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ABSTRACT
When searching for optimal paths in a network, algorithms like
A*-search need an approximation of the minimal costs between
the current node and a target node. A reference node embedding
is a universal method for making such an approximation working
for any type of positive edge weights. A drawback of the approach
is that it is necessary to store the shortest distance to each land-
mark node for each considered attribute. Thus, the memory con-
sumption of the embedding is linearly increasing with the number
of attributes and landmarks. Thus, an embedded graph might not
be well-suited for handheld devices and may significantly increase
the loading cost. In this paper, we propose methods for signifi-
cantly decreasing the memory consumption of embedded graphs
and examine the impact of the landmark selection. Furthermore,
we propose to limit the number of embedded nodes in the network
and propose an algorithm for shortest path computation working on
networks for which only a portion of nodes store an embedding. Fi-
nally, we propose a heuristic algorithm for finding a suitable subset
of nodes that should be embedded in order to guarantee reason-
able computation times. Our experimental evaluation examines the
trade-off between embedding memory and processing times on two
real-world data sets.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Software Engineering]: Metrics—complexity measures, perfor-
mance measures

General Terms
Theory, Algorithms, Performance

Keywords
GIS, embedding, graph, search, performance, query processing

1. INTRODUCTION
Organizing data in a network is quite common in various ap-

plication areas like social networks, protein interaction networks,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL ’10 San Jose, California USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

navigation graphs or road networks. In all of these application ar-
eas the network distance, reflecting the distance between two net-
work nodes (or objects on the network graph), plays an important
role, e.g. for navigation, route planning, spatial queries in the con-
text of location based services, etc. The network distance (which
we simply call distance in the remainder) between two nodes vi

and vj denotes the cost (length) of the shortest path between vi

and vj and can be determined by aggregating the number of edges
or edge weights when traversing on the shortest path between vi

and vj . As the computation of the network distance is too expen-
sive for many algorithms, many applications apply approximations
for the network distance that can be computed more efficiently. Of-
ten, network distance approximations that lower bound the network
distance are required, e.g. to guarantee no false dismissals when
aiming at short distances which is usually the case for most ap-
plications. In the following, we call an approximation of the net-
work distance between two nodes optimistic approximation, if it is
smaller than or equal to the corresponding network distance.

The most prominent algorithm employing an optimistic approx-
imation between two nodes is A∗-search which is used to com-
pute the shortest path between these nodes. In contrast to the well-
known Dijkstra algorithm which takes the current cost (i.e. the
cost from the start node to the current location when traversing the
network graph) into account, A∗-search additionally looks ahead
(towards the target) and adds an optimistic approximation from the
current location to the target. As a result, A∗-search can direct the
graph traversal towards the target node and thus, it significantly re-
duces the number of accessed nodes during the search. Let us note
that the performance of A∗-search predominantly depends on the
quality (accuracy) of the employed approximation. Let us note that
Dijkstra’s algorithm is a special case of the A∗-search when using
zero as optimistic approximation.

Methods for generating optimistic approximations are usually
strongly connected to a specific type of edge weight. For exam-
ple, when weighting the edges by their length in a road network, a
well-established approximation method is to compute the Euclid-
ian distance between the nodes. Depending on the topology of the
network, this heuristic is sometimes very efficient. However, when
considering the map of a mountain area, the direct path might be
blocked by vertical drop, rivers or other obstacles and the approx-
imation distance is often much smaller than the true distance. An-
other drawback of this approach is that it is not transferable to any
other type of cost. For example, when considering the number of
traffic lights as a cost function, the correlation of path length and
the number of traffic lights is rather small. Though there exist vari-
ous other specialized heuristics for distance approximation, it is an
important requirement for an approximation to work on arbitrary
types of edge weights.



A method allowing this computation is the reference node em-
bedding proposed in [1, 22, 32, 26, 13, 15]. The idea of the embed-
ding is to select a set of reference nodes in the network and compute
the distance from each node of the network to each of the reference
nodes. After embedding the network with the distances to the refer-
ence nodes, it is possible to make optimistic approximations. The
positive difference between the distances of each compared node
to a common reference node yields a positive approximation. In
the worst case, the reference node has the same network distance
to both nodes and thus, the approximation is zero. However, in the
best case one of the nodes is contained on a shortest path between
the other node and the reference node. In this case, the approxi-
mation even exactly predicts the network distance (cf Figure 3). To
increase the approximation quality it is possible to combine approx-
imations w.r.t. various reference nodes by taking the maximum of
each approximation. Since each approximation is guaranteed to be
minimal, taking their maximum still yields an optimistic approx-
imation. Thus, the quality of the embedding can be considerably
increased by adding additional reference nodes.

The major drawback of the reference node embedding is the
additional memory required by the embedding. The embedding
needs to store a distance to each reference node for each node. Ad-
ditionally, modern systems often consider several edge attributes.
Though it is possible to approximate any type of positive edge
weight by the embedding, each type of weight has to be approx-
imated by its own embedding information. Since the number of
reference nodes required for a sufficiently good approximation in-
creases with the size of the graph, the memory consumption of the
embedding increases significantly for larger graphs disqualifying
the applicability of the graph embedding for many applications.

For example, employing a reference node embedding is usually
quite uncommon for navigation systems because a navigation sys-
tem usually needs to store the road networks for complete countries
or even continents. Furthermore, the network does not only contain
the topology of the road network, but also additional information
like points of interest or rendering information.

In this paper, we examine possibilities to reduce the memory re-
quirements of a reference node embedding without lowering its per-
formance. Since additional reference nodes increase both the accu-
racy of the approximation and the memory requirements, the task
is strongly coupled with optimizing the performance. Thus, we aim
at maximizing the search performance of A∗-search when using an
embedding, having a certain predefined memory consumption. To
optimize the performance, we identified two possibilities: The first
is to select a set of reference nodes that allow close approximations
for a majority of the paths in the network. We will formalize the
quality of a set of k reference nodes and show that finding an opti-
mal solution is not feasible for larger graphs. Thus, we will propose
heuristic methods for finding k reference nodes that allow a high-
quality embedding. The second method for decreasing the memory
cost is the introduction of sparse embeddings. A sparse embedding
reduces the memory costs by storing the embedding information
only on a subset of the nodes. As a result the memory requirement
of the embedding can be significantly decreased. However, using
a sparse embedding does not allow to approximate distances be-
tween an arbitrary pair of nodes. Thus, we propose a new shortest
path algorithm that is capable to compute shortest paths on a sparse
embedded network. Finally, the performance of this algorithm does
not only depend on the number of nodes carrying embedding infor-
mation but is also influenced by the selection of these nodes. Thus,
we will propose an algorithm for selecting a certain subset of the
nodes that allows the shortest path computation with a rather small
overhead compared to A∗-search on a completely embedded net-

work. To conclude, the main contributions of this paper are:

• An examination about choosing reference nodes and a heuris-
tic algorithm for reference node selection.

• An algorithm for shortest path computation that is based on
a sparse embedding.

• A method for generating a sparse embedding for a given net-
work that allows efficient shortest path computation.

The rest of the paper is organized as follows. Section 2 surveys
related work in the area of embedded spaces and distance approx-
imations based on reference nodes. In section 3, we formalize our
setting and the considered problems. Our solutions based on se-
lecting reference nodes and introducing sparse embeddings are de-
scribed in section 4. Section 5 shows the results of our experimental
evaluation comparing memory costs and search performance of the
proposed methods. Finally, section 6 summarizes the papers and
outline direction for future research.

2. RELATED WORK
Common route search which starts from a single source node to

at least one target node is also known as the single-source problem.
This problem has been studied very extensively for a long time [6,
2, 4, 5, 9, 10, 11, 21, 30, 37, 40]. Nevertheless, most of the pro-
posed solutions imply some restrictions, like non-negative lengths
or weights of links.

If the target of the search is also a single node (in contrast to
all shortest path algorithms that compute the shortest paths to all
other nodes of the graph [34, 36]), the problem is sometimes also
formulated as the point-to-point shortest path problem, as it is for
example described in [20, 31, 33, 41].

Another approach of solving the task is to preprocess the graph
to obtain some additional information that can be used to enhance
subsequent route searches e.g. by providing improved approxi-
mations and pruning bounds for the distance computations. By
using the precomputed knowledge, the search space can be nar-
rowed on the given graph and thus, the speed of the route search
can be improved. Studies using preprocessed data for the detec-
tion of approximate shortest paths are for example shown in [3, 23,
38]. Other studies aiming at the extraction of exact paths are using
for example geometric information [28, 39], hierarchical decom-
position [7], the notion of reach [18] or landmark distances [12] to
obtain information that is used during the search process. Land-
marks and routing between voronoi cells are proposed in [25] for
knn search in spatial network databases. In [24] the method is ex-
tended to support moving query objects.

Besides the above mentioned possibilities for precomputation,
there also exists the method of embedding the graph into a vec-
tor space H using for example the Lipschitz embedding [1, 22].
An embedding is a mapping from the original space into a vector
space, where each axis corresponds to a subset of nodes (the refer-
ence nodes) of the graph. The coordinate values of an embedded
object are the distances to the closest reference object. Embed-
dings have already been used in skyline queries [32] and point to
point searches [26, 13, 15].

One problem that arises with the use of embeddings, is the se-
lection of the subset of nodes which represent the referencing set.
[29] use in part work of [1] and select a random subset of nodes
to guarantee a lower bound of the embedded distance. [35] adapt
the method for spatial networks by projecting vertices into a vec-
tor space. Afterwards the Minkowski distance is used to determine



the distance between corresponding representations. This embed-
ding nevertheless is not used to compute shortest paths but an ap-
proximate network distance. This distance could be used in subse-
quent steps to give a better forward approximation in shortest path
searches. In [17] an approach is presented which is related to the
previous approaches. However it computes exact network distances
and shortest paths but implies that edge weights have to be integers.

Another issue is the space that is consumed by the precomputed
embedding, if the embedding is calculated for all vertices of the
graph. This leads directly to the problem of the selection of appli-
cable embedding nodes which can be translated to graph coverage
problems which have also been subject of research like in [19].

3. REFERENCE NODE EMBEDDING RE-
VISITED

In this section, we will formalize our setting, describe the refer-
ence node embedding and analyze its memory consumption. We
will begin with defining network graphs for representing a road
network:

DEFINITION 1 (NETWORK GRAPH). A network graph is a di-
rected graph G(V,E,W ) with V denoting a set of vertices, E ⊂
V ×V denoting a set of edges andW ⊂ R+ denoting a set of pos-
itive edge weights. Since G is directed, e = (vs, vd) 6= (vd, vs) =
ê. Furthermore, let ω : E ⇒ R+ be a mapping, assigning a weight
ω to each edge e ∈ E .

In our application, a graph represents a road network and thus,
the nodes correspond to crossings, the edges correspond to road
segments and the weights describe the considered attributes of each
road segment which we call road attributes in the reminder. The
attributes of a segment might represent the length, the maximum
speed, the time to pass the segment, the number of pedestrian cross-
ings or the maximum ascent etc. In the following, we will assume
that all attributes are positive and a small weight is more beneficial
than a larger weight.

To calculate a route in a network graph, the most common ap-
proach is to calculate the shortest path between a start node vs and a
destination node vd. One of the most efficient algorithms for short-
est path computation is A∗-search. A*-search extends the well-
known Dijkstra algorithm by using optimistic distance approxima-
tions between the current node vi and the destination vd. An op-
timistic approximation of the distance to the target allows a global
pruning of candidate paths. If the combined costs of a path p and
the optimistic approximation of the costs between the end of p to
vd are larger than an already encountered path p̂ from vs to vd, then
no extension of p has to be further examined.

For considering the length of each road segment as cost, a simple
solution for calculating such a lower bound approximation is to
employ Euclidian distance. Since there is no shorter way between
two points than the direct line, the Euclidian distance will always be
lower than or equal to the distance which has to be traversed when
traveling on the road network to the destination. Thus, for this
particular cost function the Euclidian distance can be employed to
support A∗-search. Unfortunately, this natural lower bound cannot
be easily extended to arbitrary other criteria. Thus, for applying
A∗-search on an arbitrary cost function, it is necessary to employ a
more general approach.

A reference node embedding is a special form of Lipschitz em-
bedding of the traffic network using singleton reference sets which
we call reference nodes. According to [27] (in [16, 14], these refer-
ence nodes are called landmarks). The embedding transforms the
nodes of a given network graph into k-dimensional vectors, where
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Figure 1: Network graph embedding.

k denotes the number of reference nodes. Therefore, dnet(vs, vd)
denotes cost(spvs,vd) where spvs,vd describes the shortest path be-
tween the nodes vs and vd.

Let G = (V,E,W ) be a network graph and V ′ = 〈vr1 , . . . , vrk 〉 ⊆
V be a subsequence of k ≥ 1 reference nodes. The embedding, or
transformation, of the native space V into a k-dimensional vector
space Rk is a mapping FV ′

: V → Rk, where |V ′| = k is the
dimensionality of the vector space. A reference node embedding of
G based on V ′ ⊂ V defines the function FV ′

as follows:

∀v ∈ V : FV ′
(v) = (FV ′

1 (v), . . . , FV ′
k (v))T,

where FV ′
i (v) = dnet(v, vri) for 1 ≤ i ≤ k and dnet(v, vri) de-

notes the network distance between node v and node vri according
to the corresponding road attribute i.

An example demonstrating the embedding of the network graph
using the reference nodes V ′ = 〈v8, v7〉 is depicted in Figure 1.
Note that our example does not show a complete embedding, but
displays the embedding of a subset of graph nodes, i.e. the nodes
are displayed using a cross instead of a point. The left graph shows
the network graph with edge weights corresponding to an arbitrary
road attribute. Nodes, v7 ∈ V ′ and v8 ∈ V ′ are selected as refer-
ence nodes. On the right side, the (partial) embedding according to
V ′ is depicted.

DEFINITION 2 (NETWORK DISTANCE ESTIMATION). Let
G = (V,E,W ) and FV ′

be the reference node embedding of G
w.r.t. V ′ ⊂ V . For any path p = (vs, . . . , vd) , the network
distance can be estimated by

D(vs, vd) = max
i=1..k

|FV ′
i (vs)− FV ′

i (vd)|.

In [27] it is shown that the distance D(vs, vd) lower bounds the
network distance. Thus, we can employ this embedding as lower
bound approximation in an A∗-search for arbitrary road attributes.

To generate the embedding for a network graph, we have to com-
pute the network distance for each node to all reference nodes in
reverse direction. Since the graph structure is considered to remain
fixed, the embedding of the graph nodes can be performed off-line
in a preprocessing step. Afterwards, the pre-computed results have
to be stored for each of the k reference nodes at each node v ∈ V .
Thus, the memory cost of the embedding Spaceemb(G) is:

Spaceemb(G) = |V | · k · sizeOf(dist_type)



where sizeOf(dist_type) denotes the memory cost required to store
a distance. For example, the memory requirement Spaceemb(G)
for a graph having 100,000 nodes, 50 reference nodes and 8 Byte
doubles is more than 38 MB.

Let us note that the memory consumption described above is
only for a single road attribute. However, in a modern route search
algorithm multiple road attributes must be considered. For exam-
ple if users want to distinguish between the shortest, the fastest, the
most ecological or the safest path. In such a case, an embedding for
each attribute would be computed and stored. As all embeddings
use the same amount of space, the memory consumption is scal-
ing linearly in the number of attributes. In our example, taking the
above four road attributes into account, the memory consumption
would increase to 152 MB.

Since routing systems usually require various additional infor-
mation, like points of interest, rendering information etc., memory
is often a limited resource and is not easily spent for performance
tuning. Especially in the area of small or mobile devices like hand-
held GPS devices or cell phones, main memory is still a bottleneck
and in network applications streaming this type of data might re-
quire much higher bandwidth which is also expensive.

4. MEMORY EFFICIENT REFERENCE
NODE EMBEDDINGS

In this section, we will introduce our methods aiming at reducing
the cost produced by the reference node embedding in terms of
memory space and the size of the search space when performing
shortest path computations. After shortly discussing the problem
on a general level, we will describe our approach leading to our
solution for the reference node selection and the introduction of a
sparse embedding.

4.1 Reference Node Embedding and Memory
Costs

As described in the previous section, the memory costs of the
embedding linearly increase with the size of the graph (i.e. the
number of nodes |V |), the number of reference nodes and the num-
ber of attributes1 used for the edge weights. To a limited degree,
we can lower the memory consumption by switching the accuracy
of a number from an 8 Byte double value to a 4 Byte float value.
However, depending on the given task, this might not be acceptable
for many applications due to the loss of accuracy. To conclude,
only two feasible approaches remain: Decreasing the number of
required reference nodes or decreasing the number of embedded
nodes. Solutions according to these two options will be discussed
in the next two sections.

4.2 Selecting Reference Nodes
The required number of reference nodes is closely connected to

the question which is the best set of reference nodes in the given
network. An optimal embedding of size k can be defined by a set
of k reference nodes allowing the exact prediction of the remain-
ing distance to the destination for a maximum number of paths.
In other words, the number of shortest paths in the graph between
nodes vs and vd that are a sub-path of a shortest path from either
vs or vd to at least one reference node R should be maximized. By
considering each reference node as the set of the shortest paths it
can optimally approximate, we have an instance of the maximum

1The number of attributes only relates to multi-attribute graphs
(MAG) where the weight of an edge (which is related to multiple
attributes) is represented by a vector of weights.

(a) Margin heuristic using 8 ref-
erence nodes (1 shared node)

(b) Grid heuristic using 9 refer-
ence nodes

Figure 2: Heuristics for choosing reference nodes. Red nodes
denote auxiliary points used to find the reference nodes which
are the nearest neighbors to the auxiliary points. The cardinal-
ity of the reference nodes is smaller than the cardinality if dif-
ferent auxiliary nodes share a node of the graph as their nearest
neighbor.
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Figure 3: Impact of the spatial position of a reference node R on
the approximated minimum distance between the nodes A,B. It
can be seen that the approximation performs better, if B is on
the shortest path from R to A.

coverage problem [19] which is proved to be NP-hard. In particu-
lar, the maximum coverage problem tries to find a k-set from a set
of sets where the number of elements in the union of the elements
of the k-set is maximized.

Besides the combinatorial problem of finding the optimal k-set,
even finding the paths for which the reference node R offers an
optimal solution is computationally very expensive. The fastest
method to calculate this information for all nodes in the graph has
at least the complexity O(n3) when applying Floyd Warshall’s all-
pairs-shortest path algorithm [8]. Thus, even the process of deter-
mining an optimal embedding is usually very expensive for larger
graphs. Note that this is not only an issue of how we defined the
optimal embedding. For other optimal embedding definitions, the
complexity in combining the gain of various reference nodes re-
mains.

As a consequence of this complexity, computing an optimal set
of reference nodes is infeasible even for a medium sized graph.
Thus, heuristic approaches have to be applied. A default solution
to the problem is to draw a k-sample of all nodes in the graph. This
very simple heuristic displayed satisfying result in various previ-
ous works [1, 22, 32, 26, 13, 15]. However, with increasing k the
probability that the sample contains two reference nodes which add
more or less the same information to the embedding (because they
are located very close to each other) is constantly increasing. Thus,
adding an additional random sample might not significantly add
better approximations for a large set of paths.

In the following, we will propose two further reference node se-
lection heuristics leading to a more appropriate embedding. These
heuristics are based on the observation that good reference nodes
should be as far as possible from all other nodes in the network.



4.2.1 Margin Heuristic
Consider a node v in the graph G and the tree comprising the

shortest path from v to every other node in G. Now let us assume
that this expansion tree has a high branching degree but the average
length of the path from the root to a leave is rather small. Then
the node v should be a central node having a small distance w.r.t.
hops to all other nodes. However, if the average number of hops
for a shortest path is rather small then the number of sub-paths is
limited as well and v does not yield a good approximation for sev-
eral paths. Thus, a more promising selection of reference nodes are
those nodes v having an expansion tree where the average length
of the paths from the root to the leaves is rather high. Since having
long shortest paths implies the coverage of a large amount of sub-
paths, choosing v at the border (margin) of a spatial network yields
a good heuristic (cf Figure 3).

To efficiently determine whether a node is placed at the margin
of the graph, we can rely on the property of a street network being
basically a planar graph with nodes having a spatial position on a
two-dimensional surface. Thus, our first heuristic Margin proceeds
as follows: First determine a minimum bounding rectangle (MBR)
around the complete graph. Then, determine the position of k uni-
formly distributed auxiliary points on the MBR. Afterwards, select
the closest node in G for each auxiliary point and mark it as a ref-
erence node for the embedding. This results in at most k reference
node. If different auxiliary points share a common node as their
closest node, the amount of reference nodes will be smaller than k.
See Figure 2(a) for a visualization of the Margin-heuristic and the
case of a shared node.

As can be seen in our experimental evaluation, this heuristic
yields a graph embedding with a significantly better approxima-
tion accuracy than the mentioned random heuristic. Especially,
for small values of k, the Margin-heuristic yields excellent results.
However, for large values of k, we observed that Margin practically
could not increase the approximation accuracy by selecting addi-
tional reference nodes. In comparison, the simple random heuristic
still achieved improvements with increasing k. The reason for this
effect can be explained easily: If the number of reference nodes
approximates the number of available reference node candidates
(i.e. number of margin nodes), then additional selection of further
reference nodes does not provide new relevant information for the
network distance approximations. However, there might exist ref-
erence node candidates in the inner areas of the graph that would
be more helpful for the embedding. For this reason, the random
heuristic tends to outperform the Margin-heuristic when further in-
creasing the number of reference nodes after the number of refer-
ence nodes exceeds the number of margin nodes.

4.2.2 Grid Heuristic
To overcome the above mentioned problem of the Margin-heu-

ristic, we propose a second heuristic called Grid-heuristic. This
heuristic proceeds similar to the Margin-heuristic, i.e. it defines
auxiliary points and selects nodes as reference nodes that are clos-
est to these auxiliary points. The difference to the Margin-heuristic
is that it does not only consider auxiliary points at the border of
the graph and MBR but also inside the MBR on all vertices of the
grid (cf Figure 2(b)). Due to the uniform nature of the grid, points
are also distributed uniformly on the border of the grid. However,
for considerable large values of k the heuristic adds more auxiliary
points within the rectangle allowing the discovery of new useful
reference nodes.

Comparing Margin- and Grid-heuristic with the same value of
k, it is obvious that the saturation of reference nodes on the border
of the graph is much lower for the Grid-heuristic which also means

that the Grid-heuristic stores less redundant information than the
Margin-heuristic.

4.3 Shortest Path Computation based on a
Sparse Embedding

The second important aspect to be considered when trying to re-
duce the memory cost of a graph embedding is the number of nodes
that are embedded, i.e. the number of nodes storing the embedding
information. Common graph embedding approaches apply the em-
bedding to each node of the graph, i.e. they compute and store for
each node of the graph the network distances to all reference nodes
which leads to high memory cost. The question at issue is, whether
we really need an embedding for each node of the graph in order
to estimate the network distance or to compute the shortest path
between two nodes of the graph in an efficient way. This question
arises due to the following observation: Given two adjacent nodes
vi and vj and the weightw of the edge connecting these two nodes,
then the graph embedding information assigned to these two nodes
are quite redundant, as the corresponding network distances to the
reference nodes do not differ more than w. This leads to the as-
sumption that the embedding cost might be reduced by embedding
only one of the nodes (e.g vi) and approximate the embedding of vj

online by taking into account the embedding of vi and the weight
of the connecting edge w. Based on this observation, in the follow-
ing, we will introduce a shortest path algorithm2 based on a graph
embedding which is applied only to a sample of graph nodes.

The basic idea of our method is that it is not necessary to update
the optimistic approximation of the distance to the target node with
each additional node. Instead, it is allowed to keep the maximum
of the distance traversed so far and the approximation of the prede-
cessor path. This way each new path can still be ranked w.r.t. an
optimistic approximation to the target and thus,A∗-search will pro-
cess the shortest path still correctly. Of course, the approximation
of a path that computes its approximated length by this simple trick
will be too small for the majority of paths. Thus, it is possible that
the algorithm visits additional nodes due to a bad approximation.
However, bad approximation might happen for most approximation
heuristics anyway. Furthermore, a bad approximation does not nec-
essarily cause any additional cost, if the path ranked too high would
be extended anyway. Especially, in cases were there is only one or
two successor paths working with a too optimistic approximation
is not a big problem. As long as further extensions of a path allow
calculating a more accurate forward approximation often enough,
the overhead of paths is kept considerably small.

A sparsely embedded network can be formalized in same way
as a completely embedded network with the difference that it is
not possible to access FV ′

(v) for all nodes v ∈ V . Instead, there
exists only a subset S ⊂ V for which FV ′

(s) is available. Dis-
tance approximation by a sparse embedding can be formalized as
follows:

DEFINITION 3 (DISTANCE APPROXIMATION). Let
G = (V,E,W ) and FV ′

be the reference node embedding of
S ⊂ V w.r.t. the reference nodes V ′ ⊂ V . For each path p =
(vs, . . . , vt, vd), the network distance can be estimated by

D(vs, vd) = (
maxi=1..k |FV ′

i (vs)− FV ′
i (vd)| if vs, vd ∈ S

0 else
.

A consequence of the sparse embedding is that it is not possible
to generate approximations for any pair of nodes in the graph.

2Network distance estimations between two arbitrary graph nodes,
based on the sparse embedding are included.



For the problem of the missing embedding of the current loca-
tion, the solution is to reuse the approximated distance of the last
node on the path having an embedding. Formally, given a path
p = (v1, ..., vk) and its optimistic approximation approx(p) =
dnet(vs, vk) + D(vs, vk) for the shortest extension ext(p, vd) =
(v1, .., vk, .., vd) to the target node nd. Then approx(p) ≤ approx(p̂)
holds for any extension p̂ = (v1, .., vk, vnew). The reason for this
observation is quite obvious: If vnew is on the shortest path be-
tween vk and vd then approx(p) must still be smaller than the
cost of the shortest path between vk and vd because it is an opti-
mistic approximation. If vnew is not on the shortest path between
vk and vd, then the path q between vk and vd crossing vnew (q =
(vk, vnew, .., vd)) must have larger costs than the shortest path be-
tween vk and vd (sp(vk, vd)). Since approx(p) ≤ sp(vk, vd), it
follows that approx(p) < cost(q) as well. Thus, approx(p) lower
bounds the costs of all extensions of p as well.

Due to this property, it is allowed to run A∗ using this approx-
imation. However, since the lower bound approximation must not
grow with each additional hop, the search space of the algorithm
will increase to a certain extend. Let us note that we can addi-
tionally consider the current cost of q in comparison to approx(p)
and use the larger value as approximation. This optimization is
sometimes beneficial if vk is already quite close to vd. The sec-
ond problem is that it is not possible to make any approximation of
the remaining distance to vd if vd is not embedded. To solve this
problem, we proceed as follows. Before starting the traversal from
vs to vd, we explore the neighborhood of vd and collect the so-
called surrounding surround(vd). The idea of the surrounding is
to find a set of embedded nodes border(vd) ∈ surround(vd) for
which it is guaranteed that the shortest path from each node vout 6∈
surround(vd) to vd has to contain at least one member vb ∈
border(vd). Thus, vs is either part of surround(vd) or can be
composed by concatenating the paths sp(vs, vb) and sp(vb, vd). To
compute surround(nd) and border(vd) , we perform a breadth-
first traversal in reverse direction beginning with vd. If a reverse
path starting with an embedded node vemb and leading to nd is
found, we add vemb to border(vd) and store the cost of the path
sp(vemb, vd). border(vd) is complete when there is no path in
the search left that ends with a node that is not embedded. How-
ever, at this point of time it is possible that we did not find the
shortest path to all elements of border(vd). Thus, we have to con-
tinue and extend the search in all directions up to a distance of
maxvb∈border(vd) sp(vb, vd) to guarantee to find out the real dis-
tance dnet(vb, vd) for any vb ∈ border(vd). To cover the case that
vs is already encountered during this traversal, we can treat vs in
the same way as the elements of border(vd). Let us note that in
this case the search is basically a Dijkstra search guaranteeing the
correct result but not yielding a high efficiency. However, having a
proper selection of embedded nodes S, this case can be prevented
for any pair of nodes having a reasonable distance between each
other. The surrounding of surround(vd) is given by the set of
nodes which are visited during the first traversal for finding all ele-
ments of border(vd).

If vs ∈ surround(vd) the algorithm has already found the
shortest path between vs and vd and the search terminates. In the
more common case that vs 6∈ surround(vd), we now an A∗-like
best first search beginning with vs to all elements of border(vd).
However, to rank a candidate path p = (vs, . . . , vk) in the queue
of the best first search, we employ the following function:

approxsurround(p) =

min
vb∈border(vd)

{sp(vs, vk) +D(vk, vb) + sp(vb, vd)

approxsurround(p) approximates the shortest distance between
vs and vd via vk by splitting it into three segments for each node
vb. The first is the true cost between dnet(vs, vk) which has been
already computed during the traversal. The second is the optimistic
approximation between vk and vb. The last segment is the true
cost of sp(vb, vd) which has been calculated during the search for
border(vd). Since we do not know which of the vb ∈ border(vd)
is indeed on the shortest path between vs and vd, we have to take
the minimum in order to lower bound the true distance. In the case
that vk ∈ border(vd), we found a complete path between vs and
vd and approxsurround(vd) displays the actual costs of that path.
Thus, in the case that such path occupies the top of the queue, we
can guarantee that it is a shortest path.

To conclude, our algorithm proceeds as follows:

• Determine surround(nd)

• Begin a best first traversal of G with ns as start. Each path
p = (ns, .., nk) is weighted by the maximum of cost(p) and
approxsurround(nk, nd).

• If a path p = (ns, .., nsur) with
nsur ∈ surround(nd) is on top of the priority queue, return
p, sp(nsur, nd) as the shortest path.

4.4 Generating a Sparse Embedding
The shortest path algorithm described above computes correct

shortest paths for any sparsely embedded network. However, in the
extreme case the shortest path is not computed usingA∗-search, but
the plain reverse Dijkstra approach for computing the surrounding
of nd. Thus, in order to achieve comparable search times to A∗-
search on a complete embedding, it is important to select a suitable
set of nodes in the graph to store the embedding information. In
general, a basic approach is to choose a random sample, i.e. chose
every j-th node. Since a random sample obviously does not take
the topology of the network into account, we will propose another
more directed method for finding a suitable set of embedded nodes.
In order to keep the overhead of the proposed algorithm compared
toA∗-search on a completely embedded graph as small as possible,
we have to analyze in which cases the missing embedding informa-
tion causes the most overhead. Furthermore, we have to keep in
mind that the overhead and the memory consumption are concur-
rent goals. Thus, the goal of our algorithm is to find a selection
of nodes that causes the smallest overhead for a given amount of
memory that is available for the embedding.

Theoretically, it is possible to measure the overhead for a cer-
tain set of reference nodes by comparing the nodes being accessed
for an A∗-search on a completely embedded network in compari-
son to a sparse embedded network for all possible start and target
nodes. However, the effect of a missing embedding information is
strongly dependent on the other embedded nodes in the network. If
a node does not have an embedding but all its neighbors have, the
caused overhead is usually much smaller than in the case that there
is no embedded node in the complete neighborhood. As a result, to
determine the best possible sparse embedding comprising k nodes
would require to test the overhead for all paths for all subsets of
nodes V having k elements. Since this approach is too expensive
for even smaller graphs, we will propose heuristic algorithms.

There are two reasons for the overhead being caused by a sparse
embedding. The first is the size of the surrounding. If there are
too few embedded nodes, determining surround(nd) will visit too
many nodes in the graph. In the extreme case, the start node ns is
already visited in the step. In this case, the proposed algorithm
degenerates to a reverse Dijkstra search from the target node to the



start node. The second problem is a smaller forward approximation
for the paths not ending with an embedded node. Again if the den-
sity of embedded nodes in the graph becomes too low, the search
algorithm will more and more tend to judge paths mainly based
on their cost and the importance of the forward approximation be-
comes significantly smaller. Thus, the algorithm again converges
to a Dijkstra-like search.

To find a good embedding and avoid these problems, we can
formulate some requirements of a good embedding:

• Consider the node n 6∈ Vembed, then there is no path p =
(n1, .., nk) with cost(p) > ε and 6 ∃ni ∈ Vembed for 1 ≤
i ≤ k.

• For each node n |surround(n)| < gn where each g is the
maximum degree of any node in G(V,E) and n is a param-
eter describing an branching level.

While the first requirement makes sure that there is no path that
is extended too often without any new approximation, the require-
ment directly controls the size of the surrounding. In the following,
we will propose an algorithm for determining a subset of nodes for
the embedding that guarantees both requirements. However, since
it is an heuristic algorithm, we cannot guarantee that the node hav-
ing embedding information has a minimal cardinality.

The idea of our algorithm is to successively check for each node
whether there is a close enough embedded node in each of its di-
rections. Thus, we traverse the graph in each direction and stop if
the path does not fulfill the above requirements or contains a node
being already selected for the embedding. If the search terminates
in each direction because of a node being already selected for the
embedding, the node remains without an embedding. If there is
at least one path not being extended because of the above require-
ments, we select the path with largest sum of node degrees and add
its start and its end node to the list of embedded nodes.

To process all nodes in a determined order, we process nodes
having a larger degree before nodes having a smaller degree. The
idea behind considering the degree is that both sources of a search
overhead strongly react to a large number of successors. A large
surrounding causes larger costs for its traversal and additionally
requires more time during the A∗-like traversal. Additionally, if
we cannot not determine a new better approximation for a path, an
end node having less outgoing edges will generate less unnecessary
extensions and thus, less overhead.

To conclude, our algorithm works as follows:

• Calculate the full embedding for all v ∈ G

• initialize an empty set for covered nodes: covered

• Sort all nodes v ∈ G in a queueQ by their degree in decreas-
ing order as nodes with a high degree are more important to
be embedded than nodes with a lower degree.

• ∀v ∈ Q ∧ v /∈ covered:

– identify the shortest path p = (v1, ..., vk) starting at
v to any uncovered node with respect to the following
constraints:
length(p) > ε ∧
∀v ∈ p : v /∈ covered ∧
∀v ∈ v2,...,k−1 : degree(v) ≤ 2

– Add v1, vk ∈ p to covered.

• remove the embedding information from all v /∈ covered

5. EXPERIMENTAL EVALUATION
In this section, we present our experimental evaluation describ-

ing the trade-off between memory and search performance. Our
experiments were performed on two road networks. The first net-
work comprising 6105 nodes represents the German city of Old-
enburg. The second network having more than 171,000 nodes dis-
plays consists of major roads in Northern America. All experiments
where performed on a 32 bit workstation having 2 GB main mem-
ory and an AMD Athlon 5000+ processor. All algorithms were
implemented in Java 1.6.

All experiments where performed on a sample of 400 test queries
randomly selected by 20 starting and 20 destination nodes being
drawn by an uniform distribution. To measure the cost of a shortest
path computation, we counted the number of accessed nodes during
the traversal. The memory costs were calculated by assuming that
each distance value in the embedding is represented by an 8 Byte
double value. All experiments were performed multiple times to
rule out outlier effects in the involved random processes.

5.1 Influence of Reference Nodes
In a first set of experiments, we compared the performance for

three different heuristics for selecting a set of k reference nodes
for varying numbers of k based on an completely embedded graph.
The first heuristic is called Random and draws a uniform sample
from the nodes V . The second method is Margin, selecting only
reference nodes being close to the margin of the graph. The third
heuristic is the Grid heuristic, selecting reference nodes being close
to auxiliary points being placed on a uniform grid.

Figure 5 displays the results on both datasets. While the x-axis
displays the memory costs of a complete embedding w.r.t. k refer-
ence nodes. The y-axis displays the performance measured by the
amount of the graph being visited during theA∗-search. Let us note
that we performed this set of experiments using artificially gener-
ated edge weights in order to rule out the possibility that our heuris-
tics are only valid for using the length of each edge for weight-
ing. For both datasets, it can be observed that for small values of k
both Grid and Margin considerably outperform the random se-
lection of reference nodes. The reason for the bad performance
of Random is that this heuristic does not try to select nodes be-
ing useful reference nodes yielding good approximations for many
paths. Furthermore, there is no mechanism to reduce the selection
of reference nodes yielding good approximation for the same set of
paths. Only after strongly increasing the number of reference points
the general approximation quality increases to a reasonable level al-
lowing an fast computation of shortest paths with A∗-search. The
performance of Grid and Margin is rather comparable for small
values of k. Furthermore, since both heuristics try to distribute
reference nodes around the margin of the graph the performance
strongly increases very quickly for small values of k. However, af-
ter the performance reaches a certain level theGrid heuristic is not
capable to achieve any additional performance advantage. The rea-
son for this effect is that the margin of the network is covered quite
well by reference nodes. Therefore, adding additional nodes at the
margin does not allow to make better approximations for a large
amount of paths. In contrast theGrid heuristic selecting additional
nodes from the inner regions of the graph still yields performance
advantages even if the number of reference nodes k increases to
rather large values. Thus, selecting reference nodes in the inner
regions of the graph yields significant performance advantages.

5.2 Influence of Embedded Nodes
In the second set of experiments, we tested the performance de-

crease when reducing the number of embedded nodes in the net-
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Figure 4: Evaluating the influence of reference nodes using different heuristics shows that the grid heuristic converges faster and
more stable than Random or Margin. Margin cannot decrease below a certain level as soon as (almost) all margin nodes of the
graph have been selected as reference nodes.
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Figure 5: The diagrams show the amount of search space w.r.t the amount of embedding information. The rightmost values denote
the search space with a full embedded of the graph. Removing the embedding using the proposed algorithm causes a considerably
lower increase of the search space than removing the embedding randomly.

works. Therefore, we selected 9 reference nodes for the Oldenburg
graph and 45 reference nodes for Northern America network em-
ploying the grid heuristic. We compare our proposed method with
randomly selecting every ith node in the network for carrying em-
bedding information. The results are displayed in Figure 5. In
both data sets the performance decrease compared to an complete
embedding is still tolerable when embedding about half of the net-
work with both of the heuristics. However, when embedding less
than half of the network, randomly selecting nodes quickly loosed
a lot of performance compared to an complete embedding. In con-
trast, our solution still keeps the overhead at a value of about 10%
when embedding 10% the data in the North America network. For
the Oldenburg network, we could observe a 22% overhead for the
search space when embedding 33% of the network. In comparison,
the random heuristic displays an overhead of 130% for the same
percentage of embedded nodes. To conclude, using the proposed
selection algorithm, the performance loss when embedding only
one half of the nodes was ca. 3% for the North America network
and 7% for the smaller but more dense Oldenburg network.

5.3 Memory Trade-Off
In a final set of experiments, we combine both approaches in

order to examine the trade-off between the number of embedded
nodes and reference nodes. Thus, we measure the performance
when constantly increasing the number of reference nodes selected
by the Grid heuristic for a completely embedded and a sparsely
embedded graph where the selection has been done by our new al-
gorithm. To compare the combinations, we determine the amount
of memory required to store the complete embedding. Figure 6
displays the results on both networks. On the x-axis we display the
memory requirements in MB while in the y-axis the number of ac-
cessed nodes is displayed. For the Oldenburg graph, we compared
the complete embedding to a sparse embedding of 33% and 50% of
the nodes. For the North America network, we even employed an
embedding only comprising about 11% of the nodes. For a rather
small amount of memory it can be seen that the solutions using
a sparse embedding significantly outperform the complete embed-
ding on less reference nodes. The reason for this effect is that the
amount of memory is too small for storing a complete embedding
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Figure 6: The diagrams show the impact of the number of reference nodes on the search space. The x-axis shows the amount of
memory that is used by the embedding for 4 - 587 reference nodes on the North America graph and 2 - 87 reference nodes on the
Oldenburg graph.)

w.r.t. a sufficiently large number of reference nodes. Thus, adding
an additional reference node can still significantly increase the per-
formance. However, to allow this additional nodes, the embedding
must be made more sparse to free the required memory. With an
increasing amount of available memory, the number of reference
nodes that can be employed in the complete embedding reaches
a level that allows excellent approximation. Thus, freeing mem-
ory by using a sparse embedding for additional reference nodes
does not compensate for the overhead of using a sparse embedding.
However, since memory is a rather limited resource in applications
handling large networks, it is necessary to employ both methods to
maximize the performance for the amount of memory that can be
spared for the reference node embedding.

6. CONCLUSION
In this paper, we examined distance approximations in arbitrary

attributed graphs using the reference node embedding proposed by
[1, 22]. A reference node embedding allows the efficient calcula-
tion of optimistic approximations for the distance between to nodes
w.r.t. to arbitrary positive edge weights. Thus, the embedding is ap-
plicable to any type of attribute in various types of applications. A
large drawback of this approach is the memory consumption de-
pending on the number of reference points that are necessary to
achieve a sufficiently good approximation quality. To address this
problem, we first of all try to reduce the number of reference nodes
which are necessary to achieve a sufficiently good approximation.
Therefore, we propose two heuristics called Margin and Grid.
Furthermore, we introduce sparse embeddings which do not store
embedding information for each node in the network. However,
since it is not possible to make distance approximations for all pairs
of nodes in a sparse embedding, we show that using the sparse em-
bedding can be used for efficient shortest path computation. Thus,
we propose a new algorithm which is a hybrid between Dijkstra’s
algorithm and A∗-search depending on the portion of the graph
which carries an embedding. Since the selection of the nodes car-
rying the embedding information plays an important role for the
performance of the algorithm, we finally propose an algorithm for
selecting the subset of the node that should carry embedding infor-
mation. In our experimental, evaluation we show the behavior of

our method w.r.t. performance and memory consumption. Further-
more, we examine the combination of reference nodes and embed-
ded nodes for various amounts of available main memory.

For future work, we will examine the use of a sparse embedding
for other problems than shortest path computation and effects on
systems storing extremely large network on secondary storages.
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