-,z-Kernels).

Figure 6: NTUALL Optimized-Kernel (3DS) in Comparison to
other Techniques on the NTUALL Dataset.

Figure 7: NTUALL Optimized-Kernel (3DS) in Comparison to
other Techniques on the PSBALL Dataset.

4.2.2 Benchmark Test on NTUALL
Afterwards we compared the results of the best 3D string kernel

so far, the lrc kernel that had outperformed all other string kernels
on NTUALL, to four state-of-the-art techniques (see Section 1.1).
This comparison was conducted on NTUALL for all three reso-
lutions 15, 20, and 25. We optimized parameters for each of the
resolutions for each method individually. We report results in Fig-
ure 6.

The lrc kernel outperforms 3 out of 4 competing state-of-the art
methods. Only the EM method reaches slightly better accuracies
for resolutions of 15 and 25, and the same accuracy for 20 voxel
resolution.

4.2.3 Benchmark Test on PSBALL and PSB302
We then applied all methods to the datasets PSB302 and PS-

BALL in Leave-One-Out-Validation. We used the parameteriza-
tion optimized for NTUALL unchanged on these datasets, to avoid
artificially good results by overfitting of parameters. Results for
PSBALL are given in Figure 7 and for PSB302 in Figure 8.

Again, the 3D string kernel reaches better results than all meth-
ods except for EM which is slightly better on the PSBALL dataset
across different voxelizations. On PSB302, the 3D string kernel
yields the best result. It outperforms all other method with a mar-
gin of 4% for 15 voxels, 3% for 20 voxels, and 2% for 25 voxels.
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Figure 8: NTUALL Optimized-Kernel (3DS) in Comparison to
other Techniques on the PSB302 Dataset.

On all three datasets, the results achieved by the 3D string kernel
are robust with respect to different voxelizations and do not change
significantly.

5. DISCUSSION
We have presented a novel approach to 3D object classification

based on feature strings and 3D string kernels as measure of sim-
ilarity. We have shown that the feature string extraction can be
performed in linear runtime with respect to the number of voxels.
For all of our string kernels, we have given proofs and algorithms
that they can be computed in time linear to the voxel grid resolu-
tion on our feature strings. Our algorithm is therefore suited for
3D object classification on large datasets. If datasets do not fit into
main memory, our kernel can be readily combined with an M-tree,
as it induces a metric on 3D objects. In comparison experiments
with four state-of-the-art techniques on two published benchmark
datasets, our approach was always best or second best.

The good performance of our method might be caused by both
the feature strings and the kernel we use. Our feature strings de-
scribe the distribution of filled voxels over the voxel grid in three
dimensions separately. Our kernel gives high similarity scores to
two 3D objects if the voxel distributions in corresponding dimen-
sions are similar.

One could also interpret our feature strings and string kernels as
a histogram-based approach. In fact, we create histograms of the
distribution of voxels in each dimension and then represent these
histograms by strings instead of vectors. Unlike a histogram vec-
tor approach that calculates some distance between corresponding
bins in two histograms, our approach allows to measure similarity
between neighboring bins as well. This is made possible by looking
at k-mers made up of two or more different characters.

We have defined three different kernels on our 3D feature strings:
one that examines all common k-mers (all k-mer kernel) in two
strings, one that considers all common k-mers up to a fixed k (lrc
kernel), and a third that looks at k-mers of one fixed k-mer length
only (k-spectrum kernel). Among these, the lrc kernel outperforms
all others in all of our experiments.

The lrc-kernel yields better results than the all k-mer kernel be-
cause it does not overweight long matches, whereas a match that
is one character longer gets twice the weight by the all k-mer ker-
nel. Therefore the all k-mer kernel considers one long match much
stronger than several shorter matches. According to our experi-
ments, this is not a good choice in 3D object feature strings classi-

fication and many shorter matches seem to indicate similarity.
The opposite of the all k-mer kernel, the k-spectrum kernel that

considers k-mers of one fixed length only, is also not as successful
as the lrc kernel in our experimental evaluation. The k-spectrum
kernel considers object similar with many common fixed-length k-
mers. However, in real-world datasets length of k-mers that are
important for 3D object classification seem to differ in length.

As the lrc kernel considers all k-mers up to a fixed length only, it
does not overweight long strings as the all k-mer kernel. As it is not
limited to one k-mer length as the k-spectrum, it takes several po-
tentially important k-mers lengths in account. These characteristics
might explain its superior experimental performance.

In our benchmark experiments with state-of-the-art methods, the
lrc kernel is successful and always comes in first or second. It is
as accurate as the EM method on NTUALL at 15 voxel resolution.
On the remaining resolutions for NTUALL and on PSBALL, the
lrc kernel performs slightly worse than EM, but better than all other
state-of-the-art approaches. On PSB302, our method outperforms
all other techniques, at all resolutions.

A possible explanation for these results is the fact that the 3D
string kernel finds objects that are very similar to each other as it
examines the location of each voxel individually, whereas EM is
better suited for remote similarity detection as it summarizes the
object characteristics in terms of eigenvalues of the covariance ma-
trix. PSBALL and NTUALL comprise many classes and many of
those contain a few objects only, whereas PSB302 contains 302 ob-
jects from 4 classes. If we are dealing with many small classes, re-
mote similarity might be important, whereas few classes with many
objects increase the chance that a query object is very similar to
another object in its class. This would explain why the lrc kernel
outperforms all others on PSB302, whereas EM is best on PSBALL
and NTUALL.

6. CONCLUSIONS AND OUTLOOK
The above experiments show that our 3D string kernel approach

is comparable to the best competitor in classification accuracy.
As an additional advantage, our feature strings can be stored and

processed in compressed format. The memory requirement for this
compressed format is at maximum twice the resolution of the voxel
grid, namely for each character and the number of its occurrences.
This low memory requirement of our approach makes scaling to
large datasets even easier.

Furthermore, our feature string description of 3D objects has at-
tractive invariance properties: It is invariant with respect to scaling
and translation. However, it is not rotational-invariant and requires
- like many state-of-the-art approaches - a prior uniform orientation
of the objects.

A further attractive feature of our feature string approach is the
fact that all recent advances on string classification in machine
learning can be transferred to the task of 3D object classification.
For example, a technique using suffix trees that speeds up Support
Vector Machine training on large sets of strings has recently been
developed [27]. We could use this method on our feature strings
as well and make them even more attractive for large 3D object
dataset classification.

A possibility to enhance the accuracy of all k-mer kernel could
be to assign smaller weights to longer strings, to avoid overweight-
ing of longer matches. Furthermore, methods for learning weights
of individual k-mers based on multiple kernel learning have re-
cently been developed [28]. That could be exploited in our setting
to detect k-mers that are especially important for correct classifica-
tion of 3D objects. We plan to explore this weight learning on 3D
object feature strings in future research.
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